
Interplay between security providers, consumers,

and attackers: a weighted congestion game

approach
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2 rue de la Châtaigneraie CS 17607
35576 Cesson Sévigné Cedex, France
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Abstract. Network users can choose among different security solutions
to protect their data. Those solutions are offered by competing providers,
with possibly different performance and price levels. In this paper, we
model the interactions among users as a noncooperative game, with a
negative externality coming from the fact that attackers target popular
systems to maximize their expected gain. Using a nonatomic weighted
congestion game model for user interactions, we prove the existence and
uniqueness of a user equilibrium, and exhibit the tractability of its com-
putation, as a solution of a convex problem. We also compute the corre-
sponding Price of Anarchy, that is the loss of efficiency due to user self-
ishness, and investigate some consequences for the (higher-level) pricing
game played by security providers.
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1 Introduction

Within the current evolution towards the Future Internet, the provision of ap-
propriate network security is considered to be one of the most difficult as well as
most challenging tasks. Among the broad range of related research approaches,
the attempt to better understand the mindset of attackers serves for sure as one
of the key sources for developing advanced protection mechanisms. Cybercrime
concerns colossal amounts of money, and is highly organized so that attacker



efforts are rationalized to maximize the associated gains. This is why we model
here an interesting negative externality effect of security architectures and sys-
tems, through the attractiveness for potential attackers: majority products are
likely to be larger targets for hackers, and therefore become less attractive for
consumers. Then, the choice of a particular system and security protection -that
we will call a security provider from now on- by the whole online population can
now be considered as a congestion game, where congestion is not considered in
the common sense of an excessive demand for a finite resource amount, but more
generally as a degradation of the performance on a given choice when it gets too
popular. Here the performance degradation is indirect, since it stems from the
behavior of attackers.

In the specific context of security, the link between the audience of a system
and its attractiveness to attackers can be further described when attacks are
intended to steal or damage data: an attacker would be attracted by the potential
gain (or damage) of the attack, which depends on the value of the users’ data,
but that value affects (and is therefore, to some extent, revealed by) the security
option users choose. For example, the “safest” solutions may attract users with
high-value data to protect, making those solutions an interesting target for an
attacker even if their market share is small.

In this paper, we propose a model that encompasses that effect, by consider-
ing users with heterogeneous data values making a choice among several security
possibilities. The criteria considered in that choice are the security protection
level -measured by the likeliness of having one’s data stolen or damaged, that is
subject to negative externalities- and the price set by the security provider.

The literature on network security involving game-theoretic models and tools
is recent and still not very abundant. Some very interesting works have been
published regarding the interactions between attacking and defending entities,
where the available strategies can consist in spreading effort over the links of a
network [6,15] or over specific targets [8], or in selecting some particular attack
or defense measures [5,11]. In those references, the security game is a zero-sum
game between two players only, and therefore no externalities among several
potential defenders are considered.

Another stream of work considers security protection investments, through
models that encompass positive externalities among users: indeed, when con-
sidering epidemic attacks (like, e.g., worms), the likeliness of being infected de-
creases with the proportion of neighbors that are protected. Since protection
has a cost and users selfishly decide to protect or not without considering the
externality they generate, the equilibrium outcome is such that investment is
suboptimal [12] and needs to be incentivized through specific measures [17]. For
more references on game theory applied to network security contexts, see [1,18].

In contrast, the work presented here considers negative externalities in the
choices of security software/procedures. As highlighted above, the negative ex-
ternality comes from the attractiveness of security solutions for attackers. Such
situations can arise when attacks are not epidemic but rather direct, as are at-
tacks targeting randomly chosen IP addresses. The interaction among users can



then be modeled as a population game, that is a game where the user payoffs
for a given strategy (here, a security solution) change as more users choose that
same strategy [10]. Such games are particular cases of so-called congestion games
where user strategies are subsets of a given set of resources, and the total cost
experienced by users is the sum of the costs on each resource [2,22]. Here, users
select only one resource, and congestion corresponds to the fact that the more
customers, the more likely an attack.

In this paper, we consider a very large population, where the extra congestion
created by any individual user is negligible. The set of players can therefore be
considered as a continuum; note that such games are called nonatomic [29]. The
study of nonatomic congestion games has seen recent advances for the case when
all users are identical or belong to a finite set of populations [7,14,24,25,26], but
we want here to encompass the larger attractiveness to attackers of “rich” users,
compared to the ones with no valuable data online. More precisely, we intend to
model the heterogeneity in users congestion effects, by introducing a distribution
among users valuation for the data to protect. The congestion game is therefore
weighted in the sense that not all users contribute to congestion in an identical
manner. Fewer results exist for those games [4,21], even when user strategies
only consist in choosing one resource among a common strategy set.

Moreover, in our model users undergo the congestion cost of the security so-
lution they select - which depends on the congestion as well as on their particular
data valuation -, but also the monetary cost associated to that solution - which
is the same for all users -. As a result, following [20,21] the game would be called
a weighted congestion game with separable preferences, and can be transformed
into an equivalent weighted congestion game with player-specific constants [19]
(i.e., the payoffs of users selecting the same strategy only differ through a user-
specific additive constant). In general, the existence of an equilibrium is not
ensured for such games when the number of users is finite [19,20,21]. In the
nonatomic case, the existence of a mixed equilibrium is ensured by [29] and the
loss of efficiency due to user selfishness is bounded [4], but the existence of a
pure equilibrium in the general case is not guaranteed.

