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Abstract

We study in this paper two competing AIMD flows that share a common bottleneck
link. When congestion occurs, one (or both) flows will suffer a loss that will cause its
throughput to decrease by a multiplicative factor. The identity of the flow that will
suffer a loss is determined by a randomized “loss strategy” that may depend on the
throughputs of the flows at the congestion instant. We analyze several loss strategies:
the one in which the identity of the flow experiencing the loss is independent of the
current throughput and the one in which the flow with the largest throughput is
to suffer the loss; this is compared with the strategy that assigns loss probabilities
proportionally to the throughputs (thus a flow with a larger throughput has a larger
loss probability). After deriving some results for the general asymmetric case, we
focus in particular on the symmetric case and study the influence of the strategy on
the average throughput and average utilization of the link. As the intuition says, a
strategy that assigns a loss to a flow with a higher throughput is expected to give
worse performance since the total instantaneous throughput after a loss is expected
to be lower with such a strategy. Surprisingly, we show that this is not the case.
We show that the average throughput and average link utilizations are invariant:
they are the same under any possible strategy; the link utilization is 6/7 of the link
capacity. We show, in contrast, that the second moment of the throughput does
depend on the strategy.
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1 Introduction

The mathematical analysis of the performance of TCP has been a major re-
search area in networking. Different types of approaches have been suggested
and validated. On the one hand, there have been models focusing on a single
connection that is subject to some exogenous loss process (which does not de-
pend on that connection), see e.g. [2]. This approach is appealing when there
is a large amount of traffic, so that we can neglect the effect of the single
connection on events that cause losses. An alternative approach is necessary
when the window increase of a connection is itself a central cause for losses.
This occurs typically when a small number of connections compete over band-
width, say, at a bottleneck link. A main mathematical approach for studying
this situation has been to study several connections sharing a bottleneck, and
then make the simplifying assumption that all connections reduce their win-
dows simultaneously upon congestion [3–5]. With this approach, it has been
shown [4] that the throughput achieved by a TCP connection is inversely pro-
portional to RTT α with 1 < α < 2, where RTT is the two-way propagation
delay of the connection. However, it turns out that in practice this assump-
tion does not hold, except for drop tail buffers and connections with similar
Round Trip Times (RTTs) [6]. Indeed, traces in [5] (e.g. Fig. 5) show that the
synchronization assumption is invalid for asymmetric connections for a drop
tail buffer.

Instead of considering synchronization, two modeling approaches have been
developed for determining which connection will suffer a packet loss. In the
model of Baccelli and Hong [7], the probability that a connection will lose a
packet is a constant: it does not depend on its current throughput. As argued in
[8], such an assumption is valid in describing AIMD protocols in which packet
transmission rates are constant, and the throughput is varied by changing the
packet size. The use of fixed loss probabilities, with different probabilities for
different flows, can be justified by a pricing-based service differentiation pol-
icy where smaller loss probabilities would be associated with sessions with a
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TC6 Networking Conference [1].

Email addresses: Eitan.Altman@sophia.inria.fr (Eitan Altman),
Rachid.Elazouzi@lia.univ-avignon.fr (Rachid El Azouzi),
David.Ros@enst-bretagne.fr (David Ros), Bruno.Tuffin@irisa.fr (Bruno
Tuffin).

2



higher willingness to pay. An alternative model has been considered in [9] in
which the probability that a connection loses a packet is proportional to the
throughput at the congestion instant. This is called the “proportional strat-
egy”. As validated by simulations [10], this model is appropriate for standard
TCP where packet size is constant.

Motivated by these two approaches, we raise the question of what is the
throughput of an AIMD flow as a function of the strategy that determines
which flow loses a packet at a congestion instant. We focus on the simple
scenario of two competing flows.

Our findings are as follows. We first study the constant probability model from
[7]. In that paper, a linear set of stochastic recursive equations has been intro-
duced for obtaining the throughput, in which the state variables correspond
to the flows’ throughputs after a loss. In this paper we present an alternative
set of stochastic recursive equations in which the states correspond to the
throughput just before the loss occurs. We show that our approach allows us
to reduce the dimensionality of the system by one, so in particular, the case of
two flows can be described by a one-dimensional state equation. This allows us
to obtain an explicit expression for the throughput in the general asymmetric
case for the constant probability model. As a corollary of this result, it is seen
in the symmetric case that the link utilization is 6/7 of its capacity.

