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Abstract— Usage-based or congestion-based charging schemes
have been regarded as a relevant way to control congestion and
to differentiate services among users in telecommunication net-
works; auctioning for bandwidth appears as one of several possi-
bilities. In a previous work, the authors designed a multi-bid auc-
tion scheme where users compete for bandwidth at a link by sub-
mitting several couples (amount of bandwidth asked, associated
unit price) so that the link allocates the bandwidth and computes
the charge according to the second price principle. They showed
that incentive compatibility and efficiency among other properties
are verified. We propose in the present paper to extend this scheme
to the case of a network, by using the properties/assumptions that
the backbone network is over-provisioned and the access networks
have a tree structure.

Index Terms—Control theory, Economics

I. I NTRODUCTION

Many people argue that congestion pricing for communica-
tion networks is a pointless problem, since the available capac-
ities are (or will soon be) so large that congestion will never
occur. This might be true for backbone networks, that are
steadily re-dimensioned using the latest available technologies
and allow tremendous communication rates. However, moving
data from the network backbone into houses remains a major
challenge for bandwidth-demandingapplications such as for in-
stance digital-video broadcast, since wires used in local loops
are provisioned for voice-grade analog service and do not allow
high-speed data services. This problem is known as the “last
mile bottleneck”; while major backbone routes are awash in
optical fiber that they will not use for years to come, replacing
all “last mile” communication links with optical fibers would
be too costly (estimated at $500-$1500 per household [1]), and
therefore is not likely to be applied. The problem is even more
present in wireless LANs, in which the wireless link is the bot-
tleneck.

Consequently, when several users share the same access net-
work (like in hotel rooms, apartment units, offices or other
multi-unit buildings), congestion is very likely to occur.This
stands especially when considering new services that are more
and more bandwidth-consuming. Therefore, a fair/efficientway
to share the available resources among users needs to be found.
The problem lies essentially on incentives: how can we force
selfish users to cooperate and share the resource efficiently?
Similarly, it may be desirable to give preference to certainses-
sions or users. How can that be implemented?Pricing appears
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as a solution, and has become a topic of high interest (see [2],
[3], [4] and references therein) thanks to its influence on users’
behavior (see for instance the experiment that has been con-
ducted at UC Berkeley [5]).

Currently, Internet communications are priced independently
of usage, which is an incentive to overuse the network: Shu and
Varaiya point out the lack of incentive for congestion control in
[6]. They prove that users do not have interest in conformingto
the Transport Control Protocol (TCP) congestion control, since
other aggressive strategies lead to a higher throughput. How-
ever, if all users choose such a strategy then the network perfor-
mance collapse. Current research therefore focus on the design
of pricing mechanisms that would lead to an efficient allocation
of network resources. The different main families of proposed
schemes are pricing for resource reservation (through access
control) [7], pricing for priority [8], pricing for a given trans-
fer rate [9] or auctioning [10]. In particular,second-price auc-
tions are extensively studied, because of their incentive prop-
erties. In [10], MacKie-Mason and Varian suggest the use of
a smart market, a per-packet auction to solve congestion prob-
lems through pricing. Reichlet al [11] also suggest to use Delta
auctions, a kind of second-price mechanism in the case where
there are several Internet providers. However, the efficiency of
those schemes is not established analytically. Lazar and Semret
have introduced the Progressive Second Price (PSP) auctions
[12] to price the available bandwidth of communication links,
and obtained analytical results, concerning incentives and effi-
ciency.

In [13], we have designed the so-called multi-bid auction
pricing mechanism, a one-shot auction-based scheme to share
the capacity of a single communication link among several
users. We have suggested that each user submit several bids
when establishing a connection, and that the corresponding
multi-bid profile be used to compute efficient allocations and
prices. The multi-bid scheme, that is highly related to the Pro-
gressive Second Price mechanism (PSP) of Lazar and Semret,
has been shown to verify several desirable properties in terms
of incentives and efficiency. Moreover, since PSP auctions need
a convergence phase for the submitted bids, implying time bur-
den and signaling overhead, we have proved that our one-shot
multi-bid auctions are better adapted to the pricing of Internet
communications which open and close sessions over time, and
where signaling traffic uses bandwidth that is lost for communi-
cations. The loss of efficiency of PSP in this context was stud-
ied in [14], and the superiority of multi-bids in terms of seller
revenue and efficiency was highlighted through simulationsin



2

[15]. Another advantage of the multi-bid scheme is that it does
not require any synchronization among users: a user may bid at
any time (without needing to know the bids of other users), po-
tentially modifying the allocation and price of other usersuntil
the end of her session. Therefore, there is no guarantee of keep-
ing an initial allocation during a whole session, allocations and
prices being updated at each new/end of connection.

However, [13] only considers the case of a single commu-
nication link, whereas PSP was also shown to apply to inter-
connected networks [16]. This paper aims at extending multi-
bid auctions to the case of a network. Since our goal is to
charge for Internet communications, we use the particular struc-
ture of the current Internet network, which involves an over-
provisioned backbone network and access networks with a tree
structure. Indeed, each access network can be modeled this
way, as described in [17]: customers are not directly connected
to high-speed backbone networks, but rather to “local” access
networks, which are then connected to regional networks, them-
selves being connected to national backbone networks. There
exist several justifications in the literature to use this tree topol-
ogy for access networks, for instance in the case of reliability
versus costs trade-off [18] or in [19], where an IP-based archi-
tecture for broadband multimedia services is described. Itis
for instance shown in [18] that the tree topology reduces finan-
cial and engineering costs for access networks. We therefore
design the multi-bid auction scheme in that context of a tree
structure, and investigate the properties of this mechanism, es-
pecially focusing on incentives and efficiency. The case of a
general topology is left to future research (see the conclusion).

The paper is organized as follows. Section II presents the
model considered in this paper by describing the network topol-
ogy and users behavior. We describe the principle of multi-
bid auctions and some basic definitions in Section III. Section
IV then presents how the mechanism introduced in [13] can be
adapted to the case of an access network, and the desirable the-
oretical results (individual rationality, incentive compatibility,
efficiency) are respectively derived in Sections V, VI, VII.Sec-
tion VIII deals with the bids repartition while Section IX stud-
ies the number of bids that should be allowed by the auctioneer.
We conclude in Section X by giving some directions for future
work.

Note that some (but not all) proofs and discussions are simi-
lar to those presented in [13] for the case of a single link. Never-
theless, we include them in this paper to make it self-contained.
The tree-topology assumption made in this paper, that we be-
lieve to hold in the Internet (see [19]), significantly simplifies
the allocation problem compared to a general network where
routing also has to be taken into account, or to loop-free net-
works where the allocations on all links interact. Nevertheless,
this model highlights new difficulties: in particular the mecha-
nism has to ensure that no bandwidth is spared, i.e. a user will
not obtain more bandwidth on a link closer to the backbone
than obtained on a downstream link. The mechanism needs to
be carefully designed to cope with such constraints. As con-
cerns the analytical proofs of the mechanism properties, the
pivot result is Lemma 5, which is entirely new with respect to
the single-link case of [13]. We therefore consider the applica-
tion of the multi-bid scheme to such networks as an important
extension of [13], since to our knowledge, this is the first incen-

tive compatible and efficient scheme for Internet networks that
provides instantaneously allocations and prices, withoutneed-
ing the convergence of a bidding algorithm as in [12] or of send-
ing rates versus prices as in [9]. Moreover, the computational
complexity of the mechanism is distributed among the nodes of
the network.

II. T HE MODEL

A. The network

We assume in this paper that congestion may only occur in
access networks. Access networks (the last mile) are consid-
ered here to have a tree structure, i.e. for each user there is
one and only one path to reach the congestion-free backbone
network. This vision of a network is represented in Fig. 1,
illustrating that several users may have to share some linksin
the access network to reach the backbone [17]. Notice that Fig.
1 displays a schematic vision of access networks, in the sense
that the technology and transmission protocols that are used are
not specified. What we represent by a link actually means the
resource that has to be shared among users to reach the next
point to the backbone; the first link is frequently a copper Digi-
tal Subscriber Line (DSL) connection, or a Local Area Network
(LAN) with CSMA/CD, or a WLAN, which may be connected
to the backbone via a wired or wireless link (802.16 WMAN for
instance)1. As an example of topology for the upstream links,
the tree-topology advocated in [19] relies on a two-level hier-
archy of Synchronous Digital Hierarchy (SDH) rings, where
residential users are connected to a second-level ring on xDSL
over copper, while business users can be connected directlyto
the primary ring by SDH fiber connection. The authors argue
that this tree topology simplifies a number of functions suchas
routing and addressing.

