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Abstract

We provide an overview of recent research that has been conducted on the design of
sponsored search auctions. We mainly focus on game theoretic and mechanism design
aspects of these auctions, and we analyze the issues associated with each of the three
participating entities, i.e. the search engine, the advertisers, and the users of the search
engine, as well as their resulting behavior. Regarding the search engine, we overview the
various mechanisms that have been proposed including the currently used GSP mechanism.
The issues that are addressed include analysis of Nash equilibria and their performance,
design of alternative mechanisms and aspects of competition among search engines. We
then move on to the advertisers and discuss the problem of choosing a bidding strategy,
given the mechanism of the search engine. Following this, we consider the end users and
we examine how user behavior may create externalities and influence the performance
of the advertisers. Finally, we also overview statistical methods for estimating modeling
parameters that are of interest to the three entities. In each section, we point out interesting
open problems and directions for future research.

1 Introduction

Online advertising is a booming industry, accounting for a large percentage of the revenue
generated by web services [50]. Online ads are essential to monetize valuable internet services,
offered free to the general public, like search engines, blogs, and social networking sites. They
have potential benefits for the advertisers, who can observe the results of their campaign
within days or even hours; at the same time, they enhance the user experience by facilitating
search and commerce decisions. The enhancement of the search experience provided by online
advertising represents a key example of the welfare-increasing role played by search agents for
time-constrained consumers [65].

∗Institut Telecom; Telecom Bretagne, France. Email: patrick.maille@telecom-bretagne.eu.
†Athens University of Economics and Business, Department of Informatics, Athens, Greece. Emails:

{markakis, gstamoul}@aueb.gr.
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Originally, the only form of online advertising available was in the form of banner ads: the owner
of a website and the advertiser would agree on a payment to display the ad a fixed number of
times. In the last decade, the most popular advertising method has become sponsored search,
which represents a very profitable market for search engines. The idea behind sponsored search
is that. for queries with commercial interest (e.g., “digital camera”), Google, Yahoo!, Bing,
and other search engines allow a certain number of ads to be displayed on the top or on the
side of the search (organic) results. Typically, there are up to three links above the organic
results (these are the mainline slots), and up to eight links beside the organic results (sidebar
slots). The main advantage of such ads is that an advertiser is displaying his ad to users who
have expressed interest for the specific keywords included in the query and are therefore more
likely to be interested in his product.

The selection of the ads to be displayed is done by means of an auction, which we describe
below. There are three different charging schemes that can be considered for the selected ads:
1) the Pay-Per-Impression (PPI) model, where each advertiser is charged every time his ad is
displayed, 2) the Pay-Per-Click (PPC) model, where the advertiser is charged only when a user
clicks on the ad, 3) the Pay-Per-Transaction (PPT) model, where the advertiser is charged
when the click results in a conversion, i.e., a purchase by the user. The most popular model
that is being used in almost all sponsored search auctions is the Pay-Per-Click model, and our
survey will focus on that.

In order to design a sponsored search auction, we first need a rule that ranks the bidders
and thus determines the allocations of the available slots to the ads. The ranking rule has
to compute a score for each bidder, and rank bidders in decreasing order, according to that
score. Throughout the history of sponsored search auctions, the score has varied from being
simply the bid of each bidder to being a function of the bid and possibly of other parameters,
most notably the Click-Through-Rate (CTR). The CTR of an ad is the probability that a
user will click on the ad, and can be affected by the ad itself (due to the content of the text
being displayed and/or the identity of the advertiser), the slot that the ad is occupying (higher
slots typically receive more clicks), and several other factors, such as the presence of other
competing advertisers. The two most frequently used ranking rules are

• the rank-by-bid policy, where the bidders submitting the k largest bids win the k slots
in the order of their bids, and

• the rank-by-revenue policy, where each bid bi is weighted by a quality score wi of adver-
tiser i, which reflects the probability that a user will click on the ad of advertiser i. The
rationale is that ranking only by the bid may lead to displaying ads with very low prob-
ability of attracting clicks and therefore lowering the total revenue of the search engine.
On the contrary, the rank-by-revenue rule takes into account the expected revenue from
each bidder. After sorting the advertisers by the product wjbj , the k highest advertisers
get the k slots accordingly.

The ranking rule is complemented by the payment (pricing) rule, determining the amount that
a bidder being allocated a certain slot for his ad will ultimately have to pay upon receiving a
click. Back in 1997, when sponsored search auctions were launched by Overture (then GoTo;
now part of Yahoo!), the allocation rule was ranking by bid and the payment rule was the
first price one: any advertiser winning a slot would pay an amount equal to his bid. As this
mechanism was gradually recognized to be unstable (it led to cycling bidding patterns and low



revenues, see e.g. [30]), search engines switched, starting with Google in 2002, to the so-called
Generalized Second Price (GSP) auction that we describe in the next section.

The definition of an auction mechanism is therefore the joint choice of a ranking rule and a
pricing rule. Note, for example, that Yahoo! originally used first-price payments with bid-based
ranking, then switched to GSP with bid-based ranking rule, and finally to GSP with revenue-
based ranking rule. For more on the history of keyword auctions see [31]. For an earlier survey
on sponsored search markets see [60]. In the present survey, and since the related literature
is by now so extensive, we have decided to focus more on the game theoretic aspects of these
auctions and the theoretical analysis of the corresponding games. We also present empirical
and experimental observations and findings, serving either as motivation for the theoretical
work or as an alternative means of extracting properties for the mechanisms.

The rest of the survey is structured as follows: we devote one main section to each of the
interacting parties in sponsored search auctions, namely the search engine itself (Section 2),
the advertisers who play the role of the bidders in the auction (Section 3), and the search
engine users (Section 4). For each of them we discuss their interests and focus on modeling
the important parameters that affect their overall utility or gain. Finally, Section 5 focuses on
statistical techniques that can be applied by any of the involved entities to estimate unknown
parameters, such as the valuation of other bidders (i.e., the price they are willing to pay to
obtain a slot) or the CTRs.

Before we proceed, we briefly recall the main principles of the most popular auction scheme
currently in place: the GSP.

1.1 The GSP mechanism

We describe here formally the Generalized Second Price (GSP) mechanism, that is being used
in practice by the major search engines.

First, we introduce some notation. Assume that there is a set N = {1, ..., n} of n advertisers,
who compete for a set K = {1, ..., k} of k slots, where slot 1 indicates the slot on the top of
the list and slot k is the slot on the bottom of the list. Typically, we have n > k. We will
consider only the sidebar slots and ignore the slots on the top of the organic results. As already
mentioned, we assume that Pay-Per-Click is employed. For each advertiser i, his valuation, vi,
expresses the maximum price per click he is willing to pay. When participating in the auction,
advertiser i submits a bid bi that may differ from the actual valuation. Submitting a bid bi
guarantees to advertiser i that he will not be charged a price higher than bi per click. Moreover,
an important parameter in the context of sponsored search auctions is the click-through-rate
(CTR), interpreted as the probability that a given ad will be clicked when displayed. The
CTR can be decomposed in different parts. We assume that, for each slot s, there is a slot-
dependent parameter θs, denoting the probability that a user will click on an ad on slot s; this
is often referred to as the CTR of the slot. Also, for every bidder i, there is a bidder-dependent
parameter qi, which is the CTR of bidder i, i.e., the probability that a user will click on an ad
of bidder i. In this survey, with the exception of Section 4, we assume that the overall CTRs
are separable: the probability that an ad of advertiser i, occupying slot s, receives a click is
qiθs. Note, however, that the exact meaning of the term CTR will follow from the context.
The statistical estimation of the CTR values from observations of user behaviors is addressed
in Subsection 5.2. For the rest of the sections, we consider the CTR values as determined.



Bidder Bid Q Score Rank Rank Price Price
by bid by rev by bid by rev

1 9.62 0.07 5 4 - -
2 10.47 0.05 2 5 10.45 -
3 10.45 0.09 3 1 9.68 9.68
4 10.64 0.08 1 3 10.47 8.42
5 9.68 0.09 4 2 - 9.46

Table 1: Example of slot allocation and pricing

The GSP pricing rule then charges each bidder the minimum bid value he could have offered
to be assigned the same slot. In practice, if an advertiser obtains slot s, his charge equals the
bid that would have had him exactly draw the advertiser in slot s+ 1 in the current ranking,
plus possibly a very small constant ε1.

Depending on the ranking rule selected, GSP auctions thus give the following:

• With a rank-by-bid policy, the winner of a slot s ≤ k is charged a price b(s+1) + ε for
each click, where b(s) is the s-th largest bid (hence, it is submitted by the bidder who
wins the slot s).

• With a rank-by-revenue rule, each bidder that gets a slot pays again the amount that
would be necessary to bid to keep his current position. Hence, for the advertiser who
obtained slot s, the payment ps should satisfy the inequality wsps ≥ ws+1b(s+1). The
minimum price resulting from that inequality is

ps =
ws+1b(s+1)

ws
+ ε,

where ws is the quality weight of the slot, representing its attractiveness. In the remaining
of our survey we will take ε = 0, as this is not an important parameter of the mechanism.
This rule was introduced by Google in 2002; at that time ws was taken to be equal
to the estimated CTR qs of the slot s won by the advertiser. The latter approach can
be generalized by considering the quality weight to be equal to a power of the CTR.
This form of functional dependence makes it easier to remove irrelevant advertisements,
i.e., advertisements with low CTR though accompanied by high bids [64] (as irrelevant
ads diminish the trust of customers and are therefore undesirable). At present, however,
Google’s quality score does not depend just on the CTR but also on other qualities of the
advertiser, including also the text of the ad. The exact method of determiningthe quality
score is not publicly available. In 2007 the revenue-based ranking rule was adopted also
by Yahoo! and Microsoft Live (now Bing).

