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Patrick Maillé1 and Bruno Tuffin2

1 ENST Bretagne, BP 78, 2 rue de la Châtaigneraie
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Abstract. Pricing is considered a relevant way to control congestion
and differentiate services in communication networks. Among all pricing
schemes, auctioning for bandwidth has received a lot of attention. We
aim in this paper at comparing a recently designed auction scheme called
multi-bid auction with the often referenced progressive second price auc-
tion. We especially focus on the case of a stochastic environment, with
players/users entering and leaving the game. We illustrate the gain that
can be obtained with multi-bids, in terms of complexity, revenue and
social welfare in both transient and steady-state regime.

1 Introduction

To cope with congestion in communication networks, it has been proposed to
switch from current flat-rate pricing to usage-based or congestion-based pricing
schemes (see for instance [3, 4] for surveys on pricing in telecommunication net-
works, describing the range of possibilities; for the sake of conciseness, we do
not describe all the schemes here). Among those pricing schemes, auctioning has
appeared as a possibility to share bandwidth. The first time auctioning was pro-
posed was in the seminal smart-market scheme of MacKie-Mason and Varian [6],
where each packet contains a bid and, if served, pays the highest bid of the pack-
ets which are denied service. This scheme requires a high engineering cost, but
has pioneered the auction-based pricing activity in the networking community.

Progressive Second Price (PSP) Auction [5, 11, 12] has recently been pro-
posed as a trade-off between engineering feasability and economic efficiency. In
PSP, players submit bids at different epochs, each bid consisting of the required
amount of bandwidth and the associated unit-price, until a (Nash) equilibrium
is reached. The scheme has been proved to be incentive compatible and effi-
cient. Variants of PSP have been designed in [8, 14] in order to fix some of its
drawbacks.

In [9], multi-bid auction (a one-shot version of PSP) has been proposed. It
consists for each player in submitting multiple bids once only, providing there-
fore an approximation of her own valuation function. Market clearing price and



allocation can be subsequently computed. Here again, incentive compatibility
and efficiency are proved (up to a given constant). The scheme presents the ad-
vantage, with respect to PSP, that no bid profile diffusion is necessary along the
network, and that there is no convergence phase up to equilibrium, then yielding
a gain in engineering and economic efficiency, especially when players enter and
leave the game randomly.

The goal of this paper is to numerically highlight and illustrate the gain
that can be obtained by multi-bids over PSP. We place ourselves in a stochastic
environment, with users of different types entering and leaving the game at
random times, and investigate the transient (for a given trajectory) behavior
and steady-state performance of both multi-bids and PSP. We especially focus
on three criteria: network revenue, social welfare and computational complexity.

Note finally that there exist other auction schemes in the literature [2, 10,
13], but due to space limitation, and since our main purpose was to emphasize
the degree of improvement when using the multi-bids instead of PSP, we do not
include them here.

The layout of the paper is as follows. In Section 2, we present the stochastic
model that will be used to describe the system behavior. In Section 3 we present
the PSP mechanism and its properties; the same is done for the multi-bid scheme
in Section 4. Section 5 illustrates the gain that can be obtained by using the
multi-bid scheme in a stochastic environment; both transient and steady-state
results are provided. Finally, we conclude in Section 6.

2 General model

In order to look at the auction schemes’ behavior in a stochastic environment,
we model for convenience the system by a Markov process.

Consider a single communication link of capacity Q. We assume that there
exists a finite number T of different valuation (or willingness-to-pay) functions,
corresponding for instance to different sets of applications. A player/user i is
then characterized by her type ti ∈ {1, ..., T}.

Players compete for bandwidth. To model their behavior, we represent their
perception/valuation of the service they can get by a quasi-linear utility function
of the form

Ui(s) = θti
(ai(s)) − ci(s), (1)

where θti
is the valuation function of a type-ti player, which depends on the

quantity of resource received ai. Quantity ci is for the total cost charged to
player i. Both ci and ai will depend on the auction scheme used and on the
whole set of bids s (where the term “bid” will depend on the auction scheme).

