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Abstract— In this paper, we design a bandwidth pricing
mechanism that solves congestion problems in communica-
tion networks. The scheme is based on second-price auc-
tions, which are known to be incentive compatible when a
single indivisible item is to be sold (users have no interest
to lie about the price they are willing to pay for the re-
source) and to lead to an efficient allocation of resources in
the sense that it maximizes social welfare. We prove these
properties when an infinitely divisible resource (bandwidth
on a communication link) is to be shared among users who
are allowed to submit several bids when they want to esta-
blish a connection. Our scheme is highly related to the Pro-
gressive Second Price Auction of Lazar and Semret where
players bid sequentially until an (optimal) equilibrium is
reached. While keeping their incentive compatibility and ef-
ficiency properties, our scheme presents the advantage that
the multi-bid is submitted once only, saving a lot of signali-
zation overhead.

Index Terms—Control theory, Economics

I. INTRODUCTION

The demand for bandwidth in communication networks
has been growing exponentially since the birth of world-
wide networks, for the number of consumers has been
soaring, and new applications, more and more bandwidth-
needing (like video for instance), have been appearing. As
a result, despite the efforts made to increase communica-
tion rates, the available capacities are often insufficient to
satisfy all service requests, and situations of congestion
occur frequently, meaning that some users’ requests are
rejected.

Currently, the pricing scheme for Internet communica-
tions, based on a fixed charge independent of use, does not
take into account the negative externalities among users (a
user consuming bandwidth may prevent another request
from being treated successfully), and thus constitutes an
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incentive to overuse the network [1]. Designing new allo-
cation and pricing schemes therefore appears as a solution
for solving congestion problems, by inciting users to limit
their consumption. Consequently, the pricing of network
services is encountering a great interest, and many papers
have been published on the subject (see [2], [3], [4], [5]
and references therein).

Pricing network resources can have two different goals:
reaching a maximum revenue for the network, or allo-
cating efficiently the resource. We concentrate on the
latter objective in this paper: taking into account the
willingness-to-pay of users and considering efficiency as
the criterion to optimize, the resource should go to people
who value it most. In [6] (see also the extensions in
[71, [8]), Lazar and Semret introduce the Progressive Se-
cond Price (PSP) Mechanism, an iterative auction scheme
that allocates bandwidth on a single communication link*
among users in a set Z. Players submit two-dimension bids
of the form s; = (g;, p;), Where g; is the quantity of re-
source (bandwidth) asked by user (player) ¢, and p; is the
unit price that player 7 is willing to pay to obtain that quan-
tity of resource. The allocations and prices to pay are then
computed, based on the bids s = (s;);ez submitted by all
the players. Users can modify their bid, knowing the bid
submitted by the others, until an equilibrium is reached.
Lazar and Semret model the users’ preferences by a quasi-
linear utility function, which is the difference between the
price that player  is willing to pay for the quantity a; he
receives (his valuation, represented by a function 6;) and
the price ¢; that he is charged for this quantity:

ui(s) = 0i(ai(s)) — ci(s). 1)

Lazar and Semret highlight the incentive compatibility
property of their mechanism, i.e. bidding at each itera-
tion with a price p; equal to the marginal valuation 6}(g;)
brings the highest utility to player 7. They prove that if

In [4], [9], an application of the PSP mechanism to the network case
is proposed. However in this paper we focus on the single-link case.



players are informed of the other players’ bids when they
submit their own bids, the bid profile s converges after a
finite time to a Nash equilibrium that corresponds to an
efficient allocation of the resource.

The main drawback of this scheme is that the conver-
gence phase can be quite long, and that it corresponds
to a signaling burst (to send the necessary information to
players) which may represent a non-negligible part of the
available bandwidth. This is especially true if players are
assumed to randomly enter or leave the game with time
as in [10], meaning that the convergence phase will be re-
peated at each change of the set Z of players.

The mechanism was modified by Delenda, who pro-
posed in [11] a one-shot scheme: players are asked to
submit their demand function, and the auctioneer directly
computes the allocations and prices to pay without any
convergence phase. The mechanism described in [11] is
the continuous version of the Generalized Vickrey Auc-
tion (see [12], [13]). It is a direct revelation auction me-
chanism, meaning that players have to give their whole
valuation function in their bid. However, communicating
a general function is not feasible in practice, so there re-
mains a signaling problem. Delenda suggests that only a
finite number of demand functions be proposed, and that
players choose among them. Nevertheless, this scheme
supposes that the auctioneer has a idea of what the de-
mand functions of users could be.

In this paper, we suggest an intermediate mechanism,
which is still one-shot, but which does not suppose any
knowledge about the demand functions. As in [4], we
consider quasi-linear utility functions of the form (1), but
we allow here players to submit several two-dimension
bids (g;, p;) like in [14], and use an allocation and pricing
scheme that is close to the one described in [11]. This me-
chanism will be called multi-bid auction scheme.

The paper is organized as follows. Section Il describes
in details the multi-bid scheme and gives the allocation
and pricing rules. In Sections Il through VI, we study
this scheme as a non-cooperative game (see [15]) and es-
tablish some of its properties. Section Ill presents some
basic and desirable properties of the allocation rule (mo-
notony of the allocation with respect to the multi-bid, unit-
cost higher than the reserve price, more players will in-
crease the network revenue, individual rationality). We
also prove in Section 1V that this scheme is incentive com-
patible, in the sense that players have no interest in lying
about their valuations when submitting their bids. We fo-
cus in Section V on the bid choice problem from the point
of view of a user and argue that the players have an in-
terest in choosing their bids as quantiles of their valuation
function in order to minimize the difference between the
real valuation function and the one derived from the multi-

bids. We then prove the efficiency of the scheme, in terms
of social welfare, in Section VI. Section VII is devoted to
the determination of the number of bids that the network
should allow each user to submit, in order to maximize its
benefit. Finally, conclusions and future works are presen-
ted in Section VIII.