The impact of the ranking rule can be grasped by considering the simple example in Table 1,
where 5 bidders compete for 3 slots, and the quality score depends on the advertiser only.

It should be also noted that there are several details involved in the practical application of the
above rules; e.g., bids for ads that appear to be of low relevance or quality can be excluded,
or be subject to higher reserve prices; see [58].

1The exact value of ε is provided by every search engine for every currency. It usually equals ε = 0.01.



Finally, we would like to stress that sponsored search auctions take place within an ecosystem
involving stakeholders with different interests. Namely, search engines wish to attract both
users and advertisers to maximize revenue, while advertisers submit bids in the hope of reaching
users to finalize sales and users are sensitive to the quality of the results displayed by the search
engines. Those three types of actors interact, and their respective utility (payoff) criteria and
strategic decisions are summarized in Table 2. Note moreover that there are several advertisers,
as well as possibly several search engines in competition. Since those actors can reasonably be
assumed to behave selfishly, game theory seems an appropriate tool to study their interactions.
In the next sections, we concentrate on each of the three types of participants (search engines,
advertisers, and users).

Type of actor Objective function (utility) Strategic decisions

Search engines Revenue from the auction

Number of slots to display

Auction scheme

∣∣∣∣∣∣∣∣
ranking rule
pricing rule
charging scheme
reserve price

Advertisers
Net revenue

(sales minus advertising budget)

Bidding budget
Bid repartition among search engines
Bid level

Users
Relevance of the organic

and sponsored search answers
Search engine selection

Table 2: The stakeholders involved in sponsored search auctions, with their utilities and strate-
gic decisions.

2 The search engine’s view and interests

In this section, we focus on topics that are of interest to the auctioneer, i.e., the search engines.
We start with an analysis of the Nash equilibria of the GSP mechanism, and a study of their
properties (Sections 2.1 and 2.2). We then discuss the design of alternative mechanisms (Sec-
tion 2.3), the impact of reserve prices on revenue (Section 2.4) as well as aspects of competition
between search engines (Section 2.5).

2.1 Analysis of Nash equilibria

As sponsored search auctions are essentially games among advertisers, the ideal situation
for the search engine is to ensure that the advertisers have no incentive to misreport their
valuations. This would eliminate the possibility of potential manipulations of the mechanism
by the advertisers. However, simple examples demonstrate that neither the rank-by-revenue
nor the rank-by-bid GSP mechanisms are truthful. See, e.g., the example in [31].

Given the absence of truthful dominant strategies, a natural approach is to identify the set
of Nash equilibria of such games. A Nash equilibrium is defined [35] as a stable outcome of
the game, i.e., a situation where no player can improve his payoff (utility) by a unilateral



strategy change. Here we consider the bidding game, where the players are the bidders and
the strategies are the bids they submit. Hence an outcome is a Nash equilibrium if no player
has an incentive to improve his utility by targeting a different slot than the one he is currently
occupying. The set of Nash equilibria depends on the rules of the game, that are here given by
the auction scheme implemented by the search engines. The set of equilibria is typically large,
and there has been a stream of papers that focus on a subset of Nash equilibria that are called
Symmetric Nash Equilibria, which we define below. Symmetric Nash Equilibria have specific
properties of interest for the search engine and for the advertisers, and therefore they could be
the equilibria that the search engine would prefer to attain, see [31, 59, 85]. Below, we present
the main research results related to such equilibria.

We first set up the model in which these equilibria are studied. The equilibrium analysis was
performed for the rank-by-bid rule in [31, 85] (but this is generalized in [59]), where the CTR
of advertiser i for position s is assumed to be the same for all advertisers, and to depend only
on the position slot s, i.e., the bidder-dependent part of CTR, qi, is assumed to be the same for
all bidders. Denoting the CTR for slot s by θs, assume that θ1 > θ2 > · · · > θk > 0. To simplify
notations, let us also renumber the bidders so that vs is the valuation of the bidder assigned
slot s. Following the GSP principle, the price paid by advertiser s ≤ k (that is, at position s)
is ps = b(s+1) (since ε = 0, as in the previous section) and the total value that the outcome
has for him, i.e., his utility, in the game-theoretic vocabulary, is (vs − ps)θs = (vs − b(s+1))θs.

We assume in this section a one-shot and simultaneous game with complete information (if the
game is played repeatedly, the Folk Theorem [35] would lead to a very large potential set of
equilibria). At a Nash equilibrium, no advertiser would have an incentive to obtain a different
slot. Recalling the GSP pricing rule, we can express this formally:

Definition 1 A bid vector is a Nash equilibrium if for every slot s and for the advertiser at
this slot, it holds:

θs (vs − ps) ≥ θj (vs − pj) ∀j > s,

θs (vs − ps) ≥ θj (vs − pj−1) ∀j < s.

The index j − 1 in the last equation comes from the fact that the ordering is changed if
advertiser s changes his bid to target a higher slot.

A restricted class of equilibria is considered in [31, 85], called symmetric Nash equilibria (SNE)
in [85] and locally envy-free equilibria in [31]:

Definition 2 A symmetric Nash equilibrium is a set of bids that satisfies:

θs (vs − ps) ≥ θj (vs − pj) ∀j, s. (1)

Definition 2 just considers the inequality of Nash equilibria for j > s, but applied to all
positions. The rationale behind this notion becomes clearer if we look at pairs (j, s) such that
s = j + 1. If the bidder at slot s starts raising slightly his bid so as to increase the payment
of the bidder above him, then bidder j can underbid him as a retaliation, and essentially this
means that they will have swapped their bids. The right hand side expresses the payoff of
bidder s if bidders j and s swap their bids. Symmetric Nash equilibria capture the notion that
there should be no incentives for such swapping of bids between any pair of players.



It is straightforward to verify that if a bid vector satisfies the inequalities (1), then it will be
a Nash equilibrium. Hence the class of SNE is a subclass of the set of Nash equilibria. The
following key properties are satisfied by SNE and can be helpful for the search engine [85]:

• At an SNE, there is monotonicity in the valuations of the winning bidders, i.e., the value
vs of the bidder assigned to slot s is decreasing in s.

• To check if a bid vector is an SNE, it suffices to check, for every slot s, only the inequalities
that concern the slots s − 1 and s + 1. This also justifies the term “locally-envy-free”
that was introduced by [31].

• There is an SNE maximizing the search engine revenue among all possible Nash equilibria.

The fact that we only need to check the inequalities of SNE for neighboring slots allows for
more explicit characterizations of the bidding vectors. Since the advertiser at position j + 1
does not want to move one slot up (that is, (vj+1 − pj+1)θj+1 ≥ (vj+1 − pj)θj), and the one
at position j does not want to move one slot down (that is, (vj − pj)θj ≥ (vj − pj+1)θj+1), we
have

vj−1(1− γj) + bj+1γj ≥ bj ≥ vj(1− γj) + bj+1γj (2)

where γj = θj/θj−1 ≤ 1. We thus obtain recursive upper and lower bounds for the bids:

bUj θj−1 = vj−1(θj−1 − θj) + bj+1θj

bLj θj−1 = vj(θj−1 − θj) + bj+1θj (3)

whose solutions are bUk θk−1 =
∑

j≥k vj−1(θj−1 − θj) and bLk θj−1 =
∑

j≥k vj(θj−1 − θj). The
upper bound corresponds to the case when advertiser k bids the amount in the upper bound
in (2) with k = j, while the lower bound is when he bids the lower bound of (2). It is rather
advised in [85] to use the lower bound so that the advertiser would make a profit if he moves
up in the ranking.

Finally, it is interesting to compare the GSP mechanism with the classical Vickrey-Clarke-
Groves (VCG) auction, which is truthful and where each bidder pays for the externality that
he is causing to the other bidders, that is, the loss of utility that is due to his participation
in the auction. For more on the VCG mechanism, see [86, 21, 47]. In [31], a particular
SNE is constructed for GSP, in which the slot assignment and the payments coincide with the
allocation and payments of the VCG mechanism when all bidders declare their true valuations.
This SNE is defined recursively as follows:

b∗j =


2b∗2, j = 1
γjb
∗
j+1 + (1− γj)vj , 2 ≤ j ≤ k

vj , k < j ≤ n
(4)

where γj = θj/θj−1. Note that b∗1 can actually be any quantity greater than b∗2 since it does not
affect the price of any slot. Except for this degree of freedom, this Nash equilibrium does not
involve over-bidding. That is, the various bids do not exceed the corresponding advertisers’
valuations.

Following [17], we will refer to this as the VCG equilibrium of GSP. This SNE was shown in [31]
to be the worst SNE for the search engine in terms of revenue, and the best for the advertisers.



In other words, the engine revenue under GSP is always better than when using the truthful
VCG mechanism, which provides an explanation of why the well-known VCG auction is not
used. The findings of [31] are summarized below.

Theorem 1 The bidding vector b∗ defined by (4) is an SNE. In this equilibrium the assignment
and the payments are identical to the dominant strategy equilibrium of the VCG mechanism.
Furthermore, in any other SNE, the revenue is at least as high as the revenue of b∗.

The proof of Theorem 1 is based on viewing these games as assignment games, which were
introduced by Shapley and Shubik in [82]. The construction is based on results of Leonard [61]
and Demange et al. [24] concerning stable assignments in such games. For more details on the
proof we refer the reader to [31] as well as to the nice exposition in [29], chapter 15.