In this paper, we establish the existence and essential uniqueness of a pure
equilibrium for our model, as well as its tractability by proving that an equilib-
rium solves a strictly convex optimization problem. To the best of our knowl-
edge, such proofs for nonatomic games had only been given for unweighted
games [27,28], with a finite number of different user populations; here we con-
sider a weighted game with possibly an infinity of different weight values, with
the specificity that the differences in user congestion weights are directly linked
to their user-specific valuations.

The remainder of the paper is organized as follows. The model is formally
introduced in Section 2. We focus on the user equilibrium existence, uniqueness
and tractability in Section 3, and give an upper bound on the loss of efficiency
due to user selfishness. The results are then applied in Section 4 to give some
insights about the prices that profit-oriented security providers should set. We
conclude and suggest directions for future work in Section 5.



2 Model

We consider a set I of security providers (each one on a given architecture), and
define I := |I|.

2.1 User data valuation

Users differ with the valuation for their data. When an attack is successful over
a target user u, that user is assumed to experience a financial loss vu ≥ 0, which
we call her data valuation. The distribution of valuations over the population is
given by a cumulative distribution function F on R

+, where F (v) represents the
proportion of users with valuation lower than or equal to v. Since users who do
not value their data (i.e., for whom vu = 0) will not play any role in our model,
we can ignore them; the distribution function F is therefore such that F (0) = 0.
The overall total “mass” of users is finite, and through a unit change we can
assume it to be 1 without loss of generality.

Equivalently, the repartition F of user preferences among the population
can be represented by its corresponding quantile function q : [0, 1) → R

+. For
x ∈ [0, 1), the quantity q(x) represents the valuation4 of the (infinitesimal) user
at (continuous) position x on a valuation-related increasing ranking. Formally,
we have

∀x ∈ [0, 1), q(x) = inf{v ∈ R
+ : F (v) ≥ x}, (1)

∀v ∈ R
+, F (v) = inf{x ∈ [0, 1) : q(x) > v}, (2)

with the convention inf ∅ := 1 in the latter equation. Note that F is right-
continuous, while the quantile function q is left-continuous. Both functions are
nonnegative and nondecreasing.

We may not suppose that the support of F , that we denote by Sv, is bounded,
but we assume that the overall value of the data in the population is finite, i.e.,

Vtot :=

∫

Sv

v dF (v) < +∞.

Finally, we define N (V ) as the user mass5 such that the total data valuation
for the N (V ) users with smallest valuation exactly equals V :

∀V ∈ [0, Vtot), N (V ) := min

{

x :

∫ x

y=0

q(y)dy = V

}

.

N (V ) is obtained by inverting the bijective function

V : [0, 1] 7→ [0, Vtot]

x → V(x) =

∫ x

y=0

q(y)dy. (3)

4 Except, possibly, on a zero-measure set of users.
5 i.e., proportion since we normalized the total user mass to 1.



Notice that V is continuous and differentiable on [0, 1], with left-derivative q(x)
and right-derivative q(x+), where q(x+) = limy→x,y>x q(y). Since q is nonde-
creasing and strictly positive for x > 0, then V is convex and strictly increasing
on [0, 1]. As a result, its inverse function N is concave on (0, Vtot), and has
left-derivative

N ′
l (V ) =

1

q(N (V ))
(4)

and right-derivative

N ′
r(V ) =

1

q(N (V )+)
. (5)

The distribution F , the quantity Vtot as well as the functions q and N are
illustrated in Figure 1.
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Fig. 1. Values and functions of interest regarding the user valuation distribution F .

2.2 Security systems performance

In this paper, we focus on direct attacks targeting some specific machines, which
may for instance come from an attack-generating robot that randomly chooses
IP addresses and launches attacks to those hosts.

The attacks generated by such a scheme have to target a specific vulnerability
of a given security system. As a result, the attacker has to select which security
system i ∈ I to focus on. If an attack is launched to a security system i, we
consider that all machines protected by a system j 6= i do not run any risk,
while the success probability of the attack is supposed to be fixed, denoted by
πi, on machines with protection system i. In other terms, the parameter πi

measures the effectiveness of the security defense.



2.3 The attacker point of view

Successful attacks bring some revenue to the attacker. Be it in terms of damage
done to user data, or in terms of stolen data from users, it is reasonable to
consider that for a given attack, the gain for the attacker is proportional to the
value that the data had to the victim. Indeed, in the case of data steal, more
sensitive data (e.g., bank details) are more likely to bring high revenues when
used. Likewise, when the objective of the attacker is simply to maximize user
damage, then the link between attacker utility and user data valuation is direct.