To derive our theoretical results, we will assume as in
[4] that users have elastic demand such that

Assumption 1: Foranyi € Z,

— 0; is differentiable and 6;(0) = 0,

— 6 is positive, non-increasing and continuous

- Jvi > 0,Vz > 0,0i(z) > 0 = Vn < 2,0/(2) <
0i(n) —vi(z — ).

II. MULTI-BID AUCTIONS. ALLOCATION AND
PRICING RULES

Let us consider a bottleneck communication link with
available bandwidth (capacity) @Q. We assume that this re-
source is infinitely divisible, and study a scheme to share
it among all users.

Our goal here is to change the sequential (dynamic) bid
process of [4], [6] into a one-shot multiple bid for each
player in order to alleviate the bid-profile signalization
overhead. Before the presentation of the allocation and
charging rules in sub-sections 11-C and II-D, we need to
introduce the message process as well as some notations
and basic definitions.

e When a player ¢ enters the game (i.e. establishes a
connection), he submits a set of M; two-dimension
bids s; = {s},...,s."}, where for all m,1 < m <
M;, s = (g, p™) as defined in the Progressive
Second Price mechanism (see [6]): ¢;* represents a
quantity of resource and p}” the unit price that player
1 is willing to pay to get this quantity. We assume wi-
thout loss of generality that bids are sorted such that
pr <p? <. <pMi
Remark: Player + may submit no bid (M; = 0). In
this case we write s; = (.

In this paper, S denotes the set of multi-bids that a
player can submit;

s=J R xR)Y, with (R xR")" =0.
M>0

e The auctioneer collects all multi-bids to form the
multi-bid profile s = (s;)iez. This profile will be
used to compute the allocation a; and the total price
charged ¢; for each player i € 7.

Notice that, unlike in the PSP mechanism, we do not

suppose here that players know the bids submitted by the
others before bidding.



A. Reserve price pg

Our model allows the auctioneer to fix a unit price
po > 0 under which she prefers not to sell the resource.
This is equivalent to considering that the auctioneer may
use the resource if it is not sold, with a valuation function
00(q) = pog. In the following, the auctioneer will be de-
noted player 0 (0 ¢ Z), and po will be called the reserve
price. We suppose in this paper that this reserve price is
known by all players.

We thus assume that a bid sg = (go, po), With go > Q is
introduced (@ is the total available capacity). Therefore,
the set of bids that the auctioneer may submit is

So = (Q, +00) X R*.

Note that we have My = 1, and p} = po.

B. Pseudo-demand function,
price

In this sub-section, we provide some definitions that
will be helpful to understand the behaviour of the mecha-
nism.

pseudo-market clearing

Definition 1: A player i € 7 is said to submit a truthful
multi-bid s; € S if s; = 0, or if

Vm,1 <m < M;, pi"* = 0i(¢™).

We write ST the set of truthful multi-bids that can be sub-
mitted by player <. We also denote

i (po) = {0} U{s € 8] : pi > po} @)

the set of truthful multi-bids for which all prices are above
the reserve price.

Definition 2: Under Assumption 1, we define the de-
mand function of player i € Z as the function d;(p) =
(0)~L(p) if 0 < p < 0.(0) and 0 otherwise: d;(p) is the
quantity player ¢ would buy if the resource were sold at
the unit price p, in order to maximize his utility.

Note that Assumption 1 implies that the demand func-
tion is non-increasing.

Definition 3: Consider a player : € ZU{0} having sub-
mitted a multi-bid s; € S.

We call pseudo-demand function of 7 associated with s;
the function d; : Rt — Rt defined by

ifsi=0orp," <p

- 0
di(p) ={ max {¢":p" >p} otherwise.
1<m<M;

®3)
Definition 4: Consider a player ¢ € Z U {0}, and s; €
S a multi-bid submitted by . We call pseudo-marginal

\ialuation function of 4, associated with s;, the function
6, : R" — R*, defined by

_ 0 ifs;=00rql <gq
0i(0) =Y max {p":q">gq} otherwise.

1<m< M;
(4)
Remark: The auctioneer’s bid leads to the pseudo-
demand function do(p) = go lp<p, and the pseudo-

marginal valuation function 6((q) = polg<g,-

The demand, pseudo-demand, marginal valuation and
pseudo-marginal valuation functions are illustrated in Fig.
1, with truthful bids.

Remark: Both pseudo-demand and pseudo-marginal
valuation functions are positive, stair-step, non-increasing
and left-continuous.

We now derive a property stating that the pseudo-
demand and pseudo-marginal valuation functions are
smaller than their “real” counterparts:

Lemma 1: Under Assumption 1, if player i € Z sub-
mits a truthful multi-bid s; then

di di ()

6, < 6. (6)

Proof: Letz € R*.If d;(z) = 0then d;(z) < d;(z)

is trivial, since d; > 0. If we assume that d;(z) > 0, then
8; # ¢ and

ANVAN

di(r) = max {q":p;" >z}

1<m<M;
= ¢ withp™ >z
= di(p") < di(z)

where the non-increasingness of d; is used. Relation (5) is
then proved.