It should be noted that the comparison of the auctioneer’s revenue under the VCG and the
GSP mechanisms is further investigated in [36]. As mentioned above, it is established in [31]
that the revenue under the VCG dominant strategy equilibrium constitutes a lower bound to
the revenue of any SNE of the GSP mechanism. In [36], Fukuda et al. extend the comparison
between the sets of SNE of the GSP and the VCG mechanisms, motivated by the fact that
it has been observed that bidders do not play the dominant strategy of VCG in reality. In
particular, they prove that the lower bound for the revenues of the two sets of equilibria is still
the revenue under the VCG dominant strategy equilibrium, and that the maximum revenue
attainable under the SNE of VCG is the same with GSP. In the sequel, the authors of [36]
investigate the revenues of the two mechanisms experimentally. It appears that GSP in general
produces somewhat higher revenues than VCG, although both mechanisms come close to the
lower bound. On the other hand, the efficiency attained in the experiments under VCG was
higher than that under GSP, although an improvement due to repetition was observed for both
mechanisms. A similar comparison applied to the number of equilibrium bid profiles observed
under the two mechanisms.

Finally, related to the above comparisons of VCG and GSP auctions is the work of Babaioff
and Roughgarden, who in [10] derive conditions under which a payment rule combined with the
rank-by-bid policy shares the same properties of VCG that GSP does. To this end, they derive
necessary and sufficient conditions for a payment rule so that the resulting mechanism both has
a full-information Nash equilibrium that is identical to the dominant-strategy VCG outcome
(in terms of allocations and payments) and admits an ascending implementation such as that
introduced in [31]. The latter property is a consequence of certain monotonicity properties
and of the ”upper triangular” property, whereby the price paid for slot j is a function only of
the bids b(j+1), . . ., i.e. those that are lower than b(j). The authors of [10] also formalize the
intuitive fact that among the payment rules with the aforementioned properties, GSP is the
simplest one.

Convergence to equilibria An interesting issue in equilibrium analysis is whether (and
how) the advertisers would eventually converge to an equilibrium, using an iterative process.
We revisit these issues in Section 3. For now, we point out that one possibility in order
to understand further the GSP mechanism is to imagine a process such as the Generalized
English Auction, introduced in [31], as an analogue of the standard English auction that helps
us understand the Vickrey auction. In the Generalized English Auction the price increases
linearly and continuously from zero and advertisers decide when to quit the auction. Their



bid is then taken as the price level at that specific moment, and the allocation is decided
when all advertisers have “announced” their bid. The bidding game among advertisers can be
studied as a Bayesian game. If we assume that valuations are random variables, independent
and identically distributed, it can be shown [31] that there exists a unique perfect Bayesian
Nash equilibrium where the price pi(j, h, vi) at which advertiser i quits the English auction
depends on his valuation vi, the number j of remaining advertisers in the auction and the
history h = (b(j+1), . . . b(n)) of advertisers that have already dropped out: pi(j, h, vi) = vi −
(vi − b(j+1))θj/θj−1. In other words, advertiser i is better off before the price reaches the level
at which he is indifferent between paying b(j+1) at the (j + 1)-th slot and paying p at the j-th
slot. It turns out that the position and the payoff of each advertiser in this unique perfect
Bayesian equilibrium are the same as in the VCG equilibrium that we defined earlier.

Incorporating bidder-dependent CTRs The whole analysis above remains the same if
we integrate the quality scores, qi, to handle different CTRs among advertisers. In [59], the
CTR of advertiser i for position s is assumed to be separable of the form qiθs, as explained
in 1.1. The model is also generalized to the rank-by-revenue rule, so that advertisers are
ranked in decreasing order of their score wibi for the auction, where a weight wi is associated
to advertiser i. The authors of [59] focus on the case where wi = qdi , where d is a parameter
that can vary in the interval (−∞,+∞). Note that this family of ranking schemes includes the
rank-by-bid rule (for d = 0) as well as the case where wi = qi, i.e., the weight is equal to the
bidder’s CTR (for d = 1). With those new definitions, the net benefit (utility) of advertiser i
becomes qiθs(vi − p), and advertiser at slot s will pay b(s+1)ws+1/ws. The generalization of a
symmetric Nash equilibrium yields the inequalities

qsθs

(
vs −

ws+1

ws
b(s+1)

)
≥ qsθj

(
vs −

wj+1

ws
b(j+1)

)
∀j 6= s.

It is assumed in [59] that advertisers play the smallest SNE, i.e., the one corresponding to the
generalization of (3), the goal being here to maximize a lower bound of revenue. This gives
the recursion

θsws+1b(s+1) =

k∑
j=s

(θj − θj+1)wj+1vj+1.

The goal of the search engine is to determine the weights {wi}i∈N that will maximize the
expected revenue. Determining them in full generality can be a difficult problem, but focusing
on the parametric family wi = qdi , as explained earlier, leads to a more tractable problem, since
it is essentially reduced to find the optimal value for the parameter d. The authors then first
show that the efficiency, defined as the sum of revenues of the search engine plus those of the
advertisers, is maximized for d = 1, while the relevance, defined as the total CTR, is increasing
with d. These findings imply that, if the auctioneer imposes bounds on the efficiency and
relevance loss he is willing to tolerate, this will derive upper and lower bounds for the value
of the parameter d. The revenue curve can then be plotted within the allowable range for
d and the optimal value of d can be selected. The authors complement their analysis with
simulations, where the valuation vi and the CTR effect qi of each bidder are taken from the
same joint density. The joint distribution of these two parameters is inferred from real data
in Yahoo! auctions, taking into account their correlation. It is then shown that ranking by
bid yields a higher revenue than ranking by revenue if the correlation between value and CTR



effect is positive, while it is the opposite if the correlation is negative. Using the optimal value
of d (which can be determined by the revenue curve) can result in a significant revenue increase.

2.2 Social inefficiency under the GSP mechanism

Since being truthful is not a dominant strategy in the currently used GSP mechanism, a
natural question that arises is whether the equilibria of the mechanism lead to near optimal
social welfare. Surprisingly, even though inefficiency of equilibria has been studied in many
other contexts in game theory (e.g., congestion games), this has not been given much attention
in sponsored search auctions until recently.

Before we proceed, we give some relevant definitions. For simplicity, we ignore the quality
score of each bidder, however the results can be easily generalized. Given a Nash equilibrium
bid-profile b = (b1, ..., bn), let π(j) be the index of the bidder that occupies slot j. The social
welfare associated to b is defined as SW (b) =

∑k
j=1 θjvπ(j), which depends on the vector of

bids through the slot allocation rule. On the other hand, if players were truthful, then the
derived social welfare would be optimal and equal to OPT =

∑k
j=1 θjv(j) (where v(j) is the

j-th largest valuation). The two metrics SW and OPT differ whenever vπ(j) 6= v(j), which
means that the order of bids differs from that of the valuations. The usual way for capturing
the inefficiency of Nash equilibria in games, known as Price of Anarchy, is by considering the
worst possible case [56]:

Definition 3 The Price of Anarchy of the game induced by the GSP mechanism is:

PoA = sup
OPT

SW (b)

where the supremum is taken over all bid-profiles that form Nash equilibria.

Simple examples showing that Nash equilibria may fail to be efficient are easy to obtain even for
two slots, see for example [77]. The first formal analysis on the Price of Anarchy was given by
Lahaie in [58]. An upper bound of (mini=1,...,k−1 min{γi+1, 1−γi+2})−1 was obtained, where we
assume that γk+1 = 0 (recall that γi = θi/θi−1, as defined in Section 2.1). For arbitrary CTRs,
this may lead to very high inefficiency. However, for geometrically decreasing CTRs, with
decay parameter δ, i.e., θi = 1/δi and γi = 1/δ ∀i, the bound becomes (min{1/δ, 1− 1/δ})−1.
In the experimental work of [33], it was observed, using various empirical datasets, that click-
through data fit well with the exponential decay model with δ = 1.428, implying a price of
anarchy of at most 3.336. Hence, this can be seen as a positive result that for datasets fitting
this model, the inefficiency is not arbitrarily high.

Improved upper bounds for general CTRs have been obtained recently in a series of works [77,
67, 16]. Motivated by the observation that all known examples of very high inefficiency occurred
at equilibria that involved over-bidding, the authors of [77] considered only Nash equilibria
among conservative bidders, i.e., bidders that never bid above their valuation. This is a
reasonable assumption as bidding above your valuation can be dominated by other strategies.
The authors obtained an upper bound of 1.618 for pure Nash equilibria, an upper bound
of 4 for mixed Nash equilibria, and a bound of 8 for Bayesian equilibria. These were later
improved by [67] and even more by [16] resulting in upper bounds of 1.282, 2.3102, and 3.037,
for pure, mixed and Bayesian equilibria respectively. The bound of 2.3102 also holds for the



class of coarse correlated equilibria, which is an interesting class of equilibria, since it consists
essentially of the points of convergence of regret-minimizing algorithms (for more see [88]). It
is not yet known whether these upper bounds are tight and also whether these can be improved
if one focuses on special cases of CTR distributions, such as geometric decreasing assumptions.
It is an interesting open question to tighten the bounds and have a complete picture on the
inefficiency of Nash equilibria. For pure Nash equilibria we do know a lower bound of 1.259
but nothing more is known for the rest of the concepts.

The inefficiency of equilibria has also been studied experimentally in [84]. There, the authors
considered various assumptions on the preference profiles of the bidders and conducted simu-
lations with each class of preferences. Their main experimental findings are that the currently
used, rank-by-revenue rule was more efficient than both the generalized first price auction (pay-
your-bid) and the rank-by-bid second price rule. In fact, for some of the preference profiles
they considered, the rank-by-revenue rule was approximating efficiency quite well.