.

Congestion-free

backbone network

.

Fig. 1. Network topology

We also assume in this paper that users wish to access ser-
vices which are located in the backbone network, that is a wired
over-provisioned network (thanks to optical fibers). For exam-
ple with video on demand, the video server is directly connected
to the backbone and is not bandwidth-limited, i.e. video can
be downloaded with transmission rates larger than the avail-
able rates in access networks. As a result, a user may only

1How our multi-bid scheme can be adapted to CDMA networks is described
in [20]. For TDMA and FDMA networks, the problem is similar tothat of
wired networks since there are no negative externalities due to interference.
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create congestion in her own access network, due to the overdi-
mensioning of the backbone. The problem can consequently
be reduced to a problem of resource allocation on independent
access networks modeled by a tree structure as in Fig. 2

l1

1 2

3

5

4

76

l2 l4l3

l5 l6

Fig. 2. An access network: arrows represent the users’ pathsto the backbone
network. The thickness of the link is for its capacity.

It is assumed here that the resource of each link can be shared
among users and allocated in whatever proportions2 through
specific protocols. The allocation can be realized using RSVP
[21], [22], a Resource Reservation Protocol scheduled to beap-
plied in the IntServ architecture [23]. IntServ is not likely to be
used in large networks due to the scalability issues it raises, but
thanks to the assumption that the backbone is uncongested, the
complexity is located, and reduced, at the edges of this back-
bone networks, i.e. at access networks. Note that concentrating
the complexity to the edges of the network is similar to Diff-
Serv architecture [24], where it is performed in a more gen-
eral context. Another solution was recently proposed in [25],
where CLAMP, an algorithm for differentiated capacity alloca-
tion by Curtailing the Large TCP Advertised window to Max-
imize Performance, is introduced. This algorithm, which isa
means to allocate the capacity of an access network in any de-
sired proportion, operates closely to a work conserving Round
Robin scheduler with service rates. Implementing the multi-bid
scheme using existing protocols is the subject of a current work.

From our topology assumptions, two interacting trees inter-
act only in the backbone. Since the latter is uncongested, they
have no influence on each other. We therefore consider a tree
network with a setL of links, and denote byQl the finite capac-
ity of link l for l ∈ L. The set of users who may use this access
network is denoted byI. Throughout this paper, we will use
subscripts to refer to players, and superscripts to refer tolinks.
Considering that all players inI do not use all the links inL,
we point out those required by playeri to reach the backbone
network by the binary values

rl
i =

{
1 if player i uses linkl
0 otherwise.

(1)

We also define the route of playeri by ri = (rl
i)l∈L. In the

example of Fig. 2,rl
1 = 1 for l = l1, l2 andrl

1 = 0 for l =

2We assume here the resource of each link infinitely is divisible. This might
seem unrealistic, since for example with TDMA, time slots are indivisible.
However we assume that it is possible to allocate for example0.2 time slot
to a user, giving her one time slot every five frames.

l3, l4, l5, l6 for instance. Notice that iflroot denotes the link
directly connected to the root of the tree, i.e. to the backbone
(lroot = l1 in Fig. 2), thenrlroot

i = 1 for all i ∈ I.

B. User preferences

Since we assume in this paper that users will react to a pricing
scheme so as to maximize selfishly their utility, we will study
our mechanism in the framework ofgame theory[26], and then
talk indifferently of users and players.

We suppose as in [12], [13], [27] that the only performance
measure users are sensitive to is the bandwidth allocated to
them. Of course they are sensitive to the price they are charged
as well. We assume that their preferences are represented by
quasi-linear utility functions. This means that fori ∈ I, user
i’s utility is the difference between her valuationθi(ai) of al-
locationai (her willingness-to-pay) and the priceci that she
actually pays:

Ui = θi(ai) − ci. (2)

The theoretical results derived in this paper are obtained for
players with elastic demand, and smooth valuation functions
such that

Assumption 1:For anyi ∈ I,
• θi is differentiable andθi(0) = 0,
• θ′i is positive, nonincreasing and continuous
• ∃γi > 0, ∀z ≥ 0, θ′i(z) > 0 ⇒ ∀η < z, θ′i(z) ≤ θ′i(η) −

γi(z − η).
Assumption 2:∃κ > 0, ∀i ∈ I,

• θ′i(0) < +∞
• ∀z, z′, z > z′ ≥ 0, θ′i(z) − θ′i(z

′) > −κ(z − z′).
Notice that these assumptions were first introduced in [12]

for the analysis of Progressive Second Price auctions.

III. M ULTI -BID AUCTIONS: MESSAGE PROCESS AND BASIC

DEFINITIONS

In [12], Lazar and Semret introduced the Progressive Sec-
ond Price auctions, suggesting that players should submit two-
dimensional bids of the formsi = (qi, pi): qi represents the
amount of bandwidth that playeri is asking andpi the unit price
that she is accepting to pay to get this quantity. The multi-bid
auction scheme we are going to describe now allows players to
submit simultaneously several such two-dimensional bids.

The message process is as follows. A playeri entering the
game (i.e. establishing a connection) submits a set ofMi two-
dimensional bidssi = {s1

i , ..., s
Mi

i }. In a multi-bidsi, for all
m, 1 ≤ m ≤ Mi, s

m
i is a two-dimensional bid as defined in

the PSP scheme:sm
i = (qm

i , pm
i ) ∈ R

2
+. We assume without

loss of generality that bids are sorted such thatp1
i ≤ p2

i ≤ ... ≤
pMi

i . From themulti-bid profiles = (si)i∈I , the access network
administrator, that we will also name the auctioneer, computes
for each playeri ∈ I the allocationai on playeri’s route and
the priceci she will be charged. To emphasize on playeri’s
multi-bid, we will also sometimes writes = (si, s−i), where
s−i = (sj)j∈I\{i}.

Notice that with that definition of the allocation scheme, no
synchronization is needed as concerns bid submissions: alloca-
tions and prices are recomputed after each departure or arrival
of a user. This implies that a user may obtain some resource
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when entering the auction, and her communication can be mod-
ified if a new user arrives or another one leaves. In [11], Re-
ichl et al suggest the use of a Connection-Holder-is-Prefered-
Scheme (CHiPS) to give users that have a communication under
way a chance to raise their bid. We imagine a similar extension
to our scheme, where user valuations are different if their com-
munication has begun or not; we would therefore consider two
multi-bids for each user: one multi-bidsconnect

i would reflect her
preferences as concerns the beginning of the communication,
and the secondshold

i would reflect her valuation for the commu-
nication in process. Since those considerations do not modify
the theoretical results of this paper, we study the simplestcase
where only one multi-bidsi is submitted.

In the following,S denotes the set of multi-bids that a player
can submit:

S =
⋃

M≥0

(
R

+ × R
+
)M

, with
(
R

+ × R
+
)0

= ∅.

Remark:If player i submits no bid (Mi = 0) then we write
si = ∅.

Definition 1: We say that a playeri ∈ I submits atruthful
multi-bid si ∈ S if si = ∅, or if

∀m, 1 ≤ m ≤ Mi, pm
i = θ′i(q

m
i ).

This means that playeri actually reveals her marginal value
θ′i(qi) if she obtains quantityqi.

We writeST
i the set of truthful multi-bids that can be submit-

ted by playeri.
For every playeri ∈ I, there is a demand function associated

to the valuation functionθi. This demand function gives the
quantityq of resource that playeri would buy if the resource
were sold at a fixed unit pricep, in order to maximize her utility
θi(q) − pq.