For a given distribution of the population among providers, let Fi be the
(unconditional) distribution of valuations of users associated with provider i, so
that F =

∑

i∈I Fi. We then define for each provider i ∈ I the total value of the
protected data, as

Vi :=

∫

v dFi(v). (6)

For an attacker, the expected benefit from launching an attack targeted at system
i (without knowing which users are with provider i) is thus proportional to πiVi.
We therefore assume that the likeliness of attacks occurring on system i is a
nondecreasing function of πiVi. We discretize time, and denote by Ri(πiVi) the
probability that a particular user is the target of a system-i attack over a time
period. Remark that we consider system-specific functions (Ri)i∈I , so that the
model can encompass some heterogeneity in the difficulty of creating system-
targeted attacks.

To simplify a bit the writing, let us define Ti(Vi) as the risk, for a user, of
having one’s data compromised when choosing security provider i. Note that it
can be written as a function of the total protected data value Vi:

Ti(Vi) := πiRi(πiVi) = πiRi

(

πi

∫

vdFi(v)

)

. (7)

We will often make use of the assumption below.

Assumption A For all i ∈ I, Ti is a continuous and strictly increasing func-
tion of Vi, and Ti(0) = 0.

For Ti functions of the form given in (7), Assumption A is equivalent to

– πi > 0 for all i ∈ I (no provider offers a perfect protection against attacks),
– Ri is a continuous and strictly increasing function with Ri(0) = 0, for all

i ∈ I (attackers do not target providers not protecting valuable data).

2.4 User preferences

For a user u with data valuation vu, the total expected cost at provider i depends
on the risk of being (successfully) attacked, and on the price pi charged by the
security provider. That total cost is therefore given by

vuTi(Vi) + pi.



To ensure that all users select one option, we can assume that there exists a
provider i with pi = 0, which would correspond to security solutions offered by
free software communities (e.g., avast! R©6). Indeed, if pi = 0, the total cost is the
valuation times a product of probabilities, and therefore less than the valuation
itself, so that this choice of a free service is always a valuable option7.

Remark that we consider risk-neutral users here, as may be expected from
large entities, while private individuals should rather be considered risk-averse.
Nevertheless, one can imagine some extra mechanisms (e.g., insurance [17]) to
reach a risk-neutral equivalent formulation.

3 User equilibrium

In this section, we investigate how demand is split among providers, when their
prices pi and security levels πi are fixed. Recall we assumed that users are in-
finitely small: their individual choices do not affect the overall user distribution
among providers (and therefore the total values (Vi)i∈I).

The outcome from such user interactions should be determined by user self-
ishness: demand should be distributed in such a way that each user u chooses
one of the cheapest providers (in terms of perceived price) with respect to her
valuation vu and the current risk values (Ti(Vi))i∈I . Such a distribution of users
among providers, if it exists, will be called a user equilibrium. In other words,
if provider i ∈ I is chosen by some users u, then it is cheaper for those users
(in terms of total expected cost) than any other provider j ∈ I, otherwise they
would be better off switching to j. Formally,

i ∈ argmin
j∈I

vuTj(Vj) + pj.

We use here the nonatomicity assumption: each user u considers the values
(Vj)j∈I as fixed when making her individual choice.

3.1 Structure of a user equilibrium

We now investigate the existence and uniqueness of a user equilibrium, for fixed
values of prices and attack success probabilities. To do so, we first define the
notion of user repartition.

Definition 1. Denote by PI the set of probability distributions over providers
in I, i.e., PI := {(y1, ..., yI) ≥ 0,

∑

i∈I yi = 1}. For a given price profile p =
(p1, ..., pI), a user repartition is a mapping A : Sv 7→ PI, that is interpreted as
follows:

For all v ∈ Sv, among users with valuation v, a proportion Ai(v) chooses
provider i, where A(v) = (A1(v), ..., AI (v)).

6 http://www.avast.com
7 We implicitly assume here that each user u is willing to pay at least vu to benefit
from the online service.



Therefore, to a given user repartition A corresponds a unique distribution
V = (Vi)i∈I of the total data valuation Vtot among providers, given by

Vi(A) =

∫

v∈Sv

v Ai(v) dF (v) ∀i ∈ I. (8)

Remark also that Fi(v) =
∫

w≤v Ai(w)dF (w).

Reciprocally, we say that a distribution V = (Vi)i∈I of the data valuation
is feasible if Vi ≥ 0 for all i, and

∑

i∈I Vi = Vtot. For a feasible distribution V,
when providers are sorted such that p1 ≤ ... ≤ pI , we define for each i ∈ I ∪ {0}
the quantity

V[i] :=
i∑

j=1

Vj ,

with V[0] = 0. V[i] therefore represents the total value of the data protected by
the i cheapest providers.

We now formally define the outcome that we should expect from the inter-
action of users, i.e., an equilibrium situation.

Definition 2. A user equilibrium is a user repartition Aeq such that no user has
an interest to switch providers. In other words, for any value v ∈ Sv, a user with
valuation v cannot do better than following the provider choice given by Aeq(v).
Formally, Aeq is a user equilibrium if and only if
∀v ∈ Sv,

Aeq

i (v) > 0 ⇒ i ∈ argmin
j∈I

vTj(Vj(A
eq)) + pj, (9)

where Vj(A
eq) is given by (8).

We now establish some monotonicity properties that should be verified by a
user equilibrium: if a user y values her data strictly less than another user x,
then she selects cheaper (in terms of price) providers than x.