Relation (6) is established exactly the same way by in-
verting the roles of prices and quantities. |
Fig. 1 illustrates this result.
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Fig. 1. Demand and pseudo-demand functions (left), marginal valua-
tion and pseudo-marginal valuation functions (right) for M; = 3 and
a truthful multi-bid.



Definition 5: Consider a set of players i € Z, each
submitting a multi-bid s; € S. We call agregated
pseudo-demand function associated with the profile s =
(si)iezuioy the function d : RT — R* defined by

> di(p). ()
ie€Tu{0}

When the objective of the allocation problem is to
maximize the efficiency 3,710y 0i(a), it can be proved
that, under Assumption 1, the optimal allocation is such
that Vi € Z,a; = d;(u), where w is the market clearing
price, i.e. the unique price such that 3, ; d;(u) = Q if
> icz di(po) > @Q and po otherwise [16].

Remark: Note that the efficiency measure that we use
corresponds to the usual social welfare criterion ), u;(s)
(see [4]): since the utility of the seller is ug(s) =

Bo(ao(s)) + X iz ci(s), we have

5 0 =43 )
1 1€L
))+Zcz Z _CZ 5))

=ZB¢(ai(s))

Here the auctioneer cannot compute the market clea-
ring price, for she does not know the agregated demand
function. Nevertheless, she can estimate the clearing price
thanks to the agregated pseudo-demand.

Definition 6: Consider a multi-bid profile s =
(8i)iezuqoy- Denoting by d the agregated pseudo-demand
function associated with this profile, we define the
pseudo-market clearing price @ by

i =sup {p:d(p) >Q}. (8)

0(0) = @ > Q.
%), which implies

Such a @ always exists since d(0) >
Moreover d(p) = 0 Vp > max;czu0(p;
that @ < +o0.

Remark: As d is a left-continuous stair-step function,
the sup in (8) is actually a max. Thus we have

d(u) > Q. )

Fig. 2 shows an example of an agregated pseudo-
demand function and a pseudo-market clearing price.

E&I

C. Allocation rule

Given all these definitions, we are now ready to des-
cribe the allocation rule.

For every function f : R — R and all z € R, we define

f@) = lim_f(z)

2—T,2>T

(10)

when this limit exists.

We suggest that the resource be allocated the following
way: if player i submits the multi-bid s; (and thereby de-
clares the associated functions d; and @) then he receives
a quantity a;(s;, s—;), with

(11)

where d is the agregated pseudo-demand function asso-
ciated with the bid profile s.
In other words:
e each player receives the quantity he asks at the lowest
price uT for which supply excesses pseudo-demand.
o If all the resource is not allocated yet, the surplus
Q —d(@™) is shared among players who submitted a
bid with price @. This share is done with weights pro-
portional to the “hops” of the pseudo-demand func-
tions d;(u) — d;(ut).
Remark: We know from (9) that the denominator in (11)
is always strictly positive, since d(zt) < @ and d(a) >

Q. Consequently 0 < % < 1 and we have

Remark: As noticed by Tuffin in [7], the PSP alloca-
tion rule does not always allocate all the bandwith even if
(@t)

demand exceeds supply. Here, the term ‘%7(@ —

d(@')) ensures that all the resource is allocated (see Pro-
perty 3).

(12)

D. Pricing rule
Each player i € 7 is charged a total price ¢;(s), where

a;(s—;
alis)= > Odo.  (13)
jETU{0}ji % (%)
q
— .
17 —
£Q L d(p)
g —
o L
> o
SN
0 u ) p
Prices

Fig. 2. The pseudo-market clearing price @



The intuition behind this pricing rule is an exclusion-
compensation principle, which lies behind all second-
price mechanisms [17]: player i pays so as to cover
the “social opportunity cost”, that is to say the loss
of utility he imposes on all other users by his pre-
sence. Actually, applying directly this principle would
lead t0 ¢; = Y jeziq0p 0(ai(s-4)) — O(a;(s)) =
2 JeTU0} i fa”((s) ‘) 07, as in [11]. However, in our case
the auctioneer does not know the valuation functions 6,
nor the marginal valuation functions 0;.,3' € Z. That is the
reason why we use the pseudo-marginal valuation func-
tions instead, that are computed thanks to submitted bids.

Note here that we do not define ¢g, since we consider
that the auctioneer cannot buy resource to herself.

We now give a lemma that will be used in the rest of the

paper.
Lemma2: Vi € ZU {0},Vs; € S,Vz,y € R,

o 0
di(7)=\ max {g™ :
1<m<M; '

if s; :(Z)orpf.‘/[i <z,
pi* > x} otherwise.

ifs; =0org <y,
: ¢ > y} otherwise.

_ 0
9;(y+):{ max {pZ

1<m< M,
Consequently we have Vi € Z U {0}, Vs; € S,
Vz e RY, @i(di(z%)T) <=z

si#0=Vee 0], 8(di(2) >z
A proof of Lemma 2 is given in Appendix 1.

(14)
(15)

I11. PROPERTIES OF THE MULTI-BID MECHANISM

In this section, we establish some basic properties of the
multi-bid mechanism, showing its interest, before dealing
in next sections with the central notions of incentive com-
patibility and efficiency.

Property 3: All the resource is allocated, i.e. for all
multi-bid profile s = (so, (si)iez) € So x S'Z,

Z ai(s) = Q7
i€TU{0}
where |Z| is the number of elements in set Z.
Proof:

> auts)

i€ZU{0}

(16)

L@ —d@) o oo
(@46

<l

=Y di(at

i€eZU{0}

= d(ah)

&Is
Sl
SN | N

&4 &4
Q.| Q.|
N

(@) —d(@®) oy _
+ T —dan @) =
|
In the following, s denotes the multi-bid profile, i.e.
s = (80,(si)icz). FOr i € Z, we also write s_; =
(50, (85)jez,5:) the multi-bid profile without player i’s
multi-bid. Therefore s = (s, s—;).