Finally, social inefficiency has been recently analyzed with respect to locally aware bidders
in [68]. Given the fact that learning all of your competitors’ bids entails a cost in time, effort,
budget, and other factors, [68] focuses on bidders who are making only local moves, i.e., they
are aware only of the price of the slot right above and below them in the current configuration.
The local stability ratio is then defined as the analogue of the Price of Anarchy for such
locally stable configurations, where no local move is profitable (a relaxation of the notion of
Nash equilibrium). The authors obtain upper bounds on the local stability ratio, which imply
that, for the case of conservative bidders and geometrically decreasing CTR distributions, the
inefficiency is no more than the bound of Lahaie [58] for Nash equilibria. As with the rest of
the results outlined above however, no tight lower bounds are yet known and it is still an open
problem to resolve whether the upper bounds are the best possible.

Note here that a lower bound for the Price of Anarchy for any of the above concepts is
obtained by simply exhibiting an instance of a GSP auction along with a Nash equilibrium of
the appropriate inefficiency. When we allow over-bidding, it is quite easy to construct such
examples. For conservative bidders however, lower bounds still remain elusive, see e.g. the
discussion in [16].

The known efficiency results for all the equilibrium concepts described in this section are
summarized in Table 3. This line of research falls within the recent initiative of analyzing
inefficiency of mechanisms that do not possess truthful dominant strategies, see e.g. [11] for
an analysis of combinatorial auctions along these lines. As we can see, in most cases the
loss of efficiency is only some small constant factor, which implies that even if bidders play
strategically, the final allocation may not be far from the optimal one. Regarding the potential
for improving these results, although by now tight results for the price of anarchy have been
obtained for several other classes of games, the context of sponsored search auctions seems
to require different technical arguments. Therefore determining whether the upper bounds
presented here are tight is a challenging problem for future work.

2.3 Truthful auction mechanisms

In this section we discuss the issue of designing alternative mechanisms that do not give
incentives to the bidders for misreporting their true valuation, contrary to the GSP mechanism.

In [3], Aggarwal et al. deal with the design of mechanisms in which bidding the true valuation



Pure eq. Pure Locally stable pro-
files

Mixed
eq.

Coarse
corre-
lated
eq.

Bayesian
eq.

General case (mini=1,...,k−1

min{γi+1, 1− γi+2})−1 - - - -

Conservative
bidders

1.282 (1−maxi γi)
−1 2.3102 2.3102 3.037

Geometrically
decreasing
CTR: γi = 1/δ

(min{1/δ, 1− 1/δ})−1 δ/(δ − 1) (if conservative) - - -

Table 3: Known upper bounds on the loss of efficiency incurred by the GSP auction scheme.

for a keyword is a dominant strategy for each bidder. This would render optimal bidding for
advertisers simpler than in the standard mechanisms already overviewed. Indeed, a bidder
would only have to determine his actual valuation, without having to take into account how
the others would bid. In particular, the authors of [3] assume that there is already a mechanism
in place that ranks bidders in decreasing order of wjbj , where again bj is the bid of bidder j
and w1, . . . , wn is a set of given and fixed weights. The exact problem analyzed in the article is
as follows: given this ranking rule, what is the truthful auction mechanism that produces the
same rankings as the original rule? Of course, due to this restriction, the only remaining degree
of freedom is the payment rule. The authors first show by means of counterexamples that the
standard next-price rule does not lead to truthful bidding, while under direct ranking of bids
(i.e., wj = 1 for all j), then the famous VCG auctions is not always applicable, even when-
modified through some weighting. Indeed, it is not possible to find a set of bid-independent
weights for VCG that would produce the same ranking. In fact, this inapplicability of weighted
VCG is further extended to other cases, yet holds only for non-separable click-through-rates
(see Subsection 1.1). The authors then introduce the “laddered auction”, according to which,
the bidder ranked at position s pays the sum of two terms accounting for: a) the clicks that
this bidder would have received if ranked at position s + 1, at the price he would have paid
in that position, b) the extra clicks due to being ranked at position s, for an amount equal to
the minimum bid necessary to maintain that position. Therefore, the payment per click ps is
expressed as follows:

ps =
k∑
j=s

CTRs,(j) − CTRs,(j+1)

CTRs,(s)

wj+1

wi
b(j+1), (5)

where CTRi,(j) is the CTR of bidder i when his ad is displayed on slot j. It is then established
that the laddered auction is truthful. Next, the authors of [3] compare the revenues under the
laddered auction and those under the standard GSP auction in equilibrium. In particular, for
separable click-through rates, they construct a deterministic equilibrium (with respect to bids)
that yields the same revenues as the laddered auction.

In [40], Goel et al. propose a different mechanism in an attempt to extend the existing model
of per-click pricing. Their mechanism is based on a hybrid scheme, where each bidder is asked
to submit two bids: a per-impression bid and a per-click bid, indicating the maximum amount
he is willing to pay for being displayed or for receiving a click, respectively. The authors



first investigate myopic bidders, i.e., bidders who try at every time step to optimize some
function of the expected revenue, given prior distributions on each bidder’s CTR. In the case
of a single slot, they propose a VCG-based pricing scheme and show that their mechanism is
truthful in expectation, when bidders are risk-neutral. They then propose two generalizations
for auctions with multiple slots. The first one is based on a generalization of the GSP scheme,
and is not truthful. The second generalization is based on VCG and the laddered auction of [3],
and achieves truthfulness. Finally, semi-myopic settings are also explored, where bidders are
trying to maximize expected revenue over a time horizon.

As a concluding remark, it should be noted that, despite the importance of truthful bidding
as a property facilitating efficiency, such mechanisms are not currently used in practice. This
is mainly due to the fact that search engines prefer simple mechanisms (so that advertisers are
not discouraged to participate) and they also aim to maximize their revenue rather than social
welfare. However, we still believe that it is an important research direction to investigate further
the design of alternative, more sophisticated mechanisms that achieve desirable properties, such
as truthfulness, and exploit more information from the bidders’ side, i.e., via submission of
more parameters as in [40], while maintaining simplicity at the same time. Obtaining tradeoffs
between these aspects still remains to be explored.

2.4 The impact of reserve prices on revenues

It is well-known in the theory of optimal auctions that introducing reserve prices in a mech-
anism can lead to increased revenues for the auctioneer, or even to revenue maximization, as
established in the pioneering works by Myerson [73], by Riley and Samuelson [81], and in
several other works that followed. In [76], Ostrovsky and Schwarz presented the first inves-
tigation of the impact of reserve prices on the revenue of GSP auctions. In particular, they
report the results of related simulated auctions, whose various parameters (number of bidders,
the moments of bidders’ valuation distribution etc.) were selected on the basis of a Yahoo!
auctions dataset. The reserve price was computed according to the theory of optimal auctions.
This was subsequently personalized on a per advertiser (bidder) basis, according to the quality
score of each of them, since this score is taken into account by the bidders’ ranking mecha-
nism. The authors compare the resulting revenues to those of the case of a fixed reserve price
of $ 0.1. The results reveal that the introduction of the aforementioned reserve prices does
have a positive overall effect on the average revenue per keyword, which the authors estimate
at 2.7%. However, this effect is not positive in all cases. For example, for keywords with
low search volumes, or with low values of reserve prices, the effect was negative. Clearly, the
impact of reserve prices in sponsored search auctions is an important topic deserving further
investigation.

2.5 Competition among search engines

One of the main issues that has been mostly ignored in the adwords literature is the fact that
analysis and optimization of parameters are performed when dealing with a single search engine
(i.e., in the case of a monopoly). But there exist in practice several such search engines among
which advertisers can choose, the two most important examples being Google and Yahoo!. The
behavior of search engines as a reaction to this competition for advertisers requires a thorough
investigation and can lead to different (equilibrium) situations than in a monopoly. Few papers



deal with this, for instance [8, 44, 66].

In [66], two search engines in competition for advertisers are considered. The goal is to choose
the best auction rules given that advertisers will go to the engine that best serves their interest,
and to understand the impact of ranking policies in a competitive environment. To simplify
the analysis, it is assumed that each engine offers a single slot. There are two classes of
advertisers, one with a high expected CTR qh and the other one with a low CTR ql (with ql < qh
independent of the engine). Let β be the probability that a given advertiser is in the class with
high CTR. Valuations v are independent and taken from a cumulative density function F . The
bid b submitted by an advertiser is what he is going to pay per click (that is, p = b, a first price
auction), but it is also shown that a second price strategy would lead to the same expected
payoffs and revenues for advertisers and search engines respectively. Two potential ranking
rules are considered: either the search engine ranks according to bid, or according to expected
profit (that is, revenue). For the different possible pairs of ranking policies employed by the
two search engines, the advertiser game is analyzed, where an advertiser chooses (exactly) one
auction and places his bids; a Nash equilibrium in mixed strategies is then obtained. Essentially,
when the two engines adopt the same ranking rule, advertisers are indifferent between the two
auctions (going with probability 1/2 to each of them). If the engines do not implement the
same ranking rule, the advertiser equilibrium depends on the proportion β of high-quality
advertisers: if β ≥ 1/2, i.e., advertisers are more likely to be of high-quality, all low-quality
advertisers go to the price-only auction, while high-quality ones go to the price-only auction
with probability (2β − 1)/(2β) and to the quality-adjusted auction with probability 1/(2β) ;
if β < 1/2 (and under some assumptions on F ), all high-quality advertisers participate in
the quality-adjusted auction and low-quality advertisers choose the price-only auction with a
probability which depends on their valuation and on ql/qh, this probability being 1 above a
threshold v∗. The existence of a Nash equilibrium in the ranking game is then discussed (when
search engines try to maximize their revenue) depending on the value of β and the CTR ratio
ql/qh. Few trends are extracted from the study. For instance, being the only quality-adjusting
(resp. price-only) engine gives a market advantage when the number of high quality advertisers
is high (resp. low) with β close to 1 (resp. 0). Also, competition produces incentives to adopt
the quality-adjusted (rank-by-revenue) rule even if this is not the optimal strategy in the case
of a monopoly. This could explain why Yahoo! moved from rank-by-bid to rank-by-revenue
due to the competition with Google.