Lemma 1. Consider a user equilibrium Aeq. Then user choices -in terms of
price of the chosen provider(s)- are monotone in their valuation: for any two
users x and y with respective valuations vx and vy, and any providers i and j,

(vx − vy) · A
eq

i (vx) · A
eq

j (vy) > 0 ⇒ pi ≥ pj. (10)

Proof. Let us write Vi := Vi(A
eq) and Vj := Vj(A

eq). From (9) applied to users
x and y, the left-hand inequality of (10) implies

vxTi(Vi) + pi ≤ vxTj(Vj) + pj

and vyTi(Vi) + pi ≥ vyTj(Vj) + pj . (11)

Subtracting those inequalities gives Ti(Vi) ≤ Tj(Vj) since (vx−vy) > 0. Then (11)
yields the right-hand side of (10).

We then use that result to prove that for a given value repartition (Vi)i∈I

over the providers, there can be only one equilibrium repartition if all providers
set different prices.



Lemma 2. Assume that all providers set different prices. If a user equilibrium
exists, it is completely characterized (unless for a zero-measure set of users) by
the total values (Vi)i∈I of protected data for each provider i ∈ I, provided that
∑

i∈I Vi = Vtot.

Proof. Without loss of generality, assume that provider prices are sorted, such
that p1 < p2 < ... < pI .

From Definition 1 and (8), to a given equilibrium corresponds a unique set
of values (Vi)i∈I .

Reciprocally, consider a feasible data value repartition V = (Vi)i∈I , and
assume it corresponds to a user equilibrium Aeq. Since we do not differentiate
users with similar valuations, we can sort them -still without loss of generality- in
an increasing order of the price of their chosen provider: if x < y and q(x) = q(y)
then we can impose that pix ≤ piy , where ix (resp. iy) would be the (unique)
provider chosen by user at position x (resp. y) in the user valuation ranking.
Therefore from Lemma 1, at the user equilibrium Aeq, provider prices can be
considered as sorted in a increasing order of user valuations among all users.
Thus, user choices are uniquely (unless on a zero-measure user set) determined
by their position x ∈ [0, 1] in the user valuation ranking, and given by

V(x) ∈ (V[i−1], V[i]) ⇒ user x selects provider i, (12)

where V is defined in (3).

3.2 The case of several providers with the same price

In this subsection, we establish a way to consider several providers with the same
price as one single option from the user point of view. Let us consider a common
price p, and define Ip := {i ∈ I : pi = p}.

First, if one such provider i gets positive demand (i.e., Vi > 0), then at a user
equilibrium all providers with the same price also get positive demand: indeed,
Assumption A implies that Ti(Vi) > 0, and thus the total cost of a user u with
positive valuation choosing provider i ∈ Ip is vuTi(Vi) + p > p. Therefore each
provider j ∈ Ip necessarily has a strictly positive Tj, otherwise it would have
cost vuTj(0) + p = p for user u, who would be better off switching from i to j.
Consequently, at a user equilibrium we necessarily have Ti(Vi) = Tj(Vj).

When the set of users choosing one of the providers with price p is fixed, so
is the total valuation VIp

of those users’ data. Consequently, the distribution of
users among all providers in Ip should be such that

{
i, j ∈ Ip ⇒ Ti(Vi) = Tj(Vj)∑

i∈Ip
Vi = VIp

.
(13)

Following [2], we reformulate (13) as a minimization problem:

(Vi)i∈Ip
∈ arg min

(xi)i∈Ip≥0

∑

i∈Ip

∫ xi

y=0

Ti(y)dy (14)

s.t.
∑

i∈Ip

xi = VIp
.



Under Assumption A, there exists a unique vector of values (Vi)i∈Ip
satisfying

the above system. In the following, we will denote by TIp
(V ) the corresponding

common value of Ti(Vi). Interestingly, remark that the function TIp
that we have

defined also satisfies Assumption A. As a result, in the rest of the analysis of user
equilibria, we will associate providers with the same price p and consider them
as a single choice Ip that we assimilate as a single provider k, with corresponding
risk function Tk(V ) := TIp

(V ) satisfying Assumption A.

3.3 Game equilibrium as a solution of an optimization problem

Based on the reasoning in Subsection 3.2, we assume that all providers submit
a different price, and we sort them such that p1 < ... < pI . Now let us consider
the following measure:

L(V,p) :=
∑

i∈I

(
∫ Vi

y=0

Ti(y)dy + pi

(

N(V[i])−N(V[i−1])
︸ ︷︷ ︸

Market share of prov. i

)
)

(15)

=

I∑

i=1

∫ Vi

y=0

Ti(y)dy + pI −
I−1∑

i=1

(pi+1−pi)N(V[i]), (16)

with p0 := 0. Remark that the first part of the quantity L(V,p) in (15) is the
potential function usually associated to unweighted congestion games (see, e.g.,
[2]), while the second part stands for the total price paid by all users.

The expression (16) highlights the fact that L is a strictly convex function of
V, since N is concave and under Assumption A, Ti is strictly increasing. It thus
admits a unique minimum V∗ on the (convex) domain of feasible value shares;
and V∗ is completely characterized by the first-order conditions. We now prove
that this valuation repartition V∗ actually corresponds to a user equilibrium.

