Coral.Metalib.MetatheoryAtom
(* This file is distributed under the terms of the MIT License, also
known as the X11 Licence. A copy of this license is in the README
file that accompanied the original distribution of this file.
Based on code written by:
Brian Aydemir
Arthur Charg\'eraud *)
Require Import Coq.Arith.Arith.
Require Import Coq.Arith.Max.
Require Import Coq.Classes.EquivDec.
Require Import Coq.Lists.List.
Require Import Coq.Structures.Equalities.
Require Import Coq.FSets.FSets.
Require Import Metalib.CoqListFacts.
Require Import Metalib.FSetExtra.
Require Import Metalib.FSetWeakNotin.
Require Import Metalib.LibTactics.
Require Import Lia.
(* ********************************************************************** *)
known as the X11 Licence. A copy of this license is in the README
file that accompanied the original distribution of this file.
Based on code written by:
Brian Aydemir
Arthur Charg\'eraud *)
Require Import Coq.Arith.Arith.
Require Import Coq.Arith.Max.
Require Import Coq.Classes.EquivDec.
Require Import Coq.Lists.List.
Require Import Coq.Structures.Equalities.
Require Import Coq.FSets.FSets.
Require Import Metalib.CoqListFacts.
Require Import Metalib.FSetExtra.
Require Import Metalib.FSetWeakNotin.
Require Import Metalib.LibTactics.
Require Import Lia.
(* ********************************************************************** *)
Defining atoms
Module Type ATOM <: UsualDecidableType.
Parameter atom : Set.
Definition t := atom.
Parameter eq_dec : ∀ x y : atom, {x = y} + {x ≠ y}.
Parameter atom_fresh_for_list :
∀ (xs : list t), {x : atom | ¬ List.In x xs}.
Parameter fresh : list atom → atom.
Parameter fresh_not_in : ∀ l, ¬ In (fresh l) l.
Parameter nat_of : atom → nat.
Hint Resolve eq_dec : core.
Include HasUsualEq <+ UsualIsEq <+ UsualIsEqOrig.
End ATOM.
The implementation of the above interface is hidden for
documentation purposes.
Notation atom := Atom.atom.
Notation fresh := Atom.fresh.
Notation fresh_not_in := Atom.fresh_not_in.
Notation atom_fresh_for_list := Atom.atom_fresh_for_list.
(* Automatically unfold Atom.eq *)
Global Arguments Atom.eq /.
Instance EqDec_atom : @EqDec atom eq eq_equivalence.
Proof. exact Atom.eq_dec. Defined.
(* ********************************************************************** *)
Finite sets of atoms
Module Import AtomSetImpl : FSetExtra.WSfun Atom :=
FSetExtra.Make Atom.
Notation atoms :=
AtomSetImpl.t.
The AtomSetDecide module provides the fsetdec tactic for
solving facts about finite sets of atoms.
The AtomSetNotin module provides the destruct_notin and
solve_notin for reasoning about non-membership in finite sets of
atoms, as well as a variety of lemmas about non-membership.
Given the fsetdec tactic, we typically do not need to refer to
specific lemmas about finite sets. However, instantiating
functors from the FSets library makes a number of setoid rewrites
available. These rewrites are crucial to developments since they
allow us to replace a set with an extensionally equal set (see the
Equal relation on finite sets) in propositions about finite
sets.
Module AtomSetFacts := FSetFacts.WFacts_fun Atom AtomSetImpl.
Module AtomSetProperties := FSetProperties.WProperties_fun Atom AtomSetImpl.
Export AtomSetFacts.
(* ********************************************************************** *)
Lemma atom_fresh : ∀ L : atoms, { x : atom | ¬ In x L }.
Proof.
intros L. destruct (atom_fresh_for_list (elements L)) as [a H].
∃ a. intros J. contradiction H.
rewrite <- CoqListFacts.InA_iff_In. auto using elements_1.
Qed.
(* ********************************************************************** *)
gather_atoms_with F returns the union of all the finite sets
F x where x is a variable from the context such that F x
type checks.
Ltac gather_atoms_with F :=
let apply_arg x :=
match type of F with
| _ → _ → _ → _ ⇒ constr:(@F _ _ x)
| _ → _ → _ ⇒ constr:(@F _ x)
| _ → _ ⇒ constr:(@F x)
end in
let rec gather V :=
match goal with
| H : _ |- _ ⇒
let FH := apply_arg H in
match V with
| context [FH] ⇒ fail 1
| _ ⇒ gather (union FH V)
end
| _ ⇒ V
end in
let L := gather empty in eval simpl in L.
beautify_fset V assumes that V is built as a union of finite
sets and returns the same set cleaned up: empty sets are removed
and items are laid out in a nicely parenthesized way.
Ltac beautify_fset V :=
let rec go Acc E :=
match E with
| union ?E1 ?E2 ⇒ let Acc2 := go Acc E2 in go Acc2 E1
| empty ⇒ Acc
| ?E1 ⇒ match Acc with
| empty ⇒ E1
| _ ⇒ constr:(union E1 Acc)
end
end
in go empty V.
The tactic pick fresh Y for L takes a finite set of atoms L
and a fresh name Y, and adds to the context an atom with name
Y and a proof that ¬ In Y L, i.e., that Y is fresh for L.
The tactic will fail if Y is already declared in the context.
The variant pick fresh Y is similar, except that Y is fresh
for "all atoms in the context." This version depends on the
tactic gather_atoms, which is responsible for returning the set
of "all atoms in the context." By default, it returns the empty
set, but users are free (and expected) to redefine it.
Ltac gather_atoms :=
constr:(empty).
Tactic Notation "pick" "fresh" ident(Y) "for" constr(L) :=
let Fr := fresh "Fr" in
let L := beautify_fset L in
(destruct (atom_fresh L) as [Y Fr]).
Tactic Notation "pick" "fresh" ident(Y) :=
let L := gather_atoms in
pick fresh Y for L.
Ltac pick_fresh y :=
pick fresh y.
Example: We can redefine gather_atoms to return all the
"obvious" atoms in the context using the gather_atoms_with thus
giving us a "useful" version of the "pick fresh" tactic.
Ltac gather_atoms ::=
let A := gather_atoms_with (fun x : atoms ⇒ x) in
let B := gather_atoms_with (fun x : atom ⇒ singleton x) in
constr:(union A B).
Lemma example_pick_fresh_use : ∀ (x y z : atom) (L1 L2 L3: atoms), True.
Proof.
intros x y z L1 L2 L3.
pick fresh k.
At this point in the proof, we have a new atom k and a
hypothesis Fr that k is fresh for x, y, z, L1, L2,
and L3.
trivial.
Qed.