We then study a new strategy in which the flow with the largest instantaneous
throughput is the one to lose a packet at congestion instants. Surprisingly, we
obtain the same average throughput and link utilization in the symmetric case
as for the constant probability model. Moreover, this is the same utilization
also obtained for the proportional strategy. This motivated us to examine
the behavior of an arbitrary strategy. Our main finding is that although the
expectation of throughputs at loss instants depend on the strategy, the average
throughput is an invariant quantity for the case of symmetric flows.

We finally derive a general expression for the second moment of the throughput
and compare the performance of the three strategies mentioned above in the
symmetric case, in order to find out which one has the smallest throughput
variability.

The structure of the paper is as follows. In Section 2 we study the throughput
of the constant loss strategy, whereas the Largest Throughput Loss (LTL)
strategy is analyzed in Section 3. Section 4 then presents some numerical
experimentations and comparisons between the strategies. Section 5 studies
the average throughputs in the symmetric setting under an arbitrary strategy
and obtains the invariance property. Section 6 then provides an expression
for the second moment of the throughput under an arbitrary strategy and a
comparison for the three aforementioned strategies. We end with a concluding
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section.

2 Fixed loss probabilities: model and analysis

2.1 Basic definitions and assumptions

This model is based on [7] where an additive increase, multiplicative decrease
(AIMD) model is used to describe the joint throughput evolution of a set of
TCP sessions sharing a common router bottleneck.

In full generality, let N be the number of AIMD sessions competing for band-
width, and C the capacity of the bottleneck router. Let Tn be the n-th conges-
tion epoch and τn+1 = Tn+1 − Tn. Let also ηi be the additive increase rate for
session i and βi be its multiplicative decrease rate. Usually, βi = 1/2 ∀i and ηi

is taken as the square inverse of the round trip time of session i. We consider
here Y (i)

n , the throughput of session i before the n-th congestion epoch, instead
of X(i)

n , the throughput after the n-th congestion epoch like in [7].

Denote by Ȳ (i) session i’s mean throughput. As in [7], let a(i)
n be a Bernoulli

random variable with value 1 if session i experiences a loss at the n-th conges-
tion epoch, and 0 otherwise, so that IE[a(i)

n ] = pi. Note that the a(i)
n (1 ≤ i ≤ N)

are correlated to make sure that at least one packet is lost at each congestion
time.

We have
Y

(i)
n+1 = γ(i)

n Y (i)
n + τn+1ηi (1)

where γ(i)
n = (1 − a(i)

n ) + βia
(i)
n .

As in [7], we assume here that there is a loss as soon as the router capacity is
reached, i.e., as soon as

N∑
i=1

γ(i)
n Y (i)

n + τn+1

N∑
i=1

ηi = C. (2)

This assumption will allow us to derive the throughput at the different con-
gestion epochs.

2.2 Practical justification: pricing for service differentiation

An important question is the justification and choice of the different loss prob-
abilities for different flows. Fixing different probabilities would actually allow
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service differentiation, which becomes compulsory in a congested network with
various QoS requirements. To make sure that users do not always choose the
best QoS, a pricing scheme has to be associated with the loss probability
choice. For surveys on pricing schemes in telecommunication networks, the
reader can see e.g. [11–13].

For instance we can assume that each session tries to optimize its utility

Ui(u) = Ȳ (i) − qu

where

• u is session i’s willingness to pay (that will actually be charged), with opti-
mal value ui, so that session i loss probability is given by

pi = f (i)(u1, · · · , uN)

such that
∑N

i=1 f (i)(u1, · · · , uN) ≥ 1. We just have to make sure that at
least one loss is experienced (meaning that the random variables describing
whether a session experiences a loss are correlated). For instance, we can
choose

pi =
u−1

i∑N
j=1 u−1

j

,

meaning that the loss probability for session i is inversely proportional to
its willingness to pay and that exactly one session will suffer from a loss at
each congestion epoch.

• q is a constant representing the relative weight between the charge and the
throughput (that is fixed by the network manager, in order to maximize the
network revenue),

2.3 Computation of the average throughput

The goal of this subsection is to derive the average throughput of a session in
terms of the loss probabilities when the number of sessions is N = 2.