Property 4: V(s;)icz,Vi € T,
> la(0,5-5) — aj(si,s-0)],

JETU{0},5#1

a;i(si, 5—;) =

meaning that player ’s allocation is the difference bet-
ween what other players would have obtained if player 4
was not part of the game and what they actually obtain.
Proof: Apply (16) to the multi-bid profiles (s;,s_;)
and (0, s_;), and remark that a;(0, s_;) = 0. |

Property 5: A player increases his allocation by decla-
ring a higher pseudo-demand function. More precisely,
consider a player « € Z and two multi-bids s;,5; € S
(which may not have the same number of bids). We de-
note d; and d; the associated pseudo-demand functions.
ThenVs_; € Sy x SFI=1 Vi e TU {0} \ {i},

7 7 G,Z'(SZ,S ) < a'z(glas Z)
@—@i{%m,>>%mﬁn
A proof of Property 5 is provided in Appendix Il.

17

Property 6: When a player 7 € Z leaves the game, the
allocations of all other players in the game increase. For-
mally,

Vi€ I,Vj € TU{0}\ {j},Vs € SV,

aj(@, S—i) > a’j(sia S—i)'
Proof: Just apply (17) to pseudo-demand functions
d; (associated with the multi-bid s;) and d; = 0 (that cor-
responds to the multi-bid @, following (3)). [ |

Property 7: If a player declares a pseudo-demand func-
tion that is higher than the pseudo-demand function of
another player, then he obtains more bandwidth. Formally,
if Vi,j € ZU{0},Vs € Sp x Sl and d; and d; are
the pseudo-demand functions associated with multi-bids
s; and s;, we have

(L’ < CZj = ai(s) < aj(s).
Proof: We write d the agregated pseudo-demand
function computed using the multi-bid profile s and u the
corresponding pseudo-market clearing price. Thus

o5 (6)=ai(s) = (0 0) — i) (1 =20+
_ _ ot
+ G0 - ) 7L

Q—d(ut)
d(u)—d(at)
Property 8: (reserve price). The reserve price po that
the auctioneer declares in her bid ensures her that the re-
source is sold at a unit price higher than py:

ci(s) > poai(s).

where we have used 0 < <landd; <d;. H

Vs € Sy x S, (18)



A proof of Property 8 is given in Appendix Il1.

Remark: Notice that a bid (g/",p") does not affect
di(p) for p > p™, and that we always have 4 > p since
d(po) > go > Q. For that reason, submitting a multi-bid
s; With p! < py is useless for player i € Z: he would get
exactly the same utility as if he had submitted the multi-
bid (s?, ..., s). Therefore we can consider that players
do not submit such bids, i.e. Vi € T : s; # 0, p} > po.

In the next property, we show that the arrival of a new
player 4 with the multi-bid s; corresponds to an increase of
the network revenue. This result implies that the network

will not deter any player from entering the auction game.

Property 9: The seller’s revenue is always greater with
all players than when a player is excluded from the game:
Vse Sy x S VieT,

docils) 2 D eilsma).

JET FET\{i}

(19)

More precisely, if the seller has a marginal valuation pq of
the resource, (i.e. 0y(g) = pog), then the seller’s net utility
is larger when all players are in the game than in the case
when a player is excluded: Vs € Sy x SIZI Vi € T,

)+ ZCJ ) > poao(s—i) + Z cj(s=s).

JEL JEI\{3}

poao

We provide a proof of Property 9 in Appendix IV.

Let us now introduce our last property. A mechanism is
said to be individually rational if no player can be worse
off from participating in the auction than if he had decli-
ned to participate [12]. The following property states that
this holds for truthful bidders, since the price a player is
charged is lower than his declared willingness-to-pay.

Property 10: (individual rationality)
a;(s) _
VieZI,Vse Syx8T, cifs)< / 6!(q)dq. (20)
0

Moreover, if player 7 submits a truthful multi-bid (s; €
ST, then

ai(s)
a< [ G =bals), @D
0
which means that u;(s) > 0.
Appendix V gives a proof of Property 10.

IV. INCENTIVE COMPATIBILITY

In this section, we focus on the problem of the multi-
bid choice by a player. In particular, we prove that a player
cannot do much better than simply reveal his true valua-
tion, which in our context means bidding with prices equal

to the marginal valuations: Vm,1 < m < M;,p" =
ACLD

Proposition 1: If a player + € Z submits a truthful
multi-bid s; # (0, then every other multi-bid §; (truthful
or not) necessarily corresponds to an increase of utility

d; _

that is less than fd ((;ﬂr 0i(q) — u)dg.
Formally, Vs; € SI',V5; € S,Vs_; € Sp x SFI=1,
d;(a)

wisiy5—5) > (i 55) — / (6l(q) — W)dg. (22)

A proof of Proposition 1 is givgﬁ 7n Appendix VI.

This result is illustrated in Fig. 3 where the shaded area
corresponds to the maximum utility gain player 4 could
expect by submitting a different multi-bid.