Definition 2: Under Assumption 1, thedemand functionof
playeri ∈ I is defined as the function

di(p) =

{
(θ′i)

−1(p) if 0 ≤ p ≤ θ′i(0)
0 otherwise.

Notice that Assumption 1 implies that the demand function
is well-defined and nonincreasing.

To compute allocations and prices, the auctioneer uses two
types of functions for each useri: herpseudo-demand function
and herpseudo-marginal valuation function. Both functions de-
rive from the multi-bidsi submitted by playeri in the following
way:

Definition 3: Consider a playeri ∈ I who has submitted a
multi-bid si ∈ S.
• We call pseudo-demand functionof i associated withsi the
functiond̄i : R

+ → R
+, defined by

d̄i(p) =

{

0 if si = ∅ or pMi

i < p
max

1 ≤ m ≤ Mi

{qm
i : pm

i ≥ p} otherwise.

(3)
• We call pseudo-marginal valuation functionof i, associated
with si, the functionθ̄′i : R

+ → R
+, defined by

θ̄′i(q) =

{
0 if si = ∅ or q1

i < q
max

1 ≤ m ≤ Mi

{pm
i : qm

i ≥ q} otherwise.

(4)

p0

d̄i(p)

s1
i

s2
i

di(p)

s3
i

Prices

Q
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s

q2
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i p3
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Fig. 3. Demand and pseudo-demand functions(left), marginal valuation and
pseudo-marginal valuation functions(right) for Mi = 3 and a truthful multi-
bid.

The demand, pseudo-demand, marginal valuation and
pseudo-marginal valuation functions are illustrated in Fig. 3,
for a truthful multi-bid.

Remark: Both pseudo-demand and pseudo-marginal valua-
tion functions are positive, stair-step, nonincreasing and left-
continuous.

For players who bid truthfully, we can compare the pseudo-
demand and pseudo-marginal valuation functions to their “real”
counterparts:

Lemma 1:Under Assumption 1, if playeri ∈ I submits a
truthful multi-bidsi then

d̄i ≤ di (5)

θ̄′i ≤ θ′i. (6)
Proof: Let x ∈ R

+. If d̄i(x) = 0 thend̄i(x) ≤ di(x) is
trivial, sincedi ≥ 0. If we assume that̄di(x) > 0, thensi 6= ∅
and

d̄i(x) = max
1≤m≤Mi

{qm
i : pm

i ≥ x}

= qm0

i with pm0

i ≥ x

= di(p
m0

i ) ≤ di(x)

where the nonincreasingness ofdi is used. Relation (5) is then
proved.

Relation (6) is established exactly the same way by inverting
the roles of prices and quantities.

Fig. 3 illustrates Lemma 1.
Lemma 1 can also be used to establish some results on the

composition of the pseudo-demand and pseudo-valuation func-
tions:

Lemma 2:∀i ∈ I, ∀si ∈ S,

∀x ∈ R
+, θ̄′i(d̄i(x

+)+) ≤ x (7)

si 6= ∅ ⇒ ∀x ∈ [0, pMi

i ], θ̄′i(d̄i(x)) ≥ x, (8)

where forf : R → R, f(x+) = limz→x,z>x f(z) when the
limit exists.

Lemma 2 is proved in Appendix I, and will be used in the
rest of the paper to establish our main results.

Based on the pseudo-demand functions of all players, the
auctioneer can approximate the total demand function over each
link, in order to determine the level of congestion:

Definition 4: Consider a set of playersi ∈ I, each submit-
ting a multi-bidsi ∈ S. We call aggregated pseudo-demand
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functionassociated with the profiles = (si)i∈I the function
d̄ : R

+ → R
+ defined by

d̄(p) =
∑

i∈I

d̄i(p). (9)

IV. M ULTI -BID AUCTIONS FOR A TREE NETWORK

A. Modified allocation rule for a single link

In [13], we introduced the multi-bid allocation rule for a sin-
gle communication link. This rule implies the computation of a
“pseudo-market clearing price”̄u, which is defined as the high-
est unit pricep such that aggregated pseudo-demand is strictly
above the available capacityQ of the link. Such āu always
existed because the seller introduced a particular bid to ensure
that the resource will not be sold at a unit price below a certain
level, called the reserve price. In this paper, we choose notto
introduce such a reserve price. Consequently, the definition of
the pseudo-market clearing priceū and the allocation rule need
to be extended to the case when the aggregated pseudo-demand
is belowQ (which means that there is no congestion): we there-
fore introduce

ū(s, Q) =

{
max{p : d̄(p) > Q} if d̄(0) > Q
0 if d̄(0) ≤ Q.

(10)

We can now define themodified multi-bid allocationai of a
playeri as

ai(s,Q)=

{

d̄i(ū
+)+ d̄i(ū)−d̄i(ū

+)

d̄(ū)−d̄(ū+)

[
Q− d̄(ū+)

]
if d̄(0)>Q

d̄i(0) if d̄(0)≤Q.
(11)

When the available capacityQ is not high enough to satisfy
pseudo-demand, (10) and (11) ensure that each player receives
the bandwidth asked at the lowest priceū+ such that supply ex-
ceeds pseudo-demand, and that the surplusQ − d̄(ū+) is pro-
portionally shared among users who introduced a bid at price
ū, with weightsd̄i(ū) − d̄i(ū

+).
Notice that (10) and (11) are respectively equivalent to the

definition of the pseudo-market clearing price and the multi-bid
allocation rule in [13] when a reserve price is introduced bythe
seller.

B. Allocation rule for the tree network

The algorithm we introduce here is inspired by the extension
of PSP auctions to a tree network (see [28]). The algorithm
starts from the leaves of the tree, and works toward the root,
computing allocations for each linkl ∈ L using the above mod-
ified multi-bid rule, among the subset of playersIl whose route
includes that link, i.e.Il = {i ∈ I : rl

i = 1}. The idea is to
proceed by revising the multi-bid profile used to compute allo-
cations after having applied the rule (11) in order to take into
account the fact that users are only sensitive to the minimum
amount of bandwidth they obtain on all links toward the root.
The revision of the multi-bid profile ensures that a player will
never obtain more resource at an upstream link than what she
gets at the current one.

Alg. 1 describes in details how allocations should be com-
puted. It returns a vectora = (a1, ..., a|I|) ∈ R

I
+, where we

Alg. 1 Allocations on a tree
Input:

• the tree network defined by the setL of links, and the
capacitiesQl, l ∈ L

• the set of playersI and their routes{ri, i ∈ I}
• the multi-bid profiles.
1) For all playersi ∈ I, define therevised multi-bidsi as

si = si.
2) Pick a leaf-linkl ∈ L (i.e. a link with no downstream

link), and letsIl = (si)i∈Il .
a) Computēul = ū(sIl , Ql)) andal

i = ai(sIl , Ql) for
all i ∈ Il, applying Equations (10) and (11) to the
revised multi-bidssIl , i.e. using the allocation rule
on link l.

b) ∀i ∈ Il, modify the revised multi-bid the following
way:
• setsi = si \ {sm

i : qm
i > al

i}.
• if al

i > 0 andūl > max{pm
i : (qm

i , pm
i ) ∈ si},

then setsi = si ∪ {(al
i, ū

l)} (we takemax{∅} =
−∞).

c) SetL = L \ {l}, i.e. delete linkl from the tree
3) if L 6= ∅ go to2

else returna =
(

alroot

1 , alroot

2 , ..., alroot

|I|

)

omitted the superscriptlroot for simplicity of notation. We then
suggest that each useri ∈ I be allocated the quantity of band-
width ai on each link of her route to the root of the tree (i.e. to
the backbone network).

Notice that the algorithm ends just after the computation of
allocations for the link directly connected to the root of the tree
(link l1 in the example of Fig. 2). The aim of the algorithm
is therefore to judiciously modify the revised multi-bid ofall
players, in order for the allocation rule (11) to have the desirable
properties, i.e. making sure that demand (and then allocation)
on next links cannot exceed the allocation on the current link.
This is done in Step 2b of the algorithm, and Fig. 4 illustrates
that this is equivalent to revising (meaning upper-bounding) the
pseudo-demand̄di of a playeri ∈ Il into di, in the following
way:

di = min(al
i, d̄i). (12)

Consequently, for each playeri ∈ I we have

ai = alroot

i = min{al
i, l ∈ ri}. (13)

Notice that allocations on an intermediate link are computed
locally, and that the only information needed is the revised
multi-bids of all players using that link: each link receives those
revised multi-bids from its downstream links, computes thelo-
cal allocations and the new revised multi-bids, and then trans-
mits them to the link upstream.