The impact of competition is also analyzed in [44]. The model considers a double auction with
advertisers on one side and slot sellers on the other. The goal is to study the efficiency and
incentive compatibility properties depending on whether the separability assumption (i.e., as
introduced in Subsection 1.1, the fact that the valuation is the product of the CTR at a given
position, independent of advertiser, and the per-click valuation of the advertiser) applies or
not. It is shown that if separability is not assumed, the VCG mechanism has to be applied to
obtain a truthful and efficient mechanism. But in that case, the market maker will potentially
run a budget deficit.

The VCG payment rule is also applied in [8], when there are two search engines in competition,
each engine offering a potentially different number of slots, and having different CTRs (θk at
position k for the first engine, and θ′k for the second one). At each auction, slots are allocated
by decreasing order of the bid. As a first result, it is possible that, if players can participate
in both auctions at the same time, a consistently more popular auction (if θ′k > θk ∀k) yields
a smaller revenue. This comes from the VCG pricing rule: whatever the “performance” of the



auction, an advertiser pays only for the loss he creates on the system, not the value itself. If on
the other hand players have to choose between auctions (this being their only strategy choice,
advertisers submitting their real value due to the incentive compatibility property), there is a
unique equilibrium such that with a given probability q(vi) player i chooses to join the first
auction, while with probability 1 − q(vi) he chooses the second one. In that case, the more
popular auction always gets a higher revenue.

To summarize, certain models for competition among search engines have already been pub-
lished in the literature, however these pertain to rather special cases of the problem. Therefore,
we feel that the relevant research is in its early stages. Thus, defining the most “robust” (in
terms of revenue) mechanisms requires more investigation. We view this as an interesting and
promising research direction from the point of view of the search engines.

3 The advertisers: Bidding Strategies and their Properties

Once the search engine has chosen a mechanism, it is then the advertisers’ turn to play the
game. Hence, given the GSP mechanism and its variants, the main question that the advertisers
face is to decide what they should bid. As already discussed in Section 2, it has been observed
that truthful bidding is not a dominant strategy under the GSP mechanism. This gives rise
to strategic behavior by the bidders in order to increase their utility, as was also established
empirically in [30], where the authors studied a Yahoo! dataset of auctions from 2002 and
2003. Furthermore, if we view the process as a repeated game, it is not obvious whether the
game will converge to a better state for them, even when bidders try to profit by lying. It
is known that a plethora of Nash equilibria exist [31, 85], and it is not a priori clear whether
any of these equilibria are actually reached in real keyword auctions. All these issues make
the bidding decisions much more complex: advertisers often end up assigning their bidding
campaign to consultants or other companies, specializing in such campaigns, see e.g., [4, 27].
In this section we review some of the proposed bidding schemes and study their properties.

3.1 Greedy Bidding Strategies in Auctions for a Single Keyword

Most often auctions for the same keyword are performed repeatedly. Thus, a natural approach
to bidding is to use the past as a prediction for the future. Hence, if an advertiser assumes
that the bids of the other players in the next round will remain fixed, the best choice for him
is to bid so as to win the slot that maximizes his own utility (or to bid so as not to win if
winning leads to negative utility). Hence we can define the class of greedy bidding strategies as
all the strategies in which an advertiser i chooses a bid for the next round so as to maximize
his utility, assuming that the set of bids b−i = {b1, b2, . . . , bi−1, bi+1, . . . , bn) remain fixed at
their values in the previous round.

In most instances, there is a range of bids that achieve maximum utility given the bids of the
other players. Specifying further how to choose a bid within this allowed range gives rise to
various greedy strategies. For example, suppose that the utility of advertiser i is maximized
when he acquires slot s. One way to bid then is to submit the smallest possible value needed
to acquire slot s, given b−i. This is usually referred to as altruistic bidding as in that case
the bidder who wins slot s − 1 will pay the smallest possible amount. An alternative line of
reasoning is that, since bidders are usually business competitors, one should try and push the



other bidders’ payments as high as possible. This can be achieved by submitting the maximum
bid that will guarantee slot s rather than slot s− 1. This is referred to as competitor busting.
Finally, a more balanced approach is to bid somewhere in the middle so as to still push prices
up but without running the risk of paying more than expected if one of the other bidders
changes his bid. In order to define those strategies more precisely, let ps(i) be the price that
player i has to pay when he bids so as to win slot s, given b−i. In [17], the following greedy
strategies were introduced and studied:

1. Balanced Bidding (BB). In this scheme, bidder i first targets the slot s∗i that maximizes
his utility, i.e., s∗i ∈ arg maxs{θs(vi − ps(i))}. Given the desired slot, he then chooses his
bid b for the next round so as to satisfy:

θs∗i (vi − ps∗i (i)) = θs∗i−1(vi − b)

The intuition is that player i should bid high enough so as to push the prices paid by
his competitors up but at the same time it should not be the case that the utility of i
decreases if a competitor bids just below b and i ends up at the higher slot s∗i − 1.

2. Restricted Balanced Bidding (RBB). This scheme is based on the same intuition as BB
except that bidder i looks only at slots with no higher CTR than the slot he currently
has. Hence, if his current slot is si, then he first targets the slot s∗i that belongs to
arg maxs{θs(vi − ps(i)) : s ≥ si}. Given s∗i , he then chooses his bid b according to the
same equation as in BB.

3. Altruistic Bidding (AB). In this scheme, bidders are trying to not overcharge other players
by bidding just what is necessary to get the slot they desire. Hence the slot s∗i is selected
just as in BB but then the bid b is chosen equal to min{vi, ps∗i (i) + ε} for some small
ε > 0.

4. Competitor Busting (CB). This is the opposite of AB, in which bidders are simply trying
to push prices as high up as possible. Again s∗i is selected as in BB but then the bid b
is set to min{vi, ps∗i−1(i) − ε}. This strategy has been observed in practice and is also
referred to as anti-social or vindictive bidding [14, 89].

Unfortunately, not all of the above strategies converge to some steady state and cycles may
appear. The schemes AB and CB do not always have a steady state. For more on this,
see [17, 68]. However, BB and RBB do have nice convergence properties. In particular, both
the BB and RBB processes have a unique fixed point, which is precisely the VCG equilibrium
of GSP as defined in Equation (4) of Section 2.

The positive convergence results as obtained in [17] are summarized as follows:

Theorem 2 1. Both BB and RBB have a unique fixed point, at which players bid according
to the VCG equilibrium.

2. RBB converges to the VCG equilibrium in both the synchronous (all bidders updating
their bids simultaneously) and asynchronous (bidders updating their bids one by one)
models.

3. BB converges to the VCG equilibrium in the synchronous model with 2 slots and in the
asynchronous model when players bid in random order.



In general, RBB does not converge in polynomial time (in the number of bidders and the
number of slots), but it does so when the CTRs are geometrically decreasing. As for BB, in
the cases where it converges, the currently known theoretical upper bounds on the number of
rounds that are required seem prohibitively high, see Table 4 below. However, the simulations
presented in [17] reveal that these strategies typically converge quite fast, and certainly in
polynomial time. Finally for the synchronous model with at least 3 slots and for the asyn-
chronous model where the order of updating is not random but a priori fixed, examples have
been obtained that demonstrate the non-convergence of BB. For more details we refer the
reader to [17].

Apart from the convergence to equilibrium under the assumptions of Theorem 2, the properties
of BB have been studied further. In particular, the performance of BB and other greedy
strategies are analyzed in Bayesian settings in [74, 87]. In [87], simulations are performed to
evaluate greedy bidding strategies, under incomplete information. Their experimental results
reveal that BB seems to be the most stable strategy, and, when all players follow BB, the game
ends near an equilibrium, i.e., the gains from deviations tend to be low. In [74], an extensive
simulation study is conducted, assuming four different probability models for the distribution
of click valuations, to assess the mismatching between the slot that advertisers aim for and
what they actually obtain, and to evaluate the expected profit (utility) of advertisers. The
study shows that an advertiser is typically not assigned the slot he was aiming for. In most
cases the advertiser would get a larger profit (i.e. utility) if he were assigned a lower slot
than the actual one. In fact, with lower slots advertisers get fewer clicks but also pay less, so
that the profit may be larger with lower slots. The bottom-positioned slot often appears to
be the most profitable one. The overall consequence is that in most cases advertisers get a
higher-positioned slot than the optimal one and pay more for something that will lead to lower
profits. Such results are also proven to hold true (through the application of known results in
the theory of order statistics) for the case of truthful bidding.

The properties of AB and CB have also been studied further, especially since CB is often
encountered in practice. The pricing mechanism embedded in GSP appears to be prone to the
Competitor Busting phenomenon, since an advertiser may raise his bid, thereby increasing the
price paid by his competitor for the next higher slot, while suffering no consequences as to the
price he is paying. In [46] a new pricing rule, named Penalized Second Price (PSP), has been
proposed to alleviate CB. According to this rule the price paid by each advertiser is a linear
combination of his own bid as well as of the next lower bid. With PSP an advertiser pays
the consequences of his own aggressive strategy. However, in [75] it was shown that, when
aggressive bidders playing CB do not have a budget advantage over bidders playing BB, the
CB strategy is not effective, since it does not lead to aggressive bidders getting more slots.
In [63], cooperative and vindictive bidding as well as existence of equilibria are studied for
games where the utility of a bidder can express various levels of malicious behavior towards
the other players. Finally in [68] the social welfare of configurations that are steady states with
respect to AB and CB is considered and the authors obtain upper bounds on the inefficiency
of such configurations.