Proposition 1. Let Assumption A hold. For any price profile p, there exists
a user equilibrium, that is completely characterized by the valuation repartition
V∗, unique solution of the convex optimization problem

min
V feasible

L(V,p). (17)

Proof. We first consider the feasible directions consisting in switching some in-
finitesimal amount of value from i > 1 to j < i, when V ∗

i > 0. The optimality
condition in (16) then yields

0 ≤ Tj(V
∗
j )− Ti(V

∗
i )−

i−1∑

k=j

(pk+1 − pk)N
′
r(V

∗
[k])

≤ Tj(V
∗
j )− Ti(V

∗
i )− (pi − pj)N

′
r(V

∗
[i−1]), (18)

where the second line comes from the concavity of N .



Notice that since pj < pi and N is nondecreasing,(18) and Assumption A
imply that V ∗

j > 0. Consequently, if we define i∗ := max{i ∈ I : V ∗
i > 0}, then

V ∗
i > 0 ⇔ i ≤ i∗. (19)

As a result, since Vi > 0 and i > 1 in (18), then 0 < V ∗
[i−1] < Vtot. Thus,

from (5), N ′
r(V

∗
[i−1]) =

1
q(N (V ∗

[i−1]
)) is strictly positive. (18) is then equivalent to

v∗iTi(V
∗
i ) + pi ≤ v∗iTj(V

∗
j ) + pj , (20)

with v∗i := q(N (V ∗
[i−1])

+) = inf{v :
∫ v

u=0 udF (u) > V ∗
[i−1]}. Remark that neces-

sarily from (20), Ti(V
∗
i ) < Tj(V

∗
j ) since pi > pj .

For i < I such that V ∗
i > 0 (i.e., i ≤ i∗), we now investigate the possibility

of switching some value from i to j > i. Still applying the optimality condition
for V∗, we get

0 ≤ Tj(V
∗
j )− Ti(V

∗
i ) +

j−1
∑

k=i

(pk+1 − pk)N
′
l (V

∗
[k])

≤ Tj(V
∗
j )− Ti(V

∗
i ) + (pj − pi)N

′
l (V

∗
[i]), (21)

where we used again the concavity of N .
Applying (4), Relation (21) is equivalent to

v̄∗i Ti(V
∗
i ) + pi ≤ v̄∗i Tj(V

∗
j ) + pj , (22)

with v̄∗i = q(N (V ∗
[i])) = inf{v :

∫ v

u=0 udF (u) ≥ V ∗
[i]}.

Relations (20) and (22) can be interpreted as users with valuation v ∈ [v∗i , v̄
∗
i ]

preferring provider i over any other one, for the repartition value V∗. Formally,

v ∈ [v∗i , v̄
∗
i ] ⇒ i ∈ argmin

j∈I
vTj(V

∗
j ) + pj . (23)

Now, consider the provider choices induced by the value repartition V∗ as
given in (12). We prove here that this repartition is a user equilibrium: no user
has an interest to change providers. Take a provider i ∈ I. Then for x ∈ [0, 1],

V(x) ∈ (V ∗
[i−1], V

∗
[i]) ⇔ V ∗

[i−1] <

∫ x

y=0

q(y)dy < V ∗
[i]

⇔ N (V ∗
[i−1]) < x < N (V ∗

[i])

⇒ v∗i ≤ q(x) ≤ v̄∗i .

The last line and (23) imply that the considered user, that is at position x in
the population when it is ranked according to valuations, cannot do better than
choosing the provider suggested by (12). In other words, each user is satisfied
with her current provider choice, i.e., we have a user equilibrium.

We now establish the uniqueness of the equilibrium value repartitionV∗ (and
thus, of the user equilibrium due to Lemma 2 when all prices are different).



Proposition 2. Under Assumption A, the value repartition at a user equilib-
rium necessarily equals V∗ = arg min

V feasible
L(V,p). Consequently, there exists a

unique value equilibrium value repartition, and the user equilibrium is unique
(unless for a zero-measure set of users) when all providers set different prices.

Proof. We consider a user equilibrium, and prove that the corresponding value
repartition Ṽ satisfies the first-order conditions of the convex optimization prob-
lem (17), that has been shown to have a unique solution V∗.

We actually only need to show the counterpart of Relation (18) (resp., (21))
for j = i−1 (resp., j = i+1), since the other cases immediately follow. From (12),
at a user equilibrium we should have for all x ∈ (0, 1) and all i, j ∈ I,

x ∈
(

N (Ṽ[i−1]),N (Ṽ[i])
)

⇒ q(x)(Ti(Ṽi)− Tj(Ṽj)) + pi − pj ≤ 0. (24)

Consider i ∈ I such that Ṽi > 0.

– If j = i− 1, then Ti(Ṽi) < Tj(Ṽj). When x tends to N (Ṽ[i−1]), (24) yields

q(N (Ṽ[i−1])
+)

︸ ︷︷ ︸

=N ′
r(Ṽ[i−1])

(Ti(Ṽi)− Tj(Ṽj)) + pi − pj ≤ 0,

which is exactly the counterpart of (18).
– Likewise for j = i + 1, from (24) for x tending to N (Ṽ[i]) we get the coun-

terpart of (21) (using the fact that q is left-continuous)

q(N (Ṽ[i]))
︸ ︷︷ ︸

=N ′
l
(Ṽ[i])

(Ti(Ṽi)− Tj(Ṽj)) + pi − pj ≤ 0.