C. Example

We illustrate here the allocation rule applied to the network
of Fig. 2, with link capacitiesQl1 = Ql5 = 10, Ql2 = Ql4 = 6,
Ql3 = Ql6 = 4. We assume that∀i, playeri submitsMi = 3
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Fig. 4. Effect of the revision of multi-bids (Step 2b of Alg. 1): multi-bid of
playeri (and associated revised pseudo-demand functions)beforeStep 2b (left)
andafter Step 2b (right), i.e. upper-bounded by the current allocation. Two
cases are presented: the case when playeri submitted a bid at pricēul (top)
and that when playeri did not submit such a bid (bottom).

two-dimensional bids in her multi-bid. At the beginning of the
algorithm (Step 1), the revised multi-bidssi are equal to the
multi-bidssi submitted by the players. Consider seven users as
shown in Fig. 2, submitting the multi-bids of Table I.

s1 s2 s3 s4 s5 s6 s7



(6,6)
(4,8)
(3,9)









(6,5)
(3,7)
(1,8)









(7,2)
(4,5)
(3,6)









(6,4)
(3,5)
(2,6)









(8,4)
(6,5)
(2,7)









(4,1)
(2,2)
(1,4)









(6,3)
(4,4)
(3,6)





TABLE I
THE MULTI -BIDS SUBMITTED BY THE USERS.

There are four leaf-links:l2, l3, l5, l6. Consider linkl2 first.
We haveIl2 = {1, 2}. The computation of the pseudo-market
clearing price gives̄ul2 = 7, and the corresponding allocation
(Eq. (11)) yieldsal2

1 = 4 andal2

2 = 2. After Step 2b of the al-
gorithm, the revised multi-bids of players inIl2 are respectively
s1 = ((4, 8); (3, 9)) ands2 = ((2, 7); (1, 8)). We then remove
link l2 from the tree, following Step 2c of the algorithm.

Doing the same on linksl3, l5 and l6 respectively leads to
the pseudo-market clearing pricesūl3 = 4, ūl5 = 0 andūl6 =
4, and the revised multi-bids are displayed in Table II. Next,

s1 s2 s3 s4 s5 s6 s7
(
(4,8)
(3,9)

)(
(2,7)
(1,8)

)




(7,2)
(4,5)
(3,6)









(4,4)
(3,5)
(2,6)









(8,4)
(6,5)
(2,7)




(
(0.5,4)

)
(
(3.5,4)
(3,6)

)

TABLE II
THE REVISED MULTI-BIDS AFTER THE PROCESSING ON LINKSl2, l3, l5, l6 .

Step 2 of the algorithm is applied to the (remaining) networkof
Fig. 5 with those revised multi-bids. Now the allocation rule

43

l4

l1

6 75

21

Fig. 5. The links that remain to be treated after applying thealgorithm on links
l2, l3, l5, l6.

is applied to linkl4, which has capacityQl4 = 6. Players who
compete for capacity on this link are players5, 6 and7. The
pseudo-market clearing price is̄ul4 = 5, and after Step 2b of
the algorithm, the revised multi-bids that will be used for the
computation of the allocations at linkl1 are given in Table III.

s1 s2 s3 s4 s5 s6 s7
(
(4,8)
(3,9)

)(
(2,7)
(1,8)

)




(7,2)
(4,5)
(3,6)









(4,4)
(3,5)
(2,6)





(
(3,5)
(2,7)

)

∅
(
(3,6)

)

TABLE III
THE REVISED MULTI-BIDS USED TO COMPUTE ALLOCATIONS ON LINKl1 .

Finally, the computation of the pseudo-market clearing price
for link l1 givesūl1 = 6, and the allocations are

a1 a2 a3 a4 a5 a6 a7

4 2 0.75 0.5 2 0 0.75

It can be checked that the capacity constraints of all links are
satisfied with this allocation vector, i.e.∀l ∈ L,

∑

i rl
iai ≤ Ql.

D. Multi-bid pricing rule for a tree network

The pricing rule we choose is highly related to Vickrey-
Clarke-Groves mechanisms [29], [30], [31]: the idea is that
each player should pay for the declared social cost she imposes
on others through her presence (this is called theexclusion-
compensationprinciple, which lies behind second-price mech-
anisms). The expression of the priceci charged to a playeri is
therefore the same as in the single-link case [13]:

ci(si, s−i) =
∑

j∈I,j 6=i

∫ aj(s−i)

aj(s)

θ̄′j(q)dq. (14)

The computation of(aj(s−i))i,j∈I is done during the ap-
plication of Alg. 1: each linkl computes(al

j)j∈Il , taking into
account the whole multi-bid profiles, and at the same time does
the same with the multi-bid profile(s−i)i∈Il .
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On the example of the previous subsection, we obtain the
following prices:

c1 c2 c3 c4 c5 c6 c7

25 12 4.5 3 12 0 4.5
.

Notice that players who do not obtain some resource are not
charged.

E. Computational considerations

This section studies the computational complexity of the
multi-bid scheme. Let us consider a tree networkL, with a
setI of players, their routes(ri)i∈I , and let us fix a multi-bid
profiles. First remark that the total complexity is shared among
all links in the tree, each linkl applying the multi-bid allocation
rule when it receives the revised multi-bid of all players inIl.
We therefore focus on the complexity incurred at a linkl.

• We place ourselves at a linkl, and notice that the revised
multi-bid for each playeri ∈ Il contains less thanMi

two-dimensional bids (Step 2b of Alg. 1 can just reduce
the number of two-dimensional bids insi).
The computation of the aggregated pseudo-demand func-
tion needs the bids to be sorted, which can be done in
time O

(∑

i∈Il Mi log
(∑

i∈Il Mi

))
. Then the computa-

tion of the pseudo-market clearing pricēul can be per-
formed in timeO

(∑

i∈Il Mi

)
. Given ūl, the value of

Ql−d̄(ūl+)

d̄(ūl)−d̄(ūl+)
is computed only once, therefore all alloca-

tions (al
i)i∈Il can be calculated with a total complexity

O(
∑

i Mi) (computing an allocational
i with (11) can be

done with complexityO(Mi)).
• To calculate charges, the computation of allocations must

be done for all profiless−i, i ∈ I. To do this at linkl, we
just need to computeaj(s−i) for all i, j ∈ Il, which leads
to a complexity that is less thanO

(
|Il|∑i∈Il Mi

)
, where

|Il| is the number of players inIl.
• Once all allocationsai(s−j) are calculated (i.e. at link

lroot), a priceci can be computed using (14) with a com-
plexity less than

∑

i Mi, since we integrate a stair-step
function with less thanMi discontinuity points.

Consequently, for each linkl, the computational complexity in-
volved by the multi-bid scheme for a given multi-bid profile is
upper-bounded byO(|Il|∑i∈Il Mi). If all players submit the
same number of bids, (i.e.∀i ∈ I, Mi = M ), then the com-
plexity at each linkl is less thanO(M |Il|2).

Notice that PSP allocations and prices at linkl can be com-
puted with complexityO(|Il|2) (see [16]). Therefore, the com-
putational time for both methods is of the order|Il|2, this being
multiplied by the number of bids for the multi-bid algorithm.
However, the PSP has to compute allocations and prices sev-
eral times (until the equilibrium is reached), and we believe that
even if the convergence of PSP is fast (less thanM iterations),
the gain in signaling overhead is worth the cost in computa-
tional time.