To summarize, the properties of the strategies discussed are presented in Table 4. It should be
noted that in the last column, the upper bounds in the efficiency loss for AB and CB hold for
profiles that are steady states with respect to these two strategies. Even though AB and CB
do not always converge, as we have already mentioned, the simulations in [17] and [68] show
that in the majority of the cases, convergent states were found. Given the current literature,



Strategy Fixed point Convergence Number of rounds Efficiency
loss

BB Unique (ef-
ficient VCG
equilibrium)

For asynchronous with
random bid updating or-
der, also for synchronous
but with ≤ 2 slots

General CTRs: O(nn+2k)

Geometric CTRs: O(nn+k3

)

None

RBB Unique, same
as above

Both for synchronous
and asynchronous

General CTRs: O(k2k)
Geometric CTRs: O(k3)

None

AB None - - (1−γ)−1+γ−1

CB None - - (1−γ)−1+γ−1

Table 4: Summary of results for four different greedy bidding strategies.

the main conclusion is that the balanced bidding strategies possess desirable properties both
theoretically and experimentally. We feel however that the analysis of best response bidding
strategies is far from complete. Even though there is a whole interval of bids that allow
a player to obtain his best response slot, we are not aware of any further analysis of such
strategies. Another interesting direction is to consider different bidding dynamics. Dynamic
behavioral models have been analyzed successfully in other contexts, such as congestion games
and load balancing games and some potential approaches in our context would be to study
the performance of imitation dynamics [20], or no-regret algorithms [18]. Finally, it would
also be interesting to investigate convergence to alternative solution concepts, other than Nash
equilibria, such as convergence to sink equilibria, see e.g., [42]. An initial step has been taken
in [15], where convergence to forward looking Nash equilibria has been considered.

3.2 Taking budgets into account

So far we have not taken into account budget considerations for the advertisers. In practice,
advertisers can be required by the search engine to submit a budget, with the option of having
it renewed at the end of a certain period. Of course, this budget can be so high that it does
not constitute an actual constraint. Most companies, however, have to come to terms with
the ensuing advertising costs and specifying a high cap may not be sustainable for a long term
period. In such cases, the advertiser should try not to follow extremely aggressive strategies
as he may exhaust his budget before the renewal time.

In [13], Borgs et al. consider a model whereby, if the actual payment of the advertiser for
the clicks on his ad exceeds a certain threshold (i.e. the advertiser’s budget), then his utility
collapses and becomes -∞; each advertiser’s valuation and budget are taken as private infor-
mation. These authors prove that, under such hard budget constraints, it is not possible to
design a truthful mechanism that allocates all the slots to different bidders, even in the case of
two bidders and two slots. They also design an asymptotically optimal (in terms of revenue)
mechanism that may not allocate all slots. Furthermore, in [7], Ashlagi et al. consider another
private information model with budgets, whereby, if the actual payment of the advertiser ex-
ceeds his budget, then his utility vanishes to 0. These authors develop a modification of the
Generalized Ascending Auction of [31], whose ex-post equilibrium outcome maintains the nice
properties of the original design (see Section 2), despite the fact that the original design was
not applicable to the case of budgets. Finally, a weakly dominant bidding strategy is consid-



ered in [79], where all bidders with budget constraints are led to state their true budget rather
that understate their own valuations.

All the aforementioned works regarding budget considerations assume bidding is not repeti-
tive; that is, advertisers submit their bids once, slot allocations and payments per click are
determined, and then advertisers pay for all subsequent clicks accordingly. Contrary to this
assumption, Drosos et al. propose in [28] a strategy for repetitive bidding for a single key-
word auction based on dynamic programming. The objective is for bidders to carefully avoid
overspending the available budget. Simulations are also conducted in order to evaluate the
performance of this strategy, and comparisons are made with the balanced bidding protocol.
The conclusions made so far reveal that the available budget can have an impact on how one
should bid and can be particularly helpful for bidders who are not within the highest valuation
range.

With this in mind, an interesting question that arises is to design bidding strategies that take
this extra dimension into account. Despite its obvious applicability, these issues have not been
extensively explored and we believe it is a topic worth further investigation.

3.2.1 Budgets for multiple keywords

A yet more realistic model is to assume that a budget needs to be split among several keywords.
In practice companies that advertise via sponsored-search auctions select a set of keywords and
participate in all the corresponding auctions. For example a company that sells digital devices
may wish to appear on queries for laptop, digital camera, mp3 player, etc. Hence for a set of
relevant keywords, each advertiser i should specify his bid bij on each keyword j. At the same
time, the bids should be such that the resulting payments should not exceed the total budget
of the advertiser.

From an optimization viewpoint, there has been a series of papers on designing algorithms for
various settings regarding budget-constrained bidders. For revenue maximization of the search
engine see among others [71], where online algorithms are designed and their competitive ratio
is analyzed, i.e., the ratio of the optimal value of the objective function to that obtained by the
algorithm. The question of maximizing the profit of a single advertiser is studied in [19, 72, 32].
These works concern either stochastic models where the advertiser has some information about
the other bidders’ behavior in the form of some distributions for the cost of obtaining a certain
slot [72, 32], or online models [19], where the bids of the other advertisers are known and in
each round the bidder has to decide which slot to target.

From a game theoretic viewpoint, we are only aware of [12], where a bidding strategy is
proposed and is proved to converge in some cases to a market equilibrium. That is, the prices
attained are such that the seller sells his entire supply, while demand in these prices equals
supply. In the model of [12], every advertiser has a budget which is renewed at the beginning
of every round (e.g., daily). Advertisers need to choose simultaneously a bid bij for every
keyword j and the search engine selects the winners of each auction taking into account that no
advertiser can pay more than his budget. The authors propose a natural bidding heuristic that
is based on equalizing the marginal return-on-investment (ROI) across all keywords. To this,
they also add a random perturbation in order to avoid cycles that may appear when all bidders
use this heuristic. It is proved that when everybody adopts the perturbed ROI heuristic, the
system converges to its market equilibrium in the case of the first price mechanism with a



single slot. In the case of the second price mechanism on a single slot, experiments reveal that
the system converges, but no theoretical results have been obtained. It is an interesting open
problem to obtain theoretical results for the second price mechanism on one slot and more
generally for the GSP mechanism in the case of multiple slots.

4 User models and externalities among bidders

In this section, we focus on two interrelated topics: models for user behavior and externalities
among bidders. The literature that we have discussed so far has ignored the behavior of the
end users and is based on the assumption that CTRs are separable: the CTR of a bidder i
in slot s is the product of two quantities, the first expressing the quality of the bidder and
the second the quality of the slot he occupies (qi · θs). Most other articles are also based on
that assumption, thus defining CTR as a function of the bidder i and the slot s even when
not assuming separability. Such assumptions however are not always justified. As an example,
if a user searches for a commercial product and decides to click first on the ads on the top
of the list, he may not end up clicking on the last ad if he finds what he was looking for
before reaching the bottom slot. Hence, the CTR of an advertiser is clearly dependent on the
search behavior of the users and some recent works have focused on developing models of user
behavior that are consistent with empirical observations.

Apart from the user behavior, the CTR is also crucially dependent on the quality of the
other advertisers that are present. Advertisers offering similar products create positive or
negative externalities to their competitors, depending on the satisfaction that a user receives
by clicking on their ad. This calls for the design of new auction mechanisms. Externalities in
general settings of auctions have been studied before in the economics literature, admittedly
though not to a great extent. The earliest work that we are aware of is by Jehiel et al. [51],
where the value of a loser depends on the identity of the winner. See also [52] for a follow
up work of these authors on the topic. In the context of online advertising and in relation to
sponsored search auctions, the first work appeared in [37], where a model was presented for
online lead generation. In their setting, advertisers receive leads about potential customers
whom they can contact and offer quotes about their service. After seeing the quotes the user
selects the advertiser with the lowest quote. The authors study the problem of maximizing the
social welfare and they present inapproximability results as well as approximation algorithms
and polynomial time algorithms for some special cases.

We first discuss in Section 4.1 user models that have been studied in the literature along with
the externalities that they create, especially the sequential search model, and then we move
on in Section 4.2 to discuss alternative models for externalities along with the corresponding
mechanisms.

4.1 User behavior models in sponsored search auctions

Regarding user behavior, one line of research has focused on identifying user intentions, as
clearly not all users are interested in clicking on the ads or making a purchase. In [6],
the authors use click-through data and learning techniques to classify search queries into
commercial/non-commercial and navigational/informational. This approach allows for bet-
ter predictions of CTRs, for a given query with particular intentions. For more on detecting



user intentions, see also [5].

A different approach is introduced in [53], where a game theoretic model is presented. End
users are viewed as rational agents in a game played under uncertainty (here uncertainty refers
to the fact that users do not know the value of clicking on an ad). Each user then decides
sequentially on which ad to click on so as to maximize his expected utility under uncertainty.
The authors also provide empirical investigation based on a dataset of Microsoft Live from
2007 and estimate the parameters of their model.

The majority of the remaining works on user models has focused on the so called sequential
search model and its variants, motivated by the experimental work of [23], which in turn was
inspired by the eye-tracking experiments of [54], as described below. The main elements of
this model are that the users (i) browse the sponsored links from top to bottom and (ii) they
make clicking decisions slot by slot. After reading each ad, users decide whether to click on it
or not and, subsequently, decide whether to continue browsing the sponsored list or to simply
skip it altogether.

The basic sequential search model and its variants. The first model for ordered search
was introduced and studied empirically in [23]. This formed the baseline for the more general
version that we present here, which was introduced independently in [55] and [2].