First, using (2), we get the time between the n-th and (n + 1)-th congestion
epochs

τn+1 =
C −∑N

i=1 γ(i)
n Y (i)

n∑N
i=1 ηi

. (3)

Using this relation we are able to derive a closed-form of the average through-
put Ȳ (1) of session 1. The average throughput Ȳ (2) of session 2 can be obtained
in the same way (or by switching the indexes 1 and 2 in the following formula).

5



Proposition 1 Assume that N = 2. If we denote p12 = IE(a(1)a(2)), ξi =
ηi/(η1 + η2), αi = 1 − βi, p′i = αipi ∀i = 1, 2 and p′12 = α1α2p12, we have that

Ȳ (1) =
Cξ1 (ξ1p

′
2 + ξ2p

′
1)

2p′1


 (ξ1α2 − 2)p′2 + (2 − (1 + ξ2)α1)p

′
1 + 2ξ2p

′
12

(2ξ2 − ξ2
1α1)p′1 + (2ξ1 − ξ2

2α2)p′2 − 2ξ1ξ2p1p′12
×

×
(
ξ1α2 + 2ξ1

(1 − ξ1α2)p
′
2 − ξ2p

′
12

ξ1p′2 + ξ2p′1

)
+ 2

(1 − ξ1α2)p
′
2 − ξ2p

′
12

ξ1p′2 + ξ2p′1
+ α2


. (4)

The proof of this formula is provided in Appendix A.

Corollary 1 Still assuming N = 2, the symmetric case yields

Ȳ (1) =
C

4

(2p1 − (1 − β1)p12)(2(1 + β1)p1 + (1 − β1)(1 − p1)p12)

p2
1(3 + β1 − (1 − β1)p12)

. (5)

Proof: just replace η2 by η1, β2 by β1 and p2 by p1 in Proposition 1.

2.4 Sampling the loss probabilities

The previous expressions of the average throughput are general in the sense
that no special sampling structure has been used for the losses. In this section,
we aim at studying how the losses can be sampled and how it impacts on the
average throughput formula.

2.4.1 Independent sampling

As in [7], we can assume that the a(i)
n are at first generated independently, such

that IP[a(i)
n = 1] = πi, with πi given, but that the samples are restricted to the

domain where at least one loss is experienced. This requires a derivation of πi

in terms of the pj .

Assuming N = 2, we have as in [7]




p1 = π1

1−(1−π1)(1−π2)

p2 = π2

1−(1−π1)(1−π2)
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where πi is for the loss probability for user i, sampled independently, but
reduced to the domain such that a loss is actually experienced. This gives




π1 = p1(π1 + π2 − π1π2)

π2 = p2(π1 + π2 − π1π2)

We obtain the relation

π1 =
p1

p2
π2.

which gives (assuming π2 > 0)

π2 =
p1 + p2 − 1

p1

and then

π1 =
p1 + p2 − 1

p2
.

Then an assumption p1 + p2 = 1 can not be used. Also, it seems difficult to
make sure that π1 ≤ 1 and π2 ≤ 1 for every pair (p1, p2). Thus this sampling
procedure does not work in full generality.

2.4.2 A single loss at congestion epochs

The simplest way to sample is by using the relation

a(2)
n = 1 − a(1)

n

with a(1)
n a Bernoulli random variable such that IP[a(1)

n = 1] = p1. This means
that at each congestion epoch, one and only one session will see a decrease
of its throughput. One way to achieve it would be for instance to consider

∀i ∈ {1, 2}, pi =
u−1

i

u−1
1 +u−1

2

(see Section 2.2).

We then have

p2 = 1 − p1,

p12 = 0.

Substituting these values in (4), we get
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Ȳ (1) =
Cξ1(ξ1 α2(1 − p1) + ξ2 p′1)

2p′1



(
ξ1α2 + 2 ξ1

(1 − ξ1 α2)α2(1 − p1)

ξ1 α2(1 − p1) + ξ2 p′1

)
×

× (ξ1 α2 − 2)α2(1 − p1) + (2 − (1 + ξ2)α1)p
′
1

(2 ξ2 − ξ1
2α1)p

′
1 + (2 ξ1 − ξ2

2α2)α2(1 − p1)
+2

(1 − ξ1 α2)α2(1 − p1)

ξ1 α2(1 − p1) + ξ2 p′1
+α2



(6)

The symmetric case (with p1 = p2 = 1/2, η2 = η1 and β2 = β1) yields

Ȳ (1) =
(1 + β1 ) C

3 + β1
.