V. GENERAL PROPERTIES OF THE MULTI-BID SCHEME

This section establishes some basic properties of the multi-
bid scheme for a tree network, as extensions of those proved in

[13]. We first introduce some definitions that will play a central
role in the demonstrations:

Definition 5: We denote byūi the highest pseudo-market
price ūl (computed in Step 2a of Alg. 1) among the links used
by playeri:

ūi = max{ūl : rl
i = 1}. (15)

We also definēli as the highest linkl in i’s route such that̄ul
i =

ūi, where the term “highest” is in the sense “most upstream”.
Link l̄i can then be seen as the “most congested link” ini’s
route.
On the example of Subsection IV-C, we haveūi = 7 andl̄i = l2

for i ∈ {1, 2}, whereas̄ui = 6 andl̄i = l1 for the other players.
We can now establish the following result, that bounds the

allocations over playeri’s path.
Property 3:

∀i ∈ I, d̄i(ū
+
i ) ≤ ai ≤ d̄i(ūi) (16)

Property 3 is proved in Appendix II.
The following property states that the allocation of a player i

equals the allocation that was computed by Alg. 1 during Step
2a when processing the most congested link for playeri, i.e. the
link l̄i.

Property 4: ∀i ∈ I,

ai = al̄i
i , (17)

wherel̄i is given in Definition 5.
Proof: The result is trivial if l̄i is the link directly con-

nected to the root of the tree. We now suppose that it is not
the case, and establish by induction thatal

i = al̄i
i for all link l

upstream from̄li, and that after Step 2b of the algorithm at link
l̄i we have

p ≤ ūi ⇒ di(p) = al̄i
i , (18)

wheredi is the revised pseudo-demand function of playeri, i.e.
the pseudo-demand function derived from the revised multi-bid
si.

• Initialization: consider link̄li. Step 2b of Alg. 1, and more
clearly Eq. (12), implies (18).

• If we assume that (18) stands before processing a linkl ∈
ri upstream from̄li, then:

– By definition of ūi (Eq. (15)) we havēul < ūi.
Therefore the induction hypothesis impliesdi(ū

l) ≥
di(ū

l+) = al̄i
i . Since (11) ensures thatdi(ū

l) ≥ al
i ≥

dl
i(ū

l+), thenal
i = al̄i

i .
– Therefore Step 2b will not change the revised pseudo-

demand function, and (18) still holds.
Property 4 is then established by applying (18) to linklroot.

We now give a lemma that will be used for establishing the
main properties of our pricing scheme:

Lemma 5:For every multi-bid profiles, if ūi, i ∈ I are the
maximum pseudo-market clearing prices defined in (15), then
the multi-bid allocationa(s) that Alg. 1 returns maximizes

∑

i∈I

ūiãi

over the setA of allocations̃a ∈ R
|I|
+ satisfying the feasibility

constraints

{
∀l ∈ L,

∑

i∈I rl
iãi ≤ Ql

∀i ∈ I, ãi ≥ 0.
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A proof of Lemma 5 is given in Appendix III.
We then have the following property stating that a player will

not pay more than her declared willingness-to-pay, and thatsub-
mitting a truthful multi-bid always yields a nonnegative utility.
This is an important result, since it implies that selfish users will
always participate in the auction.

Proposition 1: (individual rationality)

∀i ∈ I, ∀s ∈ S|I|, ci(s) ≤
∫ ai(s)

0

θ̄′i(q)dq. (19)

Moreover, if playeri submits a truthful multi-bid (si ∈ ST
i ),

then

ci(s) ≤
∫ ai(s)

0

θ′i(q)dq = θi(ai(s)), (20)

which implies thatUi(s) ≥ 0.
A proof of Proposition 1 is given in Appendix IV.

VI. I NCENTIVE COMPATIBILITY

We now consider the reaction of selfish players that are faced
with this pricing scheme: how can a player maximize her util-
ity? The following proposition establishes that a player cannot
do much better than revealing her true valuation, i.e. than sub-
mitting a truthful multi-bid.

Proposition 2: If a player i ∈ I submits a truthful multi-
bid si 6= ∅, then every other multi-bid̃si (truthful or not) nec-
essarily yields an increase of utility (if any) that is less than
∫ di(ūi)

d̄i(ū
+
i

)
(θ′i(q) − ūi)dq.

Formally,∀si ∈ ST
i , ∀s̃i ∈ S, ∀s−i ∈ S|I|−1,

Ui(si, s−i) ≥ Ui(s̃i, s−i) −
∫ di(ūi)

d̄i(ū
+
i

)

(θ′i(q) − ūi)dq. (21)

A proof of Proposition 2 is provided in Appendix V.
This result is illustrated in Fig. 6 where the shaded area cor-

responds to the maximum utility gain playeri could expect by
submitting a different multi-bid.

P
ric

es

d̄i (ū
+
i )

s1
i

s2
i

s3
i

s4
iθ′i(0)

ūi

di(ūi)

Quantities

p

θ′i(q)

q

Fig. 6. The multi-bidsi = (s1
i
, s2

i
, s3

i
, s4

i
) is optimal for playeri up to the

value
∫

di(ūi)

d̄i(ū
+
i

)
(θ′

i
(q) − ūi)dq of shaded surface

Since the pseudo-market clearing price is necessarily higher
than0, we can therefore also note in Fig. 6 that the quantity

∫ di(ūi)

d̄i(ū
+
i

)

(θ′i(q) − ūi)dq

is always less than

max
0≤m≤Mi

{
∫ di(p

m
i )

di(p
m+1
i

)

(θ′i(q) − pm
i )dq

}

,

wherepMi+1
i = θ′i(0) andp0

i = 0.
This last quantity is the largest shaded area in Fig. 7. Consid-

ering the worst case3, the following proposition is then straight-
forward:

Proposition 3: Under Assumption 1 we have∀i ∈ I, ∀si ∈
ST

i \ ∅, ∀s̃i ∈ S, ∀s−i ∈ S|I|−1,

Ui(si, s−i) ≥ Ui(s̃i, s−i) − Ci, (22)

where

Ci = max
0≤m≤Mi

{
∫ di(p

m
i )

di(p
m+1
i

)

(θ′i(q) − pm
i )dq

}

(23)

with pMi+1
i = θ′i(0) andp0

i = 0.

The quantityCi can somehow be seen as the worst case differ-
ence between real and pseudo valuation. Note thatCi can also
be written

Ci = max
0≤m≤Mi

{
∫ qm

i

q
m+1
i

(θ′i(q) − θ′i(q
m
i ))dq

}

with qMi+1
i = 0 andq0

i = di(0).

p3
i

p1
i

q2
iq3

iq4
i

p4
i

θ′i(q)

qdi(0)

Quantities

P
ric

es

θ′i(0)

p2
i

q1
i

p

Ci

s1
i

s2
i

s3
i

s4
i

Fig. 7. The multi-bidsi = (s1
i
, s2

i
, s3

i
, s4

i
) is optimal for playeri up to a

constantCi, whatever the multi-bids submitted by otherss−i be. Ci is the
surface of the darkest shaded area.

Proposition 3 implies that a player can give a truthful multi-
bid that brings him the best utility possible, up to a valueCi

that can be controlled through the choice of the bidssm
i on the

3It would also be interesting to consider the average case, but this would
imply that each user has ana priori probability distribution on the number of
users and their submitted multi-bids.
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demand curve. One important point is that this value does not
depend on the number of other players, nor on the multi-bid
they submit.

Remark:the incentive compatibility property implies that no
user has an incentive to misbehave. Moreover, even in presence
of such a malicious user, the other rational players would not
have interest in bidding untruthfully.

VII. E FFICIENCY

We prove now that our mechanism provides efficient alloca-
tions. The criterion we consider issocial welfare, i.e. the to-
tal utility of all participants in the game, including the seller
(player 0). Since the seller’s utility is the sum of all prices
U0(s) =

∑

i∈I ci(s), this is equivalent to maximizing the total
valuation of the users

∑

i∈I θi(ai):

∑

i∈I∪{0}

Ui(s) =
∑

i∈I

ci(s)+
∑

i∈I

θi(ai(s))−ci(s)=
∑

i∈I

θi(ai(s)).

The following proposition states that when players bid truth-
fully, this quantity is maximized, which means that the resource
effectively goes to players who value it most.