The repartition Ṽ satisfies the first-order conditions of the convex optimization
problem (17) and is feasible, therefore Ṽ = V∗, the unique solution of (17).

The second claim of the proposition is a direct application of Lemma 2.

Note that the uniqueness of the equilibrium value repartition V∗ implies that
even when several user equilibria exist, for all users the cost of each provider at
equilibrium is unique; the user equilibrium is then said essentially unique [2].

Note also that it was not compulsory to aggregate providers with the same

price p: at the minimum of L(·,p) we notice from (14) that the term
∫ VIp

0
TIp

involving the aggregated function coincides with
∑

i∈Ip

∫ xi

y=0
Ti(y)dy. Therefore,

the equilibrium value distribution V∗ can directly be found by solving the poten-
tial minimization problem (17). Nevertheless, the interpretation of the potential
is changed, since the terms N (V[i])−N (V[i−1]) of (15) do not necessarily corre-
spond anymore to provider i’s market share.

The next result shows some continuity properties of the user equilibrium.

Proposition 3. The (unique) equilibrium value repartition V∗ is continuous in
the price profile. Moreover, at any price profile such that all prices are different,
the provider market shares are continuous in the price profile.



Proof. Remark that L(V,p) is jointly continuous in V and p, and that the
set of feasible value repartitions is compact. Therefore, from the Theorem of
the Maximum (see [3]) applied to the minimization problem (17), the set of
equilibrium distributions is upper hemicontinuous in p. It is actually continuous
due to the uniqueness of the equilibrium distribution V∗.

For a given price profile p̄ where all prices differ, the strict order of prices
is maintained within a vicinity of p̄, where the market share of provider i is
N (V ∗

[i])−N (V ∗
[i−1]), which is jointly continuous in V and p sinceN is continuous.

Note that while the equilibrium value repartitionV∗ is continuous for all price
profiles, that is not the case of provider market shares. Indeed, market shares
(θi)i∈I strongly depend on the order of prices through the expression N (V ∗

[i])−

N (V ∗
[i−1]), that holds when prices are sorted in an increasing order. Since N is a

concave function, then the market share of a provider may drastically decrease
when a slight price modification changes his position from k to k+1 in the price
ranking. This effect is more prominent when N is more concave, i.e., when user
valuations are heterogeneous.

3.4 Price of Anarchy of the user game

In non-cooperative games, the Price of Anarchy measures the loss of efficiency
due to user selfishness [16]. This metric is usually defined as the worst-case ratio
of the total cost at an equilibrium to the minimal feasible total cost, and has
been extensively studied in the last years [7,24,25,26]. The results closest to the
one presented in this subsection come from [4]: the authors consider weighted
congestion games, where the cost experienced by each user would correspond to
the situation where all prices are set to 0 in our model. Then the authors prove
that the upper bound for the Price of Anarchy is not greater for the weighted
game than for its unweighted counterpart. We actually establish the same kind
of result for any value of the provider price profile p, except that in our case
the total user cost (sum of the costs perceived by all users) for any feasible user
valuation repartition V is

Cu :=
∑

i∈I

(
ViTi(Vi) + pi(N (V[i])−N (V[i−1]))

)
. (25)

Proposition 4. Assume that the risk functions (Ti)i∈I belong to a family C,

and define as in [7] the quantity β(C) := sup
T∈C,(x,y)∈[0,Vtot]2

x(T (y)− T (x))

yT (y)
. Then

for any nonnegative price profile p,

C∗
u

Copt
u

≤
1

1− β(C)
, (26)

where C∗
u (resp. Copt

u ) is the total user cost at the user equilibrium (resp. the
minimum total user cost) for the price profile p.



Proof. We apply a variational inequality that is satisfied by the user equilibrium
value repartition V∗, and that directly stems from the fact that users only select
their preferred provider: for any feasible value repartition V, we have
∑

i∈I

(

V ∗
i Ti(V

∗
i ) + pi(N(V ∗

[i])−N(V ∗
[i−1]))

)

≤
∑

i∈I

(

ViTi(V
∗
i )+ pi(N(V[i])−N(V[i−1]))

)

.

This yields
C∗

u ≤ Cu +
∑

i∈I

Vi(Ti(V
∗
i )− Ti(Vi)) ≤ Cu + β(C)

∑

i∈I

V ∗
i Ti(V

∗
i ) ≤ Cu + β(C)C∗

u ,

which establishes the proposition.

It is shown in [7] that if C is the set of affine risk functions the bound 1/(1−
β(C)) equals 4/3, resulting in a moderate loss of efficiency due to selfishness.
Values 1.626 and 1.896 have also been found respectively for the sets of quadratic
and cubic cost risk functions, and β(C) = d/(d+1)1+1/d for the set of polynomials
of degree at most d with non-negative coefficients.

As in [4], we find that the introduction of weights among user congestion
effects (and here, in addition, among user perceived costs) does not worsen the
Price of Anarchy. The bound given in Proposition 4 can indeed be attained,
when C includes the constant functions, with a simple 2-provider instance with
prices set to zero, and all users having the same weight.