If β1 = 1/2, we obtain Ȳ (1) = 3
7
C, like in [9] for the proportional loss strategy.

3 The largest throughput loss (LTL) strategy

Let us look at the case where the session that is penalized is systematically
the one with the largest throughput. We call this the “Largest Throughput
Loss” (LTL) strategy. Consider the n-th congestion epoch, with throughputs
Y (1)

n and Y (2)
n such that Y (1)

n + Y (2)
n = C. Without loss of generality, assume

Y (1)
n > Y (2)

n and that the additive increase is 1.

3.1 The symmetric case: the periodic solution

We identify a periodic solution for the evolution of the system. In this regime,
we assume (without loss of generality) that at time n, flow 1 has a larger
throughput than flow 2. We seek for a regime in which at time n + 1 the
situation is reversed, and so on. This gives the following dynamics:




Y (1)
n /2 + τn+1 = Y (2)

n

Y (2)
n + τn+1 = Y (1)

n

Y (1)
n + Y (2)

n = C,

leading to

τn+1 =
1

7
C, Y (1)

n =
4

7
C and Y (2)

n =
3

7
C.
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As in the proof of Proposition 1, but due to the periodicity of the system, the
average throughput is given by S/IE[2τ ] where S is the cumulative through-
put of a session between congestion epochs n and n + 2 (in one period, the
throughput is going from 2C/7 to 3C/7 and in the other one from 3C/7 to
4C/7). This gives S = 12

98
C2, leading again to Ȳ (1) = Ȳ (2) = 3

7
C and an aver-

age utilization of 6
7

as we obtained in the previous section and as is the case in
the model in [9]. Obviously, IE[Y (i)

n ] are also the same in all three cases (and
equal to C/2). One could wonder whether in fact the distribution of the rates
is independent of the way one chooses the flow to decrease the rate at Tn.
Note however, that IE[(Y (i)

n )2] = 25C2/98 in our example, which is different
than the value of 7C2/26 obtained in the regime considered in [9].

3.2 The dynamic equations for the asymmetric case

For each flow i = 1, 2 we have

Y
(i)
n+1 =




Y (i)
n /2 + τn+1ηi if Y (i)

n > C/2

Y (i)
n + τn+1ηi if Y (i)

n < C/2.
(7)

For the case that Y (i)
n = C/2 any tie breaking rule can be considered. Com-

bining this with the relation Y (2)
n = C − Y (1)

n as well as Y
(2)
n+1 = C − Y

(1)
n+1

gives

τn+1 =




Y
(i)
n

2(η1+η2)
if Y (i)

n > C/2

C−Y
(i)
n

2(η1+η2)
if Y (i)

n < C/2.

Substituting in (7) gives

Y
(i)
n+1 =




1
2

(
1 + ηi

η1+η2

)
Y (i)

n if Y (i)
n > C/2(

1 − ηi

2(η1+η2)

)
Y (i)

n + Cηi

2(η1+η2)
if Y (i)

n < C/2.

These equations can be used to obtain the exact transient behavior of the
system. The average throughput can then be computed by

Ȳ (i) = lim
n→∞

∑n
k=1 τk+1(Y

(i)
k+1 + γ

(i)
k Y

(i)
k )/2∑n

k=1 τk+1

3.3 The case η2/η1 → 0

We consider here the case of x → 0 where x := η2/η1 and assume for simplicity
that βi = 1/2. We present a heuristic argument to compute the bandwidth
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sharing.

Flow 2 will increase its rate until it reaches C/2, so its trajectory at steady
state will be periodic (with a period of duration of C/(4η2)), linearly increasing
between C/4 to C/2. Its average throughput is 3C/8.

Flow 1 Fix ∆ =
√

x/η2. We can view the problem as one with two time
scales: flow 1 is much faster than flow 2, so during the interval [n∆, (n +
1)∆), the throughput of flow 2 can be approximated by a constant which
we denote by Y (2)(n); assume that this constant is smaller than C/2. During
that interval, the throughput of flow 1 will oscillate very quickly (between
half of the remaining and all the remaining bandwidth) so that it will use in
average over that interval 3/4 of the remaining bandwidth. Thus its average
bandwidth during the interval is (3/4)(C − Y (2)(n)), and during the whole
period of C/(4η2) it will be (3/4)(C − 3C/8) = 15C/32.