Proposition 4: If Assumptions 1 and 2 hold, then for every
truthful multi-bid profiles,

max
A

∑

i

θi(ãi) −
∑

i

θi(ai(s)) ≤ Qlroot√

2κ max
i∈I

Ci,

where

A =

{

ã ∈ R
|I|
+ : ∀l ∈ L,

∑

i

rl
iãi ≤ Ql

}

andCi is defined in Eq. (23).
A proof of Proposition 4 is provided in Appendix VI.
Remark:our scheme does not tackle any unfairness issues.

Indeed, social welfare (or efficiency), the performance criterion
considered here, is completely different from fairness measures
(max-min fairness [8] or proportional fairness [9]), sincehere
the resource goes to players who value it most.

However we have some straightforward properties that can
be interpreted as fairness properties, such as:

• if players i andj have the same position in the network
and submit the same multi-bid, then their allocation and
charge are the same:ai = aj , ci = cj .

• if a playeri uses all the links that playerj uses (i.e. player
i is in a subtree rooted at the position ofj) and those two
players submit the same multi-bids, thenai ≤ aj.

VIII. W HICH BIDS SHOULD BE SUBMITTED?

This section follows the same principles as for the case of a
single link. We assume that a useri intends to ensure a utility
as close as possible to the maximum. According to the user’s
knowledge of the bandwidth demand, there are two different
possibilities:

• players may have beliefs (meaninga priori probability dis-
tributions, as in [32]) on the number of users in the game
and on their preferences. From this knowledge, a prob-
ability distribution of the pseudo-market pricēu can be

computed. Note that this way, the auction is a game with
population uncertainty [33]. The best strategy for useri
is then to use Proposition 2 to choose her bids so as to

minimize E

[∫ di(ūi)

d̄i(ū
+
i )

(θ′i(q) − ūi)dq
]

. However, estimat-

ing such a distribution on the pseudo-market price may
imply high cost for information-gathering and market ap-
praisal [29].

• The alternative possibility, that we will adopt in the rest
of the paper, assumes that players have no prediction of
the pseudo-market price. Then, in order to be as close as
possible to the optimum, independently of the multi-bid
profile, a natural goal is to minimize the quantityCi of
Proposition 3. We further assume here that the number
of bids Mi is fixed (as will be discussed in Section IX):
indeed, if playeri is allowed to submit as many bids as
she wants in her multi-bid, then submitting a numberMi

of bids as large as possible will makeCi close to zero, but
this will increase the required message process, which the
auctioneer will prevent. AssumingMi fixed, the multi-bid
(s1

i , ..., s
Mi

i ) that minimizesCi is such that∀m, n, 0 ≤
m, n ≤ Mi,
∫ di(p

m
i )

di(p
m+1
i

)
(θ′i(q) − pm

i )dq =
∫ di(p

n
i )

di(p
n+1
i

)
(θ′i(q) − pn

i )dq

with pMi+1
i = θ′i(0) andp0

i = 0,

i.e., considering equal values of
∫ di(p

m
i )

di(p
m+1
i

)
(θ′i(q) − pm

i )dq

∀m will minimize the corresponding value ofCi. In the
following, we will call quantile uniformthis bid reparti-
tion. An example of quantile uniform repartition of bids is
presented in Fig. 8.

θ′i(0)

P
ric

es

θ′i(q)

qdi(0)

Quantities

p

s1
i

s3
i

s4
i

s2
i

Fig. 8. Quantile uniformrepartition of bids forMi = 4: the five shaded zones
have the same surfaceCi.

Example:For parabolic valuation functions, i.e. of the form

θi(q) = αi

[
−(q ∧ q̄i)

2/2 + q̄i(q ∧ q̄i)
]

with parametersαi and q̄i, the marginal valuation function is
linear:

θ′i(q) = αi [q̄i − q]
+

.

The quantile uniform repartition of bids is then easy to com-
pute: pricespm

i , 1 ≤ m ≤ Mi are such that

pm
i = m

θ′i(0)

Mi + 1
= m

αiq̄i

Mi + 1
.
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IX. D ETERMINATION OF THE NUMBER OF BIDS ADMITTED

BY THE AUCTIONEER

According to what we said in previous sections, we assume
that the auctioneer imposes the number of bids for all players
i ∈ I to be fixed. We further assume that it is the same value
M for all players and that the players choose their multi-bid
according to the quantile uniform distribution previouslyde-
scribed.

In order to help the auctioneer in fixing the value ofM , we
introduce acost functionC(M, I) that models the negative ef-
fects that are the signaling overhead, the memory storage and
the complexity of all underlying allocation and price computa-
tions for a corresponding value ofM . The auctioneer benefit
can then be computed asB(M, I):

B(M, I) =
∑

i∈I

ci − C(M, I),

where allocations and prices correspond to the situation when
each user submits exactlyM bids.

Since the auctioneer has noa priori knowledge of the exact
set of users competing for bandwidth, we assume that those
users come from a setT of possible player types, characterized
by their valuation function (in other words, a type-t player has
valuation functionθ(t)). The auctioneer is assumed to know
the distribution of number of players of each type byPT on
N

T . Therefore, the expected revenueEI [RM ] can be computed
when players submitM bids by

EI [RM ] = EI

[
∑

i∈I

ci

∣
∣
∣M

]

=

∫

I∈NT

(
∑

i∈I

ci

∣
∣
∣M

)

dPT (I).

The following proposition shows that there exists an optimal
value ofM :

Proposition 5: If the marginal valuation functions
(

θ′(t)

)

t∈T
are uniformly bounded by a valuepmax (that

is ∀t ∈ T , θ′(t)(0) ≤ pmax), and if the expected cost

EI [C](M) =
∫

I∈NT C(M, I)dPT (I) is nondecreasing, and
tends to infinity whenM tends to infinity:

lim
M→+∞

EIC(M) = +∞,

then there exists a finiteM that maximizes the expected net
benefit of the seller, i.e. that maximizes

EI

[
∑

i∈I

ci

∣
∣
∣M

]

− EI [C(M, I)] .

Proof: Applying Proposition 1, we have∀I, ∀M,

∑

i∈I

ci ≤
∑

i∈I∪{0}

θi(ai) ≤
∑

i∈I∪{0}

aiθ
′
i(0)

≤ pmax

∑

i∈I∪{0}

ai = pmaxQ.

ConsequentlyEI

[∑

i∈I ci

∣
∣M
]

≤ pmaxQ for all M ∈ N.
Therefore

lim
M→+∞

EI

[
∑

i∈I

ci − C(M, I)
∣
∣
∣M

]

= −∞,

which ensures us that there exists a finiteM that maximizes the
expected net benefitEI

[∑

i∈I ci

∣
∣M
]
− EI [C(M, I)].

The assumption thatlimM→+∞ EIC(M) = +∞ seems in-
tuitive: if we account for memory costs,C(M, I) = M |I|, so
the assumption is verified as soon asEI [|I|] > 0; if we account
for computation costs as in Subsection IV-E or signaling costs,
it is verified as well.

Finally, note that if the expected net benefit is nonpositivefor
all M ≥ 1, organizing the auction is too expensive for the seller
of the resource, so thatM = 0, i.e. she will prefer not to sell
the resource.

X. CONCLUSIONS AND PERSPECTIVES

This paper describes how multi-bid auctions can help in
pricing and allocating bandwidth among Internet users. It as-
sumes that the core network is over-provisioned, and then un-
congested, so that congestion occurs only in access networks,
which are assumed to have a tree structure. Resource is allo-
cated first to those who value it most, and the second price prin-
ciple is used to compute the charge for each user. The resulting
pricing scheme is proved to be individually rational, incentive
compatible and efficient (by optimizing the overall utility). The
results extend those in [13] for the case of a single link.