We assume that new players enter the game according to a Poisson process
with rate λ, and that the type of a new player is chosen according to a discrete
probability distribution Pt, so that the arrival rate of type u is λu = λPt(u). We
also assume that each type-u player sojourn time is exponentially distributed
with rate µu (independent here of the obtained accumulated bandwidth, like for
real-time applications). Let I(τ) be the set of active players at time τ (i.e. the



set of players present in the game at this time) and I(τ) be the total number of
players at time τ .

To ensure that the bandwidth is not sold at a too low level, the seller can thus
be seen as a (permanent) player, noted by 0, with valuation function θ0(q) = p0q.
p0, the reserve price, guarantees that no bandwidth will be sold at a unit price
under p0.

Our goal is to compare the behavior of PSP and multi-bids. Let us now recall
the basic concepts of both schemes.

3 Progressive Second Price Auction [5, 11]

In PSP, a player i submits a 2-dimensional bid si = (qi, pi) ∈ Si = [0, Q] ×
[0,+∞), where qi is the desired quantity of resource and pi the unit price player
i is willing to pay for that resource. s = (s1, ..., sI) will denote the bid profile, and
s−i = (s1, ..., si−1, si+1, ..., sI) will be the bid profile that player i faces, so that
s = (si; s−i) (the dependence on time τ is omitted to simplify the notations).

PSP allocation and charge to player i are

ai(s) = qi ∧



Q −
∑

pk≥pi,k 6=i

qk





+

(2)

ci(s) =
∑

j∈I(τ), j 6=i

pj [aj(s−i) − aj(si; s−i)] , (3)

so that players bidding the highest get the bandwidth they request and total
charge corresponds to declared willingness to pay of players who are excluded
by player i’s bid.

Each time a player submits a bid, she tries to maximize her utility, and a
bid fee ε is charged to her. Under some concavity and regularity assumptions
over functions θu, when the number of players is fixed and players bid sequen-
tially, the game is proved to converge to a so-called ε-Nash equilibrium, so that
no player can improve unilaterally her utility by more than ε. The scheme is
also proved to be incentive compatible (meaning that users’ best interest is to
truly reveal their willingness to pay), and efficient in the sense that the social
welfare

∑

i∈I(τ)∪{0} θi(ai) is asymptotically maximized (when the algorithm has

converged).
Based on the assumption that users enter or leave the game, efficiency might

become an issue. We suppose here that each type-u player in the game has
the opportunity to submit a new bid at different times. Inter-bid times are
assumed to follow an exponential distribution with parameter νu, independent
of all other random variables. When a new player arrives, she is assumed to
submit an optimal bid (meaning that she knows the bid profile).

4 Multi-Bid Auction [9]

In the multi-bid scheme, users, when they enter the game, submit a set of M

2-dimensional bids si = {s1
i , ..., s

M
i }, where for all m, 1 ≤ m ≤ M, sm

i = (qm
i , pm

i )



is as in PSP (the seller just submits one 2-dimensional bid s0 = (q0, p0) with
q0 > Q and p0 the reserve price). We assume without loss of generality that bids
are sorted such that p1

i ≤ p2
i ≤ ... ≤ pM

i . With respect to PSP, the bids are
submitted just once, so that users do not submit new bids at given epochs. This
reduces the signaling overhead.

From the multi-bids of all competing players at time τ , the so-called pseudo-
demand function of user i can be computed as the function d̄i : R

+ → R
+,

defined by

d̄i(p) =

{

0 if pM
i < p

max
1 ≤ m ≤ M

{qm
i : pm

i ≥ p} otherwise. (4)

The pseudo-aggregated demand function is the function d̄ : R
+ → R

+ defined
by d̄(p) =

∑

i∈I(τ)∪{0} d̄i(p), where d̄0(p) = q01lp≤p0
(apply (4) for M = 1) .