Since the pseudo-market clearing price is necessarily
higher than pg, we can therefore also note in Fig. 3 that,
when p} > po, the quantity

(@) -
[ )~ wdd
di(at)

is always less than

di(p}*) , .

where p;" T = 6/(0) and p§ = py.
This last quantity is the largest shaded area in Fig. 4.
The following proposition is then straightforward:

Proposition 2: Under Assumption 1 we have Vi €
I,Vs; € SZT(po) \@,ng € S,Vs_; € 5y x S|I|71,

) > u,(sl,s 1) - Oia (23)

uz(su

where ST (po) is defined in (2), and where

0 m 24
omax /d-(pm+1)( i(q) —pi")dg ¢ (24)

with pMit = 6!(0) and p? = po.

C; =

60 ¢
ii
¢

Q ¢

Fig. 3. The multi-bid s; = (s}, s2, 52, s?) is optimal for player ¢ up

to the value [7 i ((:i)(e; (q) — 4)dq of shaded surface



Fig. 4. The multi-bid s; = (s, 7, s3) is optimal for player i up to a
constant C;, whatever the multi-bids submitted by others s_; be. C; is
the surface of the darkest shaded area.

Note that C; can also be written

Ci =

9
') — 0! (g™
@ﬁ%{ﬁm@@ a@»@}

with ¢/t = 0 and ¢) = d;(po).

Proposition 2 implies that a player ¢ who knows the
reserve price po can give a truthful multi-bid that brings
him the best utility possible, up to a value C; that can be
controlled through the choice of the bids si™ on the de-
mand curve. One important point is that this value does
not depend on the number of other players, nor on the
multi-bid they submit.

Remark: Since submitting a truthful multi-bid is a C;-
best action for player 7 independently of the other players’
actions, we can say that submitting such a bid is an ex
post C;-dominant strategy for 4 (see [18]). Therefore, the
situation where all players submit truthful multi-bids is an
ex post K -Nash equilibrium, with K = max;c7 C;, in the
sense that no player could have improved his utility by
more than K if he had submitted a different multi-bid.

Remark: Note that if 6/(Q) > po, player ¢ can also en-
sure that @ > p} > po with p! < 6(Q) by submitting the
truthful bid s} = (g1, 0.(q1) = p1) with d;(po) > q1 > Q.
Choosing a bid sufficiently close to (Q, 8,(Q)), player i
may reduce his constant C;.

V. “QUANTILE UNIFORM” CHOICE OF BIDS

It is reasonable to assume that each user 4 intends to
ensure a utility that is as close as possible to the maxi-
mum. To do so, it would be of interest to consider that
players have beliefs (a priori probability distributions,
as in [19]) on the number of users in the game and on
their preferences, in order to deduce a probability dis-
tribution of the pseudo-market price @. (In this sense,
the auction game can be seen as a game with popula-
tion uncertainty [20].) Given this distribution, player
may use Proposition 1 to choose his bids so as to mini-

mize E [ / Lgi((;z) (0i(q) — u)dq] . However, estimating such

8i(0) $

Pof - - oo oo ST 8

q

Fig. 5. Quantile uniform repartition of bids for M; = 3: the four
shaded zones have the same surface.

a distribution on the pseudo-market price may imply high
cost for information-gathering and market appraisal [17].

For this reason, and for sake of simplicity, we assume
that players have no idea of what the pseudo-market price
will be, except that it will not be below pg. With this in
mind, the simplest way to choose a multi-bid that would
be almost optimum, whatever the multi-bid profile is, is
to minimize the quantity C; of Proposition 2. Neverthe-
less, if player 7 is allowed to submit as many bids as he
wants in his multi-bid, he will give a number M; of bids
as large as possible, in order to make C; tend to zero.
We therefore focus here on the choice of the multi-bid
by player 4, after the number of bids M; is determined,
for instance in the case where it is fixed by the auctioneer
(see also Section VII). It is then clear that for a fixed M;,
the multi-bid (s, ..., s%) that minimizes C; is such that
Vm,n,0 <m,n < M,

d; (pT) m _ rdi(p}) 0
with pﬁwﬁ1 = 6}(0) and pg = po,

i.e. all the shaded areas are equal. In the following, we will
call quantile uniform this bid repartition. An example of
quantile uniform repartition of bids is presented in Fig. 5.

Example: For parabolic valuation functions, i.e. of the
form

0:(q) = a[—(gN&@)*/2+ G(g N &)

with parameters « and g;, the marginal valuation function
is linear:

0i(q) = e[q; —q]".

When 6!(0) > po, the quantile uniform repartition of bids
is easy to compute: prices pi*,1 < m < M; are such that
8;(0) — po

aqg; — Ppo

SRR

pi" =po+m



VI. EFFICIENCY

One goal of the auction is to make sure that the capa-
city goes to users who value it most. In this section, we
prove that the multi-bid second-price mechanism verifies
this property.

To obtain this result, we make another regularity as-
sumption on the valuation functions:

Assumption 2: 3k > 0,Vi € Z,

- 6.(0) < 400

- Vz,2',2> 2 >0,0i(z) — 0,(z') > —k(z — 2').

Notice that this assumption is also needed to prove the
efficiency of the PSP (see [6]).

Proposition 3: If Assumptions 1 and 2 hold, then Vs €
Sy x S
msz 0;(a;) — Z 0;(ai(s)) < Q

kmax Cj,
€T

where A = {@ € [0, Q)"+ : . 4; < Q}.

We provide a proof of Proposition 3 in Appendix VII.
Remark: This proposition states that the allocation a(s)

is optimal up to a certain value, in terms of efficiency as

well as social welfare (see the remark in sub-section 11-B).