Multi-bids present the advantage of being a one-shot scheme
so that users submit bids only once, and do not need any knowl-
edge of the bid profile when choosing their optimal bids. The
signaling complexity is thus limited. Also, the scheme adapts
itself easily and quickly to changes of conditions in the access
network (when customers arrive or leave) without any loss of
efficiency. Its drawbacks are the fact that resource reserva-
tion/differentiation has to be applied, and more importantly, it is
not in its current form applicable to a network of general topol-
ogy. These two drawbacks have to be tackled:

• the implementation of the scheme is under investigation
in our group. We consider several options as indicated in
Section II: either by using RSVP, like in IntServ, since
the complexity is located at each access network (or at the
edge of the network) so that the scalability issue should
not be a big concern, or using DiffServ architecture or
CLAMP algorithm to differentiate services among users.

• As direction for future research, we would like to ap-
ply multi-bid auctions to a general network topology, but
this requires further attention if we wish to apply it in
a distributed manner. In that case, an algorithm with a
convergence phase seems unavoidable since the auctions
conduced on all links may be related and influence each
other. We are currently studying mechanisms based on the
tremendous work of Kellyet al [9] and Low and Laps-
ley [34], that would take into account the fact that such
schemes form a sequential game, which raises problems
in terms of incentives.
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APPENDIX

I. PROOF OFLEMMA 2

Proof: We first notice that̄di(.
+) andθ̄′i(.

+) can respec-
tively be written the following way:
∀i ∈ I, ∀si ∈ S, ∀x, y ∈ R

+,

d̄i(x
+)=

{

0 if si = ∅ or pMi

i ≤ x,
max

1 ≤ m ≤ Mi

{qm
i : pm

i > x} otherwise.

θ̄′i(y
+)=

{
0 if si = ∅ or q1

i ≤ y,
max

1 ≤ m ≤ Mi

{pm
i : qm

i > y} otherwise.

We focus here on (7):
• if si = ∅ thenθ̄′i(.) = 0 ≤ x, and (7) is verified.
• If si 6= ∅ andpMi

i ≤ x, (7) comes from̄θ′i(.) ≤ pMi

i .
• If si 6= ∅ andpMi

i > x then

d̄i(x
+) = max

1≤m≤Mi

{qm
i : pm

i > x}. (24)

Now let us assume that̄θ′i(d̄i(x
+)+) > x and see that we

arrive at a contradiction. The fact thatθ̄′i(d̄i(x
+)+) > 0 implies

that we are in the case when

θ̄′i(d̄i(x
+)+) = max

1≤m≤Mi

{pm
i : qm

i > d̄i(x
+)}.

Sinceθ̄′i(d̄i(x
+)+) > x,

∃m1, 1 ≤ m1 ≤ Mi :







sm1

i = (qm1

i , pm1

i ) ∈ si

pm1

i = θ̄′i(d̄i(x
+)+) > x

qm1

i > d̄i(x
+).

We now remark that this contradicts the definition ofd̄i(x
+)

(Eq. (24)). Therefore (7) is verified.
Now we establish (8). By definition, d̄i(x) =

max1≤m≤Mi
{qm

i : pm
i ≥ x}. This means that there exists

m0 ≤ Mi such thatd̄i(x) = qm0

i andpm0

i ≥ x.
Consequently we have

θ̄′i(d̄i(x)) = max
1≤m≤Mi

{pm
i : qm

i ≥ qm0

i } ≥ pm0

i ≥ x,

which gives (8).

II. PROOF OFPROPERTY3

Proof: Equations (10) and (11) imply that for all linkl
such thatrl

i = 1 we have

dl
i(ū

l+) ≤ al
i ≤ dl

i(ū
l), (25)

wheredl
i is the revised pseudo-demand function of playeri for

link l just before Step 2a of the algorithm, i.e. the pseudo-
demand function associated to the multi-bidsi.

Applying (13) and the fact that revised pseudo-demand func-
tions are lower than the original pseudo-demand function (from
(12)), we have for each linkl such thatrl

i = 1,

ai ≤ dl
i(ū

l) ≤ d̄i(ū
l).

This inequality holds for alll ∈ ri, thereforeai ≤ d̄i(ūi).

Now let us establish the right-hand side of (16). Equations
(13) and (25) yield

ai = min
l∈ri

al
i ≥ min

l∈ri

dl
i(u

l+
i )

≥ min
l∈ri

dl
i(u

+
i ), (26)

where we have used the nonincreasingness of revised pseudo-
demand functions.

We now prove by induction that

p > ūi ⇒ ∀l ∈ ri, dl
i(p) = d̄i(p) : (27)

• (27) holds at the beginning of the algorithm sincesi = si

(the revised pseudo-demand equals the pseudo-demand).
• Assume (27) holds just before Alg. 1 processes the al-

location on linkl. The definition ofūi implies that Step
2a will determine a local pseudo-clearing priceūl ≤ ūi.
Then after Step 2b we have forp > ūl:

di(p) = min(al
i, d̄i(p)). (28)

The induction hypothesis and (25) imply thatal
i ≥

dl
i(ū

l+) ≥ dl
i(ū

+
i ) ≥ dl

i(p) = d̄i(p), since the revised
pseudo-demand functions are nonincreasing.

Relation (27) is then established, and gives in particular
dl

i(u
+
i ) = d̄i(u

+
i ). This last result together with (26) concludes

the proof of the property.

III. PROOF OFLEMMA 5

Proof: We first define fori ∈ I andx ≤ ūi,

l̄i(x)
∆
= the highest linkl in i’s route such that̄ul ≥ x (29)

For every userj ∈ I whose route includes link̄li(x), we
know from the definition of̄uj that ūj ≥ ūl̄i(x) ≥ x, mean-
ing that l̄i(x) is abovel̄j(ūj) in the tree. Note that “above”
means that either̄li(x) = l̄j(ūj) or l̄i(x) is a link upstream
from l̄j(ūj).

From Property 4, and the fact that the allocation cannot in-

crease along the path,a
l̄i(x)
j = a

l̄j
j = aj . Thus if x > 0 we

have ∑

j∈I

r
l̄i(x)
j aj =

∑

j∈I

r
l̄i(x)
j a

l̄i(x)
j = Ql̄i(x), (30)

as a direct consequence of (11) when the pseudo-market clear-
ing price is strictly positive. This means that the capacityof the
links in {l̄i(x) : i ∈ I, x ∈ (0, ūi]} is completely allocated.

Now consider two playersi, j ∈ I andx ∈ (0, ūi]:

• if r
l̄i(x)
j = 1, then we know that every linkl abovel̄i(x)

verifiesūl < x, thanks to the definition of̄li(x), leading
to l̄j(x) = l̄i(x).

• if l̄j(x) = l̄i(x) thenr
l̄i(x)
j = 1 sincel̄j(x) is by definition

on playerj’s route toward the root of the tree.
Consequently we can write

∀i, j ∈ I, ∀x ∈ (0, ūi], r
l̄i(x)
j = 1 ⇔ l̄j(x) = l̄i(x). (31)
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For any allocatioña ∈ A andx > 0, we have
∑

i:ūi≥x

(ai − ãi) =
∑

l:∃i∈I,l̄i(x)=l

∑

j:l̄j(x)=l

(aj − ãj)

=
∑

l:∃i∈I,l̄i(x)=l

∑

j∈I

rl
j(aj − ãj)

︸ ︷︷ ︸

≥0 from (30) and̃a∈A

,

where the second line comes from (31). Therefore

∀x > 0, ∀ã ∈ A,
∑

i:ūi≥x

(ai − ãi) ≥ 0. (32)

To complete the proof of the lemma, we sort the maxi-
mum pseudo-market clearing prices{ūi, i ∈ I} in a descend-
ing order: ū(1) > ū(2) > ... > ū(K), and defineD(k) =
∑

i:ūi≥ū(k)
(ai − ãi). Equation (32) implies thatD(k) ≥ 0 for

all k such that̄u(k) > 0, and consequently for allk ≤ K − 1
sinceū(K) ≥ 0.

If we introduceD(0) = 0, we have

∑

i∈I

ūi(ai − ãi) =
K∑

k=1

ū(k)

∑

i:ūi=ū(k)

(ai − ãi)

=

K∑

k=1

ū(k)

(
D(k) − D(k−1)

)

= ū(K)D(K) +

K−1∑

k=1

(ū(k) − ū(k+1))D(k)

≥ 0

since all the terms in the sum are nonnegative, and
• if ū(K) = 0 thenū(K)D(K) = 0
• if ū(K) > 0 then we haveD(K) ≥ 0 and consequently

ū(K)D(K) ≥ 0.
Lemma 5 is then proved.