Thus as x → 0 we see that the fast flow will get 5/4 of the throughput of the
slow flow under the LTL strategy.

3.4 Symmetric case with more than two flows (N > 2): the periodic solution

Assume now that we have N > 2 symmetric flows. Assume that Y (1)
n > Y (2)

n >
· · · > Y (N)

n at time n. This gives the following system of N + 1 equations:




Y (1)
n /2 + τn+1 = Y (N)

n

Y (2)
n + τn+1 = Y (1)

n

: : :

Y (N−1)
n + τn+1 = Y (N−2)

n

Y (N)
n + τn+1 = Y (N−1)

n

Y (1)
n + Y (2)

n + .. + Y (N)
n = C.

By adding up the N first equations we get

Nτn+1 +
N∑

i=2

Y (i)
n + Y (1)

n /2 = C.

Since
∑N

i=2 Y (i)
n = C − Y (1)

n , the last equation becomes

Nτn+1 + C − Y (1)
n + Y (1)

n /2 = C,
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leading to

τn+1 =
Y (1)

n

2N
.

We then obtain

Y (i) = Y (1)
(
1 − i − 1

2N

)
. (8)

From
∑N

i=1 Y (i) = C, we have

Y (1)

(
N∑

i=1

(
1 − i − 1

2N

))
= C

Y (1)
(
N − N − 1

4

)
= C

Y (1)
(

3N + 1

4

)
= C,

leading to

Y (1) =
4

3N + 1
C.

From (8) we then have

Y (i)
n =

2(2N + 1 − i)

N(3N + 1)
C, i = 2, ..N and τn+1 =

2

N(3N + 1)
C.

As in the proof of Proposition 1, but due to the periodicity of the system, the
average throughput is given by S/IE[Nτ ] where S is the cumulative throughput
of a session between congestion epochs n and n + N . We have

S =
1

2

(
(Y

(1)
n+1 − Y (1)

n /2)τn+1 +
N∑

i=2

(Y
(1)
n+i + Y

(1)
n+i−1)τn+i

)
(9)

=
τ

2
(2

N−1∑
i=1

Y
(1)
n+i +

1

2
Y (1)

n + Y
(1)
n+N) =

τ

2
(2

N∑
i=1

Y
(1)
n+i −

1

2
Y (1)

n ) (10)

=
1

N(3N + 1)
C(2C − 2

3N + 1
C) =

6

(3N + 1)2
C2. (11)

Thus, the average throughput is given by

Ȳ (i) =
3N

N(3N + 1)
C, i = 1, 2, · · · , N.
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4 Numerical results for the fairness in bandwidth sharing

We study in this section the fairness in throughput as a function of the round
trip times (when N = 2). We recall that the square root formula of TCP as
well as its refinements (see [14],[2]) predict that the throughput of a connection
should be inversely proportional to its RTT. We shall compare this with the
fairness obtained under our model of interacting flows.

4.1 Constant loss strategy

We now look at the ratio Ȳ1/Ȳ2 of average throughputs. To simplify the ex-
pressions, let us assume that β1 = β2 = 1/2 and that p1 = p2 = p ≥ 1/2.
We also assume that the linear growth rates are inversely proportional to the
square of the round trip times, i.e., ηi = 1/R2

i for i = 1, 2. (Indeed, the window
increases by one each RTT, and since the throughput is given by the window
size divided by the RTT, the increase rate of the throughput is 1/RTT 2.)

We then obtain from (5) that

Ȳ1

Ȳ2
=
(

R2

R1

)2 3pR2

R1
+ 5p − 2p12

5p
(

R2

R1

)2
+ 3p − 2p12

(
R2

R1

)2 .

If we further assume that exactly one flow will experience a loss, then we have
p12 = 0 and p = 1/2 giving

Ȳ1

Ȳ2

=
(

R2

R1

)2 3
(

R2

R1

)2
+ 5

5
(

R2

R1

)2
+ 3

.

We depict the fairness in throughputs for the fixed loss strategy in Figure 1.