From the pseudo-aggregated demand function, we define the pseudo-market
clearing price ū by

ū = sup
{

p : d̄(p) > Q
}

. (5)

Such a ū always exists since d̄(0) ≥ d̄0(0) = q0 > Q. Moreover for p >

maxi∈I(τ)∪{0}(p
M
i ) we have d̄(p) = 0, and therefore ū < +∞.

Describe now the allocation and pricing rules. First define, for every function
f : R → R and all x ∈ R, f(x+) = limz→x,z>x f(z).

The allocation, recomputed each time a player enters or leaves the game, is

ai(si, s−i) = d̄i(ū
+) +

d̄i(ū) − d̄i(ū
+)

d̄(ū) − d̄(ū+)
(Q − d̄(ū+)), (6)

meaning that each player receives the quantity she asks at the lowest price ū+

for which supply excesses pseudo-demand, d̄i(ū
+), and the excess of resource is

shared among players who submitted a bid with price ū.
The total charge is computed according to the second-price principle [1, 15]

(but using the pseudo-demand functions instead of the real ones):

ci(si, s−i) =
∑

j∈I(τ)∪{0},j 6=i

∫ aj(s−i)

aj(s)

θ̄′tj
(q)dq, (7)

with θ̄′tj
pseudo-marginal valuation function of j, defined by

θ̄′tj
(q) =

{

0 if q1
j < q

max
1 ≤ m ≤ M

{pm
j : qm

j ≥ q} otherwise. (8)

As for PSP, incentive compatibility (each user i should better reveal its band-
width valuation, i.e., pm

i = θ′ti
(qm

i ) ∀m), and efficiency are proved, but up to a
controlled constant here (see [9] for details).

It is shown in [9] that it is in the players’ interest to submit a uniform quantile
repartition of their bids, i.e., (qm

i , pm
i = θ′ti

(qm
i )) ∀1 ≤ m ≤ M such that

∫ di(p
m
i )

di(p
m+1

i
)

(θ′ti
(q) − pm

i )dq = Ci ∀m, where

{

pM+1
i = θ′ti

(0)
p0

i = p0.
(9)



5 Comparison of performance

Multi-bids present the following advantages with respect to PSP:

– since the bids are submitted exactly once, no convergence phase is required
by resubmitting new bids until an equilibrium is reached. It might be argued
that the mean number of re-submission up to equilibrium is less that the
number M of multi-bids in some cases; this situation is less likely to occur
in the situation of customers arriving or leaving the game, meaning that a
new re-submission phase is required for each player in PSP, whereas nothing
has to be done for already present players when using multi-bids.

– Following the same idea, when submitting a new bid in PSP, each player is
assumed to know the bid profile, meaning that it is advertised to all players.
This is not required for the multi-bid scheme, saving then a lot of signaling
overhead.

We propose to illustrate the above advantages of multi-bids in the follow-
ing sub-sections. We especially wish to show that this gain in terms of signal-
ing/complexity is not at the expense of efficiency, in terms of seller’s revenue or
social welfare, both on a trajectory and during the convergence phase of PSP,
as well as in steady state, and that it even actually is the converse.

5.1 Transient analysis

Figure 1 displays the behavior of PSP and multi-bids when the number of play-
ers is fixed and until equilibrium is reached for PSP, with two types of players,
three type-1 and two type-2 players. The upper left-hand side figure displays
the valuation and marginal valuation functions for both types of players, that
we used in all our simulations. The lower left-hand side represents social welfare
∑