IV. PROOF OFPROPOSITION1

Proof: We first establish that∀I, ∀s ∈ S|I|, ∀j ∈ I, ∀y ∈
R

+,
∫ aj(s)

y

θ̄′j ≥ ūj(aj(s) − y), (33)

whereūj is the highest pseudo-market clearing price on user
j’s route, as defined in (15).

This comes from the fact that̄θ′j is left-continuous and non-
increasing, and from (16) and Lemma 2:
• If y ≤ aj(s), then

∫ aj(s)

y

θ̄′j ≥ θ̄′j(aj(s))
︸ ︷︷ ︸

≥θ̄′

j
(d̄j(ūj))

(aj(s) − y)
︸ ︷︷ ︸

≥0

≥ ūj(aj(s) − y).

• If y > aj(s), then
∫ aj(s)

y

θ̄′j ≥ θ̄′j(aj(s)
+)

︸ ︷︷ ︸

≤θ̄′

j
(d̄j(ū

+
j

)+)

(aj(s) − y)
︸ ︷︷ ︸

<0

≥ ūj(aj(s) − y).

To prove Proposition 1, we apply (33) withy = aj(s−i) and
get

ci(s) =
∑

j∈I\{i}

∫ aj(∅,s−i)

aj(s)

θ̄′j

≤
∑

j∈I\{i}

ūj(aj(∅, s−i) − aj(s)). (34)

Furthermore, from Lemma 5 we have
∑

j∈I

ūj(aj(∅, s−i) − aj(s)) ≤ 0,

which implies that
∑

j∈I\{i} ūj(aj(∅, s−i) − aj(s)) ≤ ūiai,
and therefore

ci(s) ≤ ūiai.

The end of the proof works like the proof of the individual
rationality in the single-link case [13]:

• if ai(s) = 0 thenci(s) ≤ 0 and (19) is established.
• if ai(s) > 0 then necessarilȳdi(ūi) > 0 (Eq. (16)), so

we havesi 6= ∅ and pMi

i ≥ ūi. Lemma 2 thus gives
θ̄′i(d̄i(ūi)) ≥ ūi. The nonincreasingness ofθ̄′i and the in-
equalityai(s) ≤ d̄i(ūi) imply that

∫ ai(s)

0

θ̄′i ≥ ai(s)θ̄
′
i(ai(s)) ≥ ai(s)θ̄

′
i(d̄i(ūi)) ≥ ai(s)ūi,

giving (19).
Relation (20) is a straightforward consequence of (19) and

Lemma 1.

V. PROOF OFPROPOSITION2

Proof: Following the lines of [13], we consider two multi-
bids: a truthful multi-bidsi and another onẽsi, not necessarily
truthful, for useri. The difference of charges is

ci(s̃i, s−i) − ci(s) =
∑

j∈I\{i}

∫ aj(s)

aj(s̃i,s−i)

θ̄′j

≥
∑

j∈I\{i}

ūj(aj(s) − aj(s̃i, s−i)) (35)

where we used (33).
On the other hand, consider the difference of valuations

Dθi
:= θi(ai(s)) − θi(ai(s̃i, s−i)).

We distinguish several cases:
• if ai(s) > ai(s̃i, s−i), then

Dθi
=

∫ ai(s)

ai(s̃i,s−i)

θ′ ≥
∫ ai(s)

ai(s̃i,s−i)

θ̄′i

≥ ūi(ai(s) − ai(s̃i, s−i))

from inequalities (6) and (33).
• If ai(s) ≤ ai(s̃i, s−i) andūi ≥ θ′i(0), then

Dθi
=

∫ ai(s)

ai(s̃i,s−i)

θ′ ≥ θ′i(0)(ai(s) − ai(s̃i, s−i))

≥ ūi(ai(s) − ai(s̃i, s−i)).
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• If ai(s) ≤ ai(s̃i, s−i) andūi < θ′i(0), thenθ′i(di(ūi)) =
ūi and

Dθi
= θi(ai(s)) − θi(di(ūi)) +

+θi(di(ūi)) − θi(ai(s̃i, s−i))

≥
∫ ai(s)

di(ūi)

(θ′i(q) − ūi)dq + ūi(ai(s) − di(ūi)) +

+ūi(di(ūi) − ai(s̃i, s−i))

≥
∫ d̄i(ū

+
i

)

di(ūi)

(θ′i(q) − ūi)dq + ūi(ai(s) − ai(s̃i, s−i))

where the last line comes from (16) and from the fact that
θ′i(q) − ūi ≥ 0 for all q ≤ di(ūi).

Finally we always have

Dθi
≥ ūi(ai(s)− ai(s̃i, s−i))−

∫ di(ūi)

d̄i(ū
+
i

)

(θ′i(q)− ūi)dq. (36)

To conclude the proof, from (35) and (36), we get

Ui(s) − Ui(s̃i, s−i) = Dθi
+ ci(s̃i, s−i) − ci(s)

≥ −
∫ di(ūi)

d̄i(ū
+
i

)

(θ′i(q) − ūi)dq +

+
∑

j∈I

ūj(aj(s) − aj(s̃i, s−i))

≥ −
∫ di(ūi)

d̄i(ū
+
i

)

(θ′i(q) − ūi)dq,

where we applied Lemma 5.

VI. PROOF OFPROPOSITION4

Proof: First notice that if Assumptions 1 and 2 hold, then
∀i ∈ I, ∀e, f : 0 < e ≤ f ≤ θ′i(0),

di(e) − di(f) ≥ f − e

κ
. (37)

Consider a playeri ∈ I such thatai(s) > 0. Sinceai(s) ≤
d̄i(ūi), we havedi(ūi) ≥ d̄i(ūi) > 0. Thusθ′i(di(ūi)) = ūi,
and

θ′i(ai(s)) ≥ θ′i(d̄i(ūi)) ≥ θ′i(di(ūi)) = ūi. (38)

On the other hand, we have

θ′i(ai(s)) ≤ θ′i(d̄i(ū
+
i )). (39)

• If θ′i(0) ≤ ūi thenθ′i(ai) ≤ ūi.
• If θ′i(0) > ūi then

θ′i(d̄i(ū
+
i )) = min

1≤m≤Mi+1
{pm

i : pm
i > ūi}

≤ ūi + max
0≤m≤Mi

(pm+1
i − pm

i ). (40)

with pMi+1
i = θ′i(0) andp0

i = 0.

Now we remark that for allm, 0 ≤ m ≤ Mi

∫ di(p
m
i )

di(p
m+1
i

)

(θ′i(q) − pm
i )dq =

∫ p
m+1
i

pm
i

(di(p) − di(p
m+1
i ))dp

≥
∫ p

m+1
i

pm
i

pm+1
i − p

κ
dp

≥ (pm+1
i − pm

i )2

2κ

where the second line comes from (37).
Finally, (23) implies that∀m, 0 ≤ m ≤ Mi, pm+1

i − pm
i ≤√

2κCi. Therefore (39) and (40) give

θ′i(ai(s)) ≤ ūi +
√

2κCi.

DefineA =
{

ã ∈ R
|I|
+ :

∑

i ãi ≤ Q
}

, and take anỹa ∈ A.

Let I+ = {k : ãk ≥ ak(s)} andI− = {k : ãk < ak(s)}. For
i ∈ I−, we haveak(s) > ãk ≥ 0, and therefore (38) implies
θ′i(ai(s)) ≥ ūi. Applying (40), we then have

∑

i θi(ãi) − θi(ai(s))

≤
∑

I+

θ′i(ai(s))(ãi − ai(s)) −
∑

I−

θ′i(ai(s))(ai(s) − ãi)

≤
∑

i

ūi(ãi − ai(s)) +
∑

I+

√

2κCi(ãi − ai(s))

≤ Qlroot√

2κ max
i∈I

Ci,

where we used Lemma 5. The proposition is then established.
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