Formally, we assume that there is an intrinsic quality qi of each advertiser i, specifying the
probability that a user will click on i when he reaches the slot where i’s ad is displayed.
Furthermore, there is also a continuation probability ci that specifies the probability that the
user continues to the next slot after looking at i’s ad, (and possibly clicking on it). Finally, vi
is the valuation of advertiser i for a click. Suppose now that the slots 1, .., k contain the ads
a1, ..., ak respectively. Then the user will behave as follows:

1. Starts by looking at ad a1 of slot 1 and clicks on it with probability qa1 .

2. Independently of whether ad a1 was clicked or not, continues to the ad a2 with probability
ca1 , otherwise ends the process with probability 1− ca1 .

3. Repeats steps 1 and 2 for the following slots a2, a3, . . . till the process terminates.

The focus on such an ordered search model is motivated by various reasons. First, as the work
of [23] demonstrates, position bias is present in organic search. In particular, [23] compares a
sequential search model with four other models (including the separable model) and concludes
that sequential search provides the best fit to the click logs they have considered. Secondly,
sequential search is further advocated as a natural way to browse through a list of ads by the
eye-tracking experiments of Joachims et al. [54], where it is observed that users search and
click in a top down manner. Moreover, as the value per click of each advertiser tends to be
correlated with its relevance, ordered search is a good heuristic for users (see [9]).

Under this model, which is also referred to as the cascade model, the willingness to click on an
ad changes as a user collects new information through his search, and hence the decision about
whether to continue reading ads naturally depends on the click history of the user. Hence the
CTR of ad as, placed on position s is:

Ras = qas ·
s−1∏
j=1

caj



Other variations have also been proposed, introducing more parameters and generalizing the
basic model. These involve

1. Adding slot-dependent CTRs. This was studied in [55] and allows for the presence of an
additional parameter θs, the probability of clicking an ad at slot s.

2. Splitting the continuation probability in two parameters. This was studied in [43] and
assumes that there is a different continuation probability when a user clicks on an ad
and a different parameter when the user looks at the ad and decides not to click on it
and continue to the next ad.

3. Considering the dependence of CTR on history of clicks. This was also studied empirically
in [43] and is based on having the parameter qa of advertiser a depend on the clicking
history of the user.

4. Allowing multiple ad slates. This was introduced in [55] and captures the fact that
nowadays sponsored links are displayed both on the right hand side but also on the top
of the search results. As a result, there can be different groups of users, depending on
whether they first scan the top results and then the ones on the right hand side or vice
versa, and we can generalize it further by allowing different groups of users to scan the
ads in different orders.

5. Considering the Pay-Per-Transaction model instead of the usual Pay-Per-Click model.
This was studied in [57], where further comparisons between the VCG and the GSP
mechanisms were investigated as well as issues of robustness to manipulations under this
model.

The results that have been obtained so far can be split into two categories: algorithm design
for finding the optimal allocation in the basic model and its variants, and equilibrium analysis
of the GSP and related mechanisms under this type of user behavior. These are overviewed
below.

The winner determination problem. This is the problem of finding the allocation of slots
to advertisers that achieves the highest social welfare for the advertisers. In [2] and [55] it was
established that the efficient allocation (i.e., the one that achieves optimal social welfare for
the advertisers) can be found in polynomial time by means of dynamic programming, so that
we can state the following theorem-

Theorem 3 The winner determination problem can be solved in polynomial time in the se-
quential search model.

As is noted in [55], the same is true in the variant where there are two types of continuation
probabilities, since in the dynamic programming algorithm the two probabilities act cumula-
tively. In [55], the problem is also studied for two more variants of the basic model. The first
one is the case of multiple slates, where a polynomial time approximation scheme is presented.
It is still an open problem to determine whether the winner determination problem is NP-hard.
The second variant is in the presence of slot-dependent CTRs. In this case, a 4-approximation
algorithm is established, as well as a quasi-polynomial time approximation scheme. Again, it



is still not known if this variant is NP-hard. Determining the exact complexity of the winner
determination problem in these variants is an interesting open problem. It is also interesting
to note here that all the algorithms for these variants are based on Knapsack-related problems.

Equilibrium analysis. Beyond the algorithmic question of finding the optimal allocation,
it is of natural interest to study how the equilibria of the GSP mechanism are affected by
the user behavior or investigate mechanisms that take into account the user behavior and
the continuation probabilities. In both such cases, the properties of the CTRs arising as a
consequence of such behavior by the users should be taken into account. The first equilibrium
analysis under the more general model that also includes slot-dependent CTRs was obtained
in [39]. The authors proved that pure Nash equilibria still exist. However, in contrast to
the usual models presented in Section 2 we cannot guarantee that there exist equilibria that
implement the optimal allocation along with the VCG payments. In particular, it is proved
that the social welfare of an equilibrium can be as far as a factor k away from optimal (k being
the number of slots) for equilibria where bidders never overbid and it can be arbitrarily far
from optimal if there are no restrictions on the bids. In [43], the implementation of efficient or
revenue-maximizing allocations is studied for various scoring rules in the generalization of the
basic model that allows for two types of continuation probabilities. A scoring rule is simply
any ranking scheme in which the ranking of the bidders is performed according to the product
wibi, where wi is a weight that depends only on advertiser i. The authors of [43] identify a
profile of bidding strategies that constitutes a revenue-maximizing and efficient equilibrium
if and only if the scoring rule used by the search engine has a particular form that depends
on both qi and the continuation probabilities. Namely, the weight in this rule should be a
multiple of qi/(1− ci). Interestingly, this is the same ranking rule by which the winners should
be ranked in [2, 55] for solving the efficient allocation problem (in a non-strategic environment).
They also extend the negative result of [39] showing that no scoring rule can implement an
efficient equilibrium where advertisers pay their VCG payments for all valuations and search
parameters. Finally, in [26] the rule of ranking by the weight qi/(1− ci) is investigated further.
A particular pure equilibrium is constructed and its efficiency properties are studied.

An interesting open question here is to obtain a complete characterization or a better under-
standing of the set of Nash equilibria under these user behavior models for any scoring rule. It
is also interesting to see what happens with regard to revenue maximization when the weights
of the scoring rule are not given by qi/(1 − ci). In addition, more experimental analysis with
real data, following [43], would be very valuable for providing further validation to this model.
Finally, it would be nice to generalize the model of sequential search. A candidate abstract
setting for this would be to think of the user as moving in a Markov chain, so that a user can
not only visit the next ad in the list but also jump with a certain probability to the other ads.

4.2 Models of bidder externalities

In this section, we study alternative models, where the externalities among bidders are not
derived explicitly from the user behavior, but are anyway motivated by such considerations.

Very recently, in [34] a quite general model has been presented, where externalities are modeled
by a social context graph. The graph specifies two disjoint sets of edges, E+ and E−; an edge
from bidder i to bidder j indicates a positive (resp. negative) externality if (i, j) ∈ E+ (resp.
(i, j) ∈ E−). Each edge also has a weight which depends on the distance between the two



advertisers if they are displayed on the same impression. Hence, the closer the advertisers, the
stronger the effect, whether positive or negative. An additional parameter of the model is a
constant c, indicating that there are no effects between advertisers who are at a distance higher
than c. Essentially, this implies that the underlying assumption about the users is that they
are allowed to browse a bounded scope section of consecutive ads in the list (at most c) but no
other restriction is made on the order in which they visit the ads. Hence an advertiser cannot
influence other advertisers who are far away in the list of impressions. The authors of [34]
show that the winner determination problem is NP-hard in this model, unlike the sequential
search model, and provide a polynomial time approximation algorithm and an exact algorithm,
which is polynomial when the number of slots is relatively small. Finally, they also study game
theoretic aspects and revenue considerations, where some negative results are obtained.

Another type of externality is considered in [38]: the value of a click is supposed here to
depend on exclusivity, i.e., it is larger when the ad is the only one displayed, as it is more
likely that a click will be converted into a sale. In such a context, the authors suggest to use
two-dimensional bids: one value stands for the case when only that ad is displayed, and the
other value of the bid corresponds to the classical auction schemes when several ad slots are
used. The auctioneer then has to decide whether to display one or several ads, how to allocate
the slots, and to compute payments. The authors study two GSP-inspired mechanisms with
two-dimensional bids; the first one coincides with the one-dimensional GSP scheme when the
outcome is a multiple ad display, while the second one extends the “next-price” GSP rule
according to which each participant pays the minimum price necessary to keep its position.
The authors consider equilibria where losers bid at least their true valuation. For the former
scheme, at any such equilibrium the revenue is at least half what a VCG scheme would give, and
efficiency is at least 1/3 of the optimal. For the latter scheme, if bidders do not play dominated
strategies and losers bid at least their true value, then any equilibrium has efficiency larger
that half the optimal; moreover there exists an equilibrium yielding as much revenue as VCG.

Also, in [22]. Constantin et al. introduce a model of negative externalities of the values per
click. In particular, each bidder can submit a set of constraints on his position relatively
to that of certain other bidders (for example, he may insist on being allocated a higher slot
than a certain competitor). The authors assume that the bidder will pay his bid bi provided
that all his submitted constraints apply under the allocation, otherwise he will pay 0. The
authors mostly focus on the case where each constraint submitted by a bidder is related to
the position of one more bidder. They investigate a greedy winner determination algorithm
applicable under such constraints and show that it is not possible to achieve truthfulness on
the declaration of both the bidder’s value and his constraints, even under VCG-type payments.
On the other hand, a GSP payment rule would achieve truthfulness of constraints’ declaration,
provided that bidders have downward-monotonic value externalities (that is, if a slot is not
acceptable under certain conditions, lower slots are not acceptable either). The authors also
investigate other forms of value externalities.