4 Pricing decisions of security providers

We now focus on the decisions made by security providers when choosing their
charging price. We consider that providers are able to anticipate user reactions
when fixing their prices. We then have a two-stage game, where at a first step
(larger time scale) providers compete on setting their prices so as to maximize
revenue, considering that at a second step (smaller time scale) users selfishly
select their provider.

The utility of provider i is given by his revenue ri := piθi, where θi is the mar-
ket share of provider i. When all providers propose different prices and providers
are ranked such that p1 < p2 < ... < pI , from Proposition 2 the user equilibrium
exists and is unique, and we simply have θi = N (V ∗

[i])−N (V ∗
[i−1]), where V∗ is

the equilibrium value repartition. On the other hand, if several providers in a
set Ip propose the same price p, then the equilibrium valuation repartition V∗ is
unique, but the user equilibrium choices need not be unique: indeed, any price-
monotone user repartition consistent with V∗ is a user equilibrium, and several
such repartitions may exist. For those special cases, a reasonable assumption
could be that users make their provider choice independently of their valuation
when they have several equally preferred providers. As a result, the total market
share of providers in Ip would be split among them proportionally to the data
value V ∗

i that they attract, yielding

θi =
V ∗
i

∑

j:pj=pi
V ∗
j



N (
∑

j:pj≤pi

V ∗
j )−N (

∑

j:pj<pi

V ∗
j )



 .



We now establish that, when there exists a bounded price alternative, the
revenue of any provider tends to zero if he increases his price to infinity. In prac-
tice, such a bounded-price option always exists, even if it has bad performance:
one just needs to consider any free security possibility. Therefore, prices will not
be arbitrarily high when providers want to maximize revenue.

Proposition 5. Assume that there exists a provider i0 with price pi0 ≤ p̄i0 < ∞.
Then for any provider j 6= i0, the revenue rj = pjθj tends to 0 when pj → ∞.

Proof. Let us consider a user with valuation v, for whom provider j is among
the favorite providers. In particular, that user prefers j over i0, thus at a user
equilibrium we have

v(Ti0(Vi0)− Tj(Vj)) ≥ pj − pi0 ≥ pj − p̄i0 . (27)

Therefore if pj > p̄i0 then Tj(Vj) < Ti0(Vi0 ) and

v ≥
pj − p̄i0

Ti0(Vi0 )− Tj(Vj)
≥

pj − p̄i0
Ti0(Vtot)

:= vmin.

The revenue rj = pjθj of provider j can then be upper bounded:

rj ≤ pj

∫ +∞

v=vmin

dF (v) = Ti0(Vtot)
pj − p̄i0
Ti0(Vtot)

∫ +∞

v=
pj−p̄i0

Ti0
(Vtot)

dF (v)

︸ ︷︷ ︸

−−−−→
pj→∞

0

+p̄i0

∫ +∞

v=
pj−p̄i0

Ti0
(Vtot)

dF (v)

︸ ︷︷ ︸

−−−−→
pj→∞

0

,

where the two terms tend to zero since
∫∞

0 vdF (v) = Vtot < ∞.

4.1 Licensed versus free security provider

We consider here a simple situation with two providers, but only one trying to
maximize his profit through subscription benefits. The other provider (or, more
likely, a community of developers) offers the security service for free.

Denote by 0 and 1 the freeware provider and the licensed provider, respec-
tively. From Proposition 1, there exists a unique value repartition (V0(p), Vtot −
V0(p)) at the user equilibrium, for any price p set by provider 1. Likewise, for
any p > 0 the equilibrium market share of provider 1 is unique and given by
θ1 = 1−N (V0(p)); the profit maximization problem of provider 1 can therefore
be written as

max
p≥0

p · (1−N (V0(p))). (28)

Note that provider 1 gets demand as soon as his price is strictly below
sup(Sv)× T0(Vtot), therefore by choosing p ∈ (0, sup(Sv)T0(Vtot)) he can ensure
a positive revenue. Therefore from Propositions 3 and 5, the provider revenue
optimization problem (28) has a solution, that is finite.

Corollary 1. When a profit-oriented provider faces only a competitor with null
price, then under Assumption A there exists a finite price p̄ > 0 that maximizes
his revenue, whose maximum value is strictly positive.



4.2 Competition among providers: the risk of price war

Competitive contexts where providers play on price to attract customers often
lead to price war situations, i.e., situations where each provider has an interest
in decreasing his price below the price of his competitor. The outcome then
corresponds to providers making no profit, and possibly not surviving.

With the model presented in this paper, not all demand goes to the cheapest
provider because of the congestion effect due to attackers’ behavior. However,
some threshold effect still exist, as illustrated by the non-continuity of provider
market shares when provider prices cross each other.

Let us for example consider two identical profit-oriented providers and a free
alternative. Due to the symmetry of the game, one would expect a situation
where both providers set their price to the same level, say p > 0. As a result,
again from symmetry arguments both providers would be chosen by users to
protect, at equilibrium, the same value V ∗

1 = V ∗
2 := V ∗ of data each, while the

free provider covers a total data value V0. Then, if provider 1 sets his price to
p− ε for a small ε > 0, the market share repartition is such that when ε → 0,

θ0 = N (V ∗
0 ),

θ1 = N (V ∗
0 + V ∗)−N (V ∗

0 ),

θ2 = N (V ∗
0 + 2V ∗)−N (V ∗

0 + V ∗).