VII. DETERMINATION OF THE NUMBER OF BIDS

ADMITTED BY THE AUCTIONEER

In this section, we assume that the auctioneer imposes
the number of bids for all players i € Z to be M. We
further suppose that players, knowing the reserve price pg
and the number M of bids allowed, choose their multi-bid
according to the quantile uniform distribution, as mention-
ned in Section 1V.

Since increasing the value of M increases the signaling
overhead, the memory storage and the complexity of all
underlying allocation and price computations, we intro-
duce a cost function C(M,Z) that models these negative
effects, which the auctioneer will have to take into account
when calculating her benefit B(M,Z):

B(M,T) =poag + Y ¢i — C(M,T),
€T

where allocations and prices correspond to the situation
when each user submits exactly M bids.

We denote 7 the set of possible player types, charac-
terizing the valuation function (in other words, a type-t
player has valuation function 6;)). We model the auctio-
neer’s beliefs about the number of players of each type
by an a priori law P on N7, Therefore, the auctioneer
can estimate her expected revenue Ez[Rs] when players

submit M bids. We have

Poao + Zcz‘M]

1€

= Poap + ) ¢
/IGNT ( Z '

i€l

Ez[Rm] = Eg

M) dP7 ().

We now make an assumption about the cost function
C(M,T):

Assumption 3: The expected cost Ez[C](M) =
Jzenr C(M,T)dPr(Z) is non-decreasing, and tends to
infinity when M tends to infinity:

lim EzC(M) = +oo.
M—+oo
This assumption seems intuitive. Actually, if we deal
with memory costs, we have C(M,Z) = M|Z|, so As-
sumption 3 is verified as soon as Ez[|Z|] > 0. Considering
computation or signaling costs would also lead to a cost
function that would verify Assumption 3.
The following result gives an idea on how the auctio-
neer may choose M:

Proposition 4: If the marginal valuation functions
(0’ ) are uniformly bounded by a value ppayx (that is
®)) et

VteT, %) (0) < pmax), then under Assumption 3 there
exists a finite M that maximizes the expected net benefit
of the seller, i.e. that maximizes

Poao + Z Ci

i€
Proof: We assume without loss of generality that
Pmax = Po- Applying Property 10, we have VZ,VM,

Z 0i(a;) < Z a;0;(0)
i€eZU{0} 1€ZU{0}

< Pmax Z a; = Pmax@-

i€TU{0}

Er M

—Ez [C(M,T)].

poap + Z ¢ <
1€T

Consequently Ez [poao + > ;7 ¢i| M| < pmax@ for all
M e N. Therefore

lim Er

= —OO,
M—+o0

poao+ Y ci — C(M,I)‘M
1€L

which ensures us that there exists a finite M that maxi-
mizes the expected net benefit Ez [poao + ez ci| M] —
Er [C(M,T)]. [ |

Remark: It is possible that the expected net benefit be
non-positive for all M > 1. This means that organizing
the auction is too expensive for the seller of the resource.
In that case the owner will choose M = 0, i.e. she prefers
not to sell the resource.



Remark: We considered in this section the case when
the auctioneer chooses the number M of bids allowed.
However, one can imagine a high authority which may
want to ensure a certain efficiency of the allocation. This
authority could then fix M so as to reach a good trade-off
between efficiency and costs, and subsidize the auctioneer
in order to compensate her net benefit loss.

VIII. CONCLUSIONS AND PERSPECTIVES

In this paper, we have designed and studied a one-shot
auction-based mechanism for sharing an arbitrarily divi-
sible resource, like the capacity of a communication link.
This mechanism requires each user 4 to submit M; two-
dimension bids when entering the auction. With respect
to the progressive second price (PSP) auction of the lite-
rature, our mechanism saves a lot of signaling overhead.

Considering an elastic-demand model of user prefe-
rences, we have proved that our rule incites players to
submit truthful bids. We have highlighted a reasonable be-
havior for users, assuming that they know their own pre-
ferences, but do not have beliefs about the other players
(neither about their numbers nor about their valuation
functions). We have shown that the rule leads to an effi-
cient allocation of resource, and have given some hints to
understand how the number of bids can be chosen.

This mechanism is particularly well-suited for pricing
bandwidth on a communication link, for it implies rela-
tively low computational costs and signaling traffic, and
adapts instantly to a change in the user set (start or end of
a connection).

Future work in that context will essentially focus on the
application of our mechanism to the network case, i.e. to
the situation where users want to buy bandwidth on seve-
ral links from one point to another. The PSP mechanism
was studied in the network case in [4], [9], with the same
signaling overhead than in the single link case. We are
currently working on a scheme based on multi-bids that
would still be efficient in a network context.
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APPENDIX
I. PROOF OF LEMMA 2

Proof: The equations giving d;(.*) and 8.(.*) are

straightforward.
We focus here on (14):

o if s; = () then 0]%/[(.) = 0 <z, and (14) is verified.
o If s; # 0 and p,”i < x, (14) comes from 6:(.) < p,i.
e If s; # () and pZM > z then

di(z%) = max {g":p]" > z}.

1<m<M; (25)



Now let us assume that 8!(d;(z)*) > x and see that
we arrive at a contradiction. The fact that 6’(d;(z)*) >
0 implies that we are in the case when

0 (T (YT — m > d.(z)).
Oi(di(2™)") = max {pi":q" > di(z7)}
Since 8(d;(z)*) > =,
82’” = (", pi") € si
dmqi,1 <m; < M;: pz :@(Jl(x—'—)—'—) >z

We now remark that this contradicts the definition of
di(zT) (Eq. (25)). Therefore (14) is verified.

Now we establish (15). By definition, d;(z) =
maxi<m<n,;{¢;" : pi* > =}. This means that there exists
mo < M; such that d;(z) = ¢*° and p*°® > z.