To summarize our discussion of Sections 4.1 and 4.2, one can see that even though in the early
history of sponsored search user behavior was not taken into account, it has by now evolved to
an important dimension in research. Undoubtedly user behavior creates externalities that can
be observed in practice and have motivated the models that have been proposed so far. The
sequential search model has attracted the most attention so far, however it is quite challenging
to reach a conclusion as to which model captures in a better way the real life scenarios and user
behaviors. Apart from [23, 53, 43], the rest of the works discussed here propose theoretical



models without providing any experimental findings. The nature of this topic also makes
it more time consuming to reach well established experimental conclusions, as one needs to
observe users’ behavior over substantial time periods. Hence, it remains for future works to
provide better evidence on this matter and establish what the best model is.

5 Statistical learning techniques

Keyword auctions are held repeatedly, with sets of bidders that may be largely overlapping
from an auction round to the next one. In such repeated games the information gathered on the
bidders’ behavior may be exploited in the next rounds. All the players (i.e., the auctioneer and
the bidders) have an interest in such information. In fact, each bidder may use the information
on other bidders’ bids to modify his own bid, in order to get a more preferable slot or to
get the same slot for less. A particular role is played by the auctioneer, which, among all
the stakeholders, has the largest information dataset: knowing the bids submitted by each
bidder and the ads clicked on by the customers, he is in the best position for (and has the
largest interest in) learning two very important quantities revealing the bidders’ and users’
preferences, namely the values attached by bidders to clicks, and the ads and slots preferred
by the customers. In this section we deal with both issues, reviewing the most important
techniques employed for those purposes.

5.1 Learning advertisers’ valuations

The knowledge of the value that advertisers attach to clicks is crucial for the proper manage-
ment of keyword auctions. Auctions allow for differential pricing, whereby the seller (the search
engine) can extract the largest possible income from the sale, by having the prospective buyers
declare what they are willing to pay. In truthful mechanisms (such as the Vickrey-Clarke-
Groves one) bidders are induced into declaring their valuation. But in pricing mechanisms
such as the GSP, the bidding strategies lead each bidder to submit bids that are lower than his
valuation, hence retaining a surplus margin. The knowledge of the true valuation would allow
the search engine to design pricing mechanisms to further exploit the willingness to pay by the
bidders, e.g., to estimate a revenue-maximizing reserve price. However, in non-truthful pricing
mechanisms the bids are observed while the valuations are not and have then to be estimated.

The characteristics of the valuations are typically described by resorting to either of two
paradigms:

• Common Value;

• Independent Private Value (IPV).

In the Common Value case all the items of the auction have the same value for all the bidders,
who however have incomplete information about it and then try to estimate it. In the IPV
case the value of the item is different for each bidder, but all the values can be considered
as independent random variables drawn from the same probability distribution [70]. In the
context of keyword auctions the IPV paradigm has been adopted, e.g., in [31, 74, 78]. Under
the IPV assumption the problem is then the estimation of the probability distribution of
valuations.



The problem of estimating the distribution of valuations has been investigated mainly for first
price auctions. As far as the authors know, no approach has been proposed for the context of
GSP auctions. Hence, in the following we briefly overview the two main approaches proposed
in the literature for first-price auctions. They are due respectively to Guerre et al. [48] and to
Marmer and Shneyerov [69].

In the work of Guerre et al. [48] the bidders are assumed to adopt a Bayesian Nash equilibrium
strategy, whereby the bid bi submitted by the generic bidder i (among N bidders) is determined
by its private valuation vi and the cumulative distribution function of valuations (cdf) F (v)
(under the IPV paradigm) as follows

bi = vi −
1

[F (vi)]
N−1

∫ vi

p0

[F (u)]N−1 du, (6)

where p0 is the reserve price, i.e., the minimum accepted bid. This relationship can be inverted
to provide the individual valuation as a function of the individual bid and the probability
distribution and density of bids. By repeating this inversion procedure for a number of bids,
we obtain a sample of valuations (pseudo-values), each pertaining to an individual bid. This
sample can finally be employed to get a nonparametric estimate of the probability density
function of private values (namely through the kernel method, see [83]).

A similar approach is proposed by Marmer and Shneyerov [69]. They consider again a first-
price sealed-bid auction, with the same hypotheses as Guerre. However, they avoid the use of
pseudo-values, and arrive at the estimation of the probability density function of valuations by
using the non-parametric estimators of the pdf, cdf, and quantiles of bids. By exploiting the
monotonicity of the inverse bidding strategy exploited by Guerre, they introduce the following
relationship between the quantile function of valuations Q(τ) and that of bids q(τ)

Q(τ) = q(τ) +
τ

(N − 1)w(q(τ))
(7)

The estimate of the pdf of valuations is then obtained by estimating first the quantile function
of bids, using then expression (7) to get the quantile function of valuations, from which we can
finally obtain the cdf and the pdf of valuations.

To summarize, two approaches have been proposed in the literature for learning advertisers’
valuations in First-Price auctions. It should be noted though that both of these approaches
can be also adopted for GSP auctions, if an expression linking valuation and bids is available
and invertible. In fact, the steps involved in both methods after the inversion procedure are
quite general and do not rely on any assumption on the auction pricing method. It is therefore
an interesting open question to successfully apply these techniques to GSP mechanisms.

5.2 Click-Through-Rate estimation

The CTR is a measure of the interest of customers for a given ad. If we indicate by x the
number of times an ad is clicked on and by y the number of impressions of the page on which
that ad appears, the CTR is measured as the ratio

CTR =
x

y
(8)



As reported in [45], the typical average CTR is around 2%. With such quite low values,
the estimate will be characterized by a large variance. In the simple example reported by
Richardson et al. [80], if the true CTR is 5%, we need 1000 impressions to have an estimated
CTR within ±1% of the true value with an 85% confidence level.

Operationally, the ratio (8) can be measured in three different ways:

1. Setting a time interval T and measuring the impressions and the clicks taking place
within that interval (average over fixed time window);

2. Setting a limit number of impressions and measuring the number of clicks observed till
we reach that limit number (average over fixed impression window);

3. Setting a limit number of clicks and measuring the number of impressions needed to get
that limit number (average over fixed click window).

In addition to these straightforward estimates, Immorlica et al. [49] introduce an exponential
discounting estimate that is the weighted average of the clicks observed over all the impressions,
so that the weights favor the most recent impressions. If we indicate by α the weighting
parameter, and by xi the indicator variable taking value 1 if the ith impression resulted in a
click and 0 otherwise, this estimator is

CTR =

∑
i xi exp(−αi)∑
i exp(−αi)

. (9)

As stated in [49], all the above methods provide an estimate arbitrarily close to the true CTR
for an appropriate setting of parameters (e.g., a large enough number of impressions in the
average-over-impressions method). Though none appears preferable on the basis of its accuracy,
the picture changes when we consider their fraud-resistance properties, i.e., the capability to
maintain a correct estimate of the CTR, while an advertiser or service provider generates clicks
on an ad with the sole intent of increasing the payment of the advertiser holding that ad. In
fact, in [49] it is shown that all the above estimators fall in the general class of estimates

CTR =

∑
i xiδ(ci)∑
i δ(ci)

, (10)

where ci is the number of impressions that received clicks between impression 1 and impression
i, and δ(·) is a decreasing function. However, not all the estimators in this class are fraud-
resistant. Among the naive estimators defined above, just the average-over-clicks method
exhibits this property.

Though both the naive estimator as well as the exponential discounting estimate (9) of [49] can
be applied to either a slot or an ad, such estimates fail to highlight the relationship between
the CTR and its main determinants. This is the purpose of the estimator proposed in [25],
where the CTR is considered as a function of the ad itself, the ad’s position (the slot), and
the page on which the ad appears. The estimator is then obtained through the maximum
likelihood approach.

The first class of CTR learning method appears quite simple to implement and with a minimal
computational effort, while the real-time applicability on a massive scale of the estimator
proposed in [25] has not been investigated yet.



However, we may have a poor estimate of CTR. For example, we can have the following two
cases:

• The advertiser and the publisher (the search engine in our case) have different estimates
of the CTR;

• The advertisement is relatively new and the estimation of its CTR is based on a short
time sample.

In the first case there is a discrepancy between what the advertiser expects to pay and what the
publisher expects to receive. In order to reduce the effects of divergence in valuations, Goel et
al have introduced contract auctions, which generalize the classical second price auction [41].
In particular, they propose an impression-plus-click pricing mechanism, in which advertisers
pay a fixed amount per impression plus an additional amount if their ad is clicked.

In the second case, the publisher faces conflicting requirements when trying to efficiently al-
locate the ad space and simultaneously estimate the CTR. Hence, he has to strike a balance
between exploring (i.e., showing an ad to get a better estimate of its CTR) and exploiting (i.e.,
showing ads that have the best performance, according to its current estimates of the CTRs).
In [62] it is shown that an advertiser has an incentive to increase his bid by some amount,
which the authors call the value of learning.

To summarize, the CTR is an important parameter to estimate, for reasons of predicting the
revenue from ads and of avoiding fraud. We have overviewed several methods of estimating
the CTR, and discussed the specificities associated with this parameter, e.g. due to the lack
of an adequate number of observations. There still remain some interesting open questions,
particularly regarding how to incorporate the main determinants of the ad in the estimation
of its CTR.

6 Conclusions

We have presented an overview of research that has been conducted in sponsored search auc-
tions mainly in the last five years. Our overview has focused more on game theoretic aspects
and strategic considerations of the interacting entities. We believe this is a promising area for
future research as can be also evidenced by the annual workshops on ad auctions (see e.g. [1]
for the latest one).

Apart from theoretical analysis, it is undoubtedly very important to perform experimental
analysis with empirical data, which however are rarely available publicly. Therefore, we have
also included empirical considerations in our survey. Future research should both incorporate
to a greater extent the recent findings of such work in the theoretical analysis, and study extra
empirical datasets, which will hopefully become publicly available.
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