i∈I(τ)∪{0} θi(ai). Since the number of players is fixed during the simulation,
multi-bid allocations and charges are fixed, and it can be observed that the social
welfare is 60.37, very close to the optimal one 60.71. On the other hand, for PSP
auctions the social welfare changes at each re-submission from a user (result-
ing in the discontinuous curve), reaching equilibrium (with value 60.68) around
time τ = 26, but showing a lower social welfare than multi-bids before reach-
ing equilibrium. The lower right-hand side of Figure 1 represents the network
revenue for both schemes. Again, multi-bid revenue is constant due to the fact
that the number of players is fixed. Also, the revenue for PSP is first increasing,
overtaking the one with multi-bids after a while, but then dropping under it
just before reaching equilibrium. Actually, we proved in [7] that when the total
demand at the unit price p0 exceeds the available capacity Q, the revenue with
PSP in equilibrium tends to p0 × Q (i.e. all the resource is sold at the reserve
price) when the bid fee ε tends to 0.

Figure 2 illustrates the behavior of both schemes on a trajectory, with players
entering and leaving the game3. Here the number of players of each type varies, as

3 The parameters we chose are precised in the figure, and were also used for the study
of steady-state performance.
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Fig. 1. Comparison of PSP and multi-bids for a fixed number of players, until conver-
gence is reached for PSP

described on the upper right-hand figure. The curves of social welfare show that,
when using multi-bids, the resulting social welfare is always very close to the
optimal one, whereas, due to the convergence phase, there is a loss of efficiency
when using PSP. Similarly, on this trajectory, the network revenue generated by
multi-bids is significantly larger than the one generated by PSP.

5.2 Steady-state analysis

Figure 3 illustrates the evolution of the mean efficiency ratio (obtained steady-
state social welfare divided by the optimal one), the mean network revenue and
the complexity of the algorithm when the number M of multiple bids increases,
and compares those performance measures with the ones obtained for PSP. The
complexity of computing PSP allocations and prices is of the order O(I2) [11],
and the complexity of multi-bid auction is of the order O(M × I2) [9]. We there-
fore display the mean number of applications of each auction rule by unit of
time, multiplying this number by M for multi-bid auction. This curve does not
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Fig. 2. Behavior of PSP and multi-bids on a trajectory, with players entering and
leaving the game

precisely give the number of elementary operations that are conduced, but just
gives an idea of how the computational complexity evolves when the parameters
vary. Note that this computation of complexity does not include the signaling
overhead necessary for PSP. It can be observed then that for small values of M ,
computational complexity is even smaller also with multi-bids. More important,
thanks to the one-shot property of multi-bids (i.e., the fact that no convergence
phase is required unlike PSP), steady-state social welfare (for M ≥ 2) and rev-
enue are larger with multi-bids.

Figure 4 displays the evolution of efficiency ratio, network revenue and com-
plexity when the arrival rate increases (with all other parameters fixed). Again,
multi-bids are shown to provide better performance. The difference increases
with λ. This is due to the fact that the number of players varies more frequently,
so that convergence to optimal values is less likely to occur for PSP, whereas it
does not affect multi-bids.

Figure 5 illustrates the three criteria considered in this paper, when the bid-
resubmission rate varies for both types of players. Even when this rate increases,
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Fig. 3. Steady-state performance of multi-bids for an increasing number M of allowed
two-dimensional bids in multi-bid auctions, compared with PSP

leading to a larger computational complexity, we see that the multi-bid auction
still outperforms PSP as concerns efficiency and network revenue.

6 Conclusions

The goal of this paper was to compare PSP and multi-bid schemes, two auction
mechanisms for bandwidth allocation in telecommunication networks. Based on
this purpose, we have considered a model representing a communication link,
with players applying for connections at random epochs, and for a random time.
Our conclusion is that multi-bid auction scheme significantly reduces the signal-
ing overhead of PSP, but also yields larger social welfare and network revenue
(at least for this stochastic context regarding the social welfare).

As future work, we plan to extend the multi-bid auction scheme to a whole
network. We already have some results in the case of a tree network, which
properly represents the case where the backbone network is overprovisionned
and the access networks have a tree structure.
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