As can be seen on Figure 1, the ratio of average throughputs is very close to
be linear in the square of the ratio of round trip times.

4.2 The LTL strategy

In Figure 2 we depict the throughput ratios as a function of the ratio of the
inverse of the square of RTTs for the LTL strategy. The values are obtained by
computing the throughput as in Subsection 3.2. We observe that although in
general the throughput has a tendency to increase as the corresponding RTT
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Fig. 1. The ratio Ȳ1/Ȳ2 as a function of the ratio R2/R1 for the constant loss strategy.
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Fig. 2. The ratio in throughput as a function of the ratio of RTT−1 for the LTL
strategy.

decreases, we see that the throughput curve is quite irregular and fractal, and
locally there are many points where the opposite behavior is observed: increas-
ing the RTT of a flow results in increasing its throughput. This can perhaps
be explained in part by changes in the periodicity of the steady state behav-
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ior and in other discrete nature behavior. The analysis of this phenomenon is
beyond the scope of this paper. We note that other fractal aspects of AIMD
flows in networks with several nodes have already been reported in [15]. We
finally observe that as the RTT of a flow becomes negligible with respect to
the other, its share of the throughput converges to 5/4 of the throughput of
the other flow, as predicted in Section 3.3.

4.3 Comparisons

We first observe that the throughput sharing in the LTL strategy is much more
fair than in the probabilistic sharing: it is much less sensible to the differences
in RTT. Indeed, a flow with 3 times smaller RTT gets only 1.21 times more
throughput in the LTL strategy, whereas it gets 6 times more throughput in
the case of the constant probabilities strategy.

The fairness behavior of the proportional drop strategy has already appeared
in [10], where the flow with 3 times smaller RTT gets 2.75 times more through-
put. Comparing to these results we see that, in terms of fairness, the LTL
strategy gives the best results whereas the worse performance is provided by
the fixed loss probabilities strategy.

The behavior of the throughput as the ratio of RTT goes to zero is in particular
interesting. The throughput of the long flow and its share of the throughput
tend to zero in the constant loss strategy, as well as with the proportional
strategy [9, Sec. 7-8], whereas it tends to a positive constant under the LTL
strategy.

Note that the fact that we obtain different average throughput sharing under
different policies reflects the fact that, in contrast to the symmetric case,
the throughput is not invariant with respect to the strategy in the general
asymmetric case.

5 The symmetric case: invariance of the throughput for a general
strategy

Consider now a general strategy for deciding which flow will decrease its rate
when capacity is reached. The decrease is by a constant β and the increase
rate is η. We still restrict ourselves to the symmetric case of two flows, and
assume that one and only one flow decreases its rate when the capacity is
reached. At such a moment, flow 1 that transmits at a rate of y will decrease
its rate with probability f(y) and flow 2 will decrease its rate with probability
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1 − f(y). We assume that the rate process of both flows is in a stationary
ergodic regime. In particular we shall focus again on Y (1)

n , the rate of flow 1
just before a rate decrease occurs.

5.1 The Markov chain

We focus on flow 1; Yn := Y (1)
n is a semi-Markov process. If the state at time

Tn is Yn = y, then

• If flow 1 is the one to decrease its rate (this occurs with probability f(y))
then we shall have at Tn+1

Y
(1)
n+1 = βy + ητn+1, Y

(2)
n+1 = C − y + ητn+1.

Since the sum of the rates of the flows at that time is C, we obtain τn+1 =
y(1 − β)/(2η), and thus

Yn+1 = y

(
1 + β

2

)
.

Finally, the surface S := S(1) is given by

S =
1

2
(βYn + Yn+1)τn+1 = y2 (1 + 3β)(1 − β)

8η
.

• If flow 2 is the one to decrease its rate (this occurs with probability 1−f(y))
then

Y
(1)
n+1 = y + ητn+1, Y

(2)
n+1 = β(C − y) + ητn+1.

Since the sum of the rates of the flows at that time is C, we obtain τn+1 =
(C − y)(1 − β)/(2η), and thus

Yn+1 = y
1 + β

2
+ C

1 − β

2
.

Next we compute S:

S =
1

2
(Yn + Yn+1)τn+1 =

1 − β

8η
(−(3 + β)y2 + 2C(1 + β)y + C2(1 − β)).

Below we shall use Y to denote a random variable distributed like Yn at steady