Consequently we have

0i(di(z)) =

max {p}"

m > Mol > 5o > 4
(Jax {pf" 4" 2 q; }>p* >,

which gives (15). |

Il. PROOF OF PROPERTY 5

Proof: We just need to prove the result for players
j # i, the inequality a;(s;,s—;) < ai(8;,s—;) coming
directly from (16). To simplify the notations we will write
Ty = T U{0}.

So consider j # 1. We write u (respectively ) the
pseudo-market clearing price when the multi-bid profile
is s = (s4,5—;) (respectively (8;,s—;)). We also denote
the respective agregated pseudo-demand functions by d
and d, and we define d_; = D okeTo\{i} dk We then have

aj(s) - aj(gi,s_i)
1 7 1j(u) — dj(ut _
= 4@~ )+ %(Q—d(fﬁ)) _
_Jj(a)_ 7j(~+) —Jﬂ"' 26
da) —dar) @@ (26)

_ Since by hypothesis d; < d;, thend = d; +d_; <d =
d; + d_;, and necessarily @ < 4.
We distinguish two cases

e if 7 < i, then since g“) Jg_jr) (Q—d(@')) > 0and

—d
d (@) d (uJr - . .
W(Q d(at)) < d;j(a)—d;(at), (26) implies
aj(s) = aj(5i,5-1) > dj(a*) — dj (@*) — dj(@) + d; (@)
>d;(u") — dj(a) > 0,

where the last inequality stems from @ < @ and from the
non-increasingness of d;.
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1, then (26) becomes

eifu =
aj(s) — aj(5i, 5_1) =

( Q-d@) _ Q-d@) )

d@)—d(@t) d@)-dat))’

(dj(@))—d;(a™))

—

Since d;; (@) — j(fz‘ﬁ)_z Weo_nlyneedtoshowthatA_
(d(@)—d(@"))(Q—d(a"))—(d(a)—d(a"))(Q—d(u"))
is non-negative.
We have
A = (d(a) —d(a"))(Q—d(a')) -
o — %
—(d(@) - d(@")(Q - d(@*))
> (d(a) - Q)(d(@") —d(u’)) >0

where we have used (9) and the assumption d; > d;,
which gives d > d.

Finally we have proved that in all cases, a;(s) >
a;(8;,s—;), which establishes the property. [ |

I1l. PROOF OF PROPERTY 8
Proof: We first show that VZ,Vs € Sy x SIZl,vj e

I(),Vy € R+,
a;(s) _
[
Yy

where @ is the pseudo-market clearing price correspon-
ding to the multi-bid profile s.
then [4) 8 > 8 (a;(s)) (as(s) — v).

Since we know from (12) that a;(s) < d;(a), t
non-increasingness of 9’ implies that 9’( i(3))
0(d;(@)) > a, by applymg (15). Finally, az( ) -y >
gives (27).
o Ify > a;(s), then fy(s)9;<9’( (s)T) (y — aj(s))-
We now use (15) and aj(s) > d;(u") to obtain
& (a;(s)") < 65(d;(@t)*) < @, which leads to (27).

To prove Property 8, we apply (27) to the bid profile

> u(aj(s) —y) (27)

o lfy <a;(s)
he

s_; and get
aj(s—i) _
ci(s) = / 0;
j€Toi#i” % (%)
> S ai(ay(sm) — ag(s)) = dsails)
.7.61:05j¢Z

where @_; denotes the pseudo-market clearing price cor-
responding to the multi-bid profile s_;, and where Pro-
perty 6 has been used. Since do(ps) = g0 > @, then
i_; > po, establishing Property 8. |



IV. PROOF OF PROPERTY 9

Proof: To simplify the notations, we omit to precise
the multi-bid profile when it is s, i.e. we denote a;(s) =
a; forall j € Zy.

The difference between the two terms of (19) is

DjerCi— ZjeI\{i} cj(s-i)
= i+ Y [e—ci(s=i)]
JET\{i}
= Z / 9"+ >l —els-i)]
€(To)\{i} " Y JET\{i}
= po(ao S_;i) —ap) E A; (28)
JET\{i}
with
a;(s—i)
Aj=/ 0 + c; — cj(s-:)
aj
aj(s- S—J) ak(S—u)
[ [
a; kel‘ \{ } ag kefo\{’t ]} ak(S z)
aj(s—;) _ a;i(s—j) _
= / 0; + / 0; +
a;j a;
a‘k(s—J) ar(s—i,5)
+ > 1 / / e;c] . (29)
keTo\{i,j L %k ar(s—i)

To show the proposition, we just need to prove that A; >
0 forall j € Z'\ {4}. In order to do that, we denote u_;
(respectively @_ ;) the pseudo-market clearing price asso-
ciated with the multi-bid profile s_; (respectively s_;),
and consider two cases:

o if u_; > u_; then (27) applied to the profiles s_; and
s_j gives

A;> a_i[aj(s_;) — a;] + a_j [ai(s_;) — a;] +
+ Z ﬁ,](ak( ) —ag) +
k€Zo\{i,j}
+> 0 ai(a(s—i) — ap(s_i;))
k€Zo\{i,j}
> U ( > ar(s-i) = Y ak(sm> +
keZo\{i} keZo\{i,j}
+u_j Z ag(S— _Zak +
keZo\{j} k€Zo
+(u_j — u_;)a;

> 0 (Property 3);

e if u_; < u_; then we use the non-increasingness of
the pseudo-marginal valuation functions 6, to modify the
integration bounds in (29):
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ap(s—j) _ ap(s—ij) _
TS
ag ag(s—:)
ak(s—j) _ ar(s—i,j)tar—ar(s—i) _
[ a- o
Qg Qg

ap(s—j) _
/ .
ap(s—ij)tar—ag(s—;)

By applying (27) we obtain

v

Aj>u—i(aj(s—i) — aj + u—j(ai(s—;) —

+u,jz ag S,j) + ak(s,

keZo\{i,j}

2

Zﬂ,j ( ak(s,
keTo\{i}

+u_j ( Z ap(s—;
k€To\{5}

+(u—i —u_j)(a;(s—i) — aj)
>0.

ai) +

i) — ak — ar(s—ij))

— Zak (Si’j)) +

kEIO\{Z’]}

Finally we always have V5 € 7'\ {i}, A; > 0, and (28)
then gives the second part of the proposition. The first part
immediately follows, using the inequality ap < ag(s_;)
(Property 6). |

V. PROOF OF PROPERTY 10
Proof: Applying (27) we get
a;(0,5_;) _
2. / ]
jeTo\fi} 7 (%)
< Y alei(B,s-i) —aj(s))
JE€To\{i}
< a"i(s)ﬂa

ci(s) =

where the last line comes from Property 4.
Now we consider two cases:

e if a;(s) = 0 then ¢;(s) < 0 and (20) is established.

e if a;(s) > 0 then necessarily d;(@) > 0, thus

0 and p > @ Lemma 2 then implies 8}(d;(a))

Moreover, since 6/ is non-increasing and a;(s) < d;

?
)

=V e

a;(s) _ _ _
/0 B> a;()0(ai(s)) > ai()B(di(8)) > as(s)a,

which gives (20).
Proving (21) is then straightforward by applying (20)
and Lemma 1. |



VI. PROOF OF PROPOSITION 1
Proof: Consider the difference of the prices charged
to player 4 depending on his multi-bid:
aj(s)  _
Ci(gi, S_,') - ci(s) = / 9;
jeZo\ (i) 7 G5
>a Y (a(s) —aj(3i5-0)

JETo\{s}
i) — ai(s)),

> u(ai(3i,5-
where the first inequality comes from (27) and the last one
from Property 4.
On the other hand, consider the difference of valuations
Dy, == 0;(a;(s)) — 0;(a;i(5;,5-3)).
We distinguish several cases:
e if a;(s) > a;i(5;,s_;), then

a;(s) ai(s)  _
Dy, =/ o / o,
a;(8i,5—i) a;(3,5-1)
> aai(s) — as(F, 51))

from inequalities (5) and (27).
e If a;i(s) < ai(8i,s—;) and z > €(0), then

(30)

Y

\%

ai(s)
.%z/ 0 > 6/0)(ails) — ai5is 1))

i(8i,5-1)

\%

> ﬁ(ai(s) - ai(é'i, S_Z')).

e lfa;(s) < ai(8;,s—;)andz < 0.(0), then 0.(d;(u)) = u
and
Dy, = 0i(ai(s)) — 0i(di(2)) +

+0i(di(a)) — 0i(ai(5i,54))

d;i(at)
=,
di(a)
where the last line comes from (12) and from the fact that

0i(q) —a > 0 forall ¢ < d;(a).
Finally we always have

di (’17,) ,
(0i(q) — u)dg.

(31)

Dy, > u(ai(s) — ai(3i,5-i)) —/

di(at)

To conclude the proof, from (30) and (31), we get
—ci(s)

— u)dg.

= Dy, + ¢i(3i,5-;)

d;(@)
2—/ (6i(q)

UZ(S) — ui(§i, S_i)

d;(at)
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VII. PROOF OF PROPOSITION 3

Proof: First notice that if Assumptions 1 and 2 hold,
thenVi € Z,Ve, f : 0 < e < f < 6(0),
f—e

K

di(e) — di(f) =

(32)
Consider a player i € Z such that az( ) > 0. Since
ai(s) < d;(u), we have d;(w) > d;(a) > 0. Thus
0!(d;(u)) = u, and
Oi(ai(s)) > 0i(di(a)) > 0;(di(a)) = u.

On the other hand, we have

0i(ai(s)) < 6;(di(a™)). (33)
e If 6/(0) < wthen 6}(a;) < u.
e If 6;(0) > @ then
"d-(ut — i mo. o
0;(di(u™)) i H{pz 1p;t > U}
< m—+1 m .
< o+ max (" —pi"). (34)

with p; i1 = 9(0) and p? = po.
Now we remark that for all m,0 < m < M;

[ e
i\d
di(p" )

m+1

-wm@=/:@@

7

di(p7"+"))dp

m+1
pz dp

m+1
> D; D; g
- K

’L

(p" Tt — pm)?

K

>

where the second line comes from (32).
Finally, (24) implies that Vm,0 < m < M;, p"*™ —

pi* < /kC;. Therefore (34) gives

0i(a;(s)) <a+ kK

Define A = {a € [0, Q]‘I‘Jr1 : 32, a; < Q}, and take
anya € A LetZ, ={k:ar > ax(s)}andZ_ = {k :
ar < ag(s)}. Fori € Z_, we have ax(s) > ar > 0, and
therefore (33) implies 0}(ai(s)) > u. Applying (34), we
then have

Z 9 (&z)_ (
<ZH' a;(s

<u E a; —a;(s)

<Q

(8))
—ai(s)) = Y_ 6iai(s))(ai

)+ VECi(a

s) — @;)

K max Ci,
€T

which establishes the proposition. |