When users choosing provider 1 or 2 are not all homogeneous in their data
valuations (which is for example the case if the valuation distribution F admits
a density), then θ1 > θ2. In other words, provider 1 strictly improves his market
share (and thus his revenue) by setting his price just below the price of his
competitor. But provider 2 can make the exact same reasoning, resulting in a
price war situation.

Consequently, there can be no symmetric Nash equilibrium (i.e., a price pro-
file such that no provider can improve his revenue by a unilateral change) where
p1 = p2 > 0, despite the symmetry of the pricing game. Furthermore, the price
profile where all prices are set to 0 is not an equilibrium either: both providers
would get no revenue, which each one could strictly improve by a small price
increase as stated in Corollary 1.

Remark that this reasoning does not rule out the possibility of the pricing
game having a (non-symmetric) Nash equilibrium, however we cannot always
guarantee that such an equilibrium exists. An explanation to the existence of
stable price profiles can nevertheless still be found from game-theoretic argu-
ments, since the pricing game among providers is not played only once but
repeatedly over time. When considering repeated games (i.e., where players take
into account not only their current payoff but also a discounted sum of the future
ones), the set of Nash equilibria is indeed much larger than for their one-shot
counterpart, as evidenced by the Folk theorem [23]. The stability of prices can
then stem from the threat of being sanctioned by competitors for an (immediate-
profit) price change.



We illustrate those results when user valuations are distributed according to
an exponential law with average value 1/λ = 10 monetary units. Such a distri-
bution models an unbounded continuum of valuations among the population,
where a large majority of users have limited valuations, but there exist few peo-
ple with extremely high value data to protect. The risk function considered in
our numerical computations is Ri(x) = 1− e−x for each provider i, which mod-
els the fact that systems with no valuable data are not targeted while successful
systems are very likely to attract attacks.

In our numerical illustration, we consider here three providers: a provider 0
with performance parameter π0 = 0.05, that is always free: p0 = 0; and two
profit-oriented providers, namely 1 and 2, with respective performance values
π1 = 0.01 and π2 = 0, 005. Providers protected data values and market shares are
shown in Figures 2 and 3, and the revenue of provider 2 is displayed in Figure 4.
The curves illustrate the continuity results of Proposition 3. Interestingly, we
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Fig. 2. Protected data values when provider 2 varies his price.

remark in Figure 4 that despite the discontinuity in revenue when prices cross
each other, provider 2 actually has a revenue-maximizing price pBR

2 (p1) strictly
below the price of his competitor. That last figure shows the price war situation:
if providers engage in successive best-reply price adaptations to the competition,
then prices tend to very low values, which jeopardizes the viability of security
providers. However, a situation with strictly positive prices from both providers
could be stable in a repeated game context. Consider a price profile (p1, p2)
such that each provider obtains at least what he could obtain with an aggressive
competitor (i.e., a competitor that tries to minimize the provider revenue); when
providers value the future almost as much as the present (i.e., when the discount
factor that relates current prices to future prices is close to 1), that price profile
can be maintained as a subgame-perfect equilibrium of the repeated game [9].
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Fig. 3. Market shares when provider 2 varies his price.

5 Conclusions

The model introduced in this paper takes into account the attractiveness that
successful security systems represent to profit-minded attackers. This constitutes
a negative externality among users: their (selfish) security choices then form a
noncooperative congestion game. We have considered heterogeneity among user
valuations for data protection, which affects both the externality level and the
user cost functions. The corresponding game is therefore a weighted congestion
game with user-specific payoffs. We have studied that game for the case of a
continuum of infinitesimal users, and have proved that it admits a potential and
therefore an equilibrium, that is unique when providers submit different prices.

The study of the user selection game has helped us understand the interaction
among security providers, who have to attract customers but are then subject to
quality degradation due to more attacks, hence a trade-off. Our analysis shows
that providers will keep their prices low, and that competition may lead to price
war situations, unless providers consider long-term repeated interactions.

Future work can focus on the information asymmetry and uncertainty among
actors: we have studied the interactions in a complete information context,
whereas users may not have a perfect knowledge of the performance level of
the different providers, or of their total protected data value. Likewise, attackers
can only estimate the potential gain from targeting a given system.

Another interesting direction for future research concerns the investment
strategies that security providers should implement: indeed, improving the pro-
tection performance has a cost, that has to be compensated by the extra revenue
due to user subscription decisions. While there exist references for this kind of
problem when users are homogeneous [13], the case when users have different
weights deserves further attention.
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Fig. 4. Revenue of provider 2 (π2 = 0.005) facing provider 1 (π1 = 0.01) and free
provider 0 (π0 = 0.05) (left), and best-reply functions of providers 1 and 2 (right).

Acknowledgements

The authors acknowledge the support of European initiative COST IS0605,
Econ@tel. Part of this work has been supported by the Austrian government
and the city of Vienna in the framework of the COMET competence center
program, and by the French research agency through the CAPTURES project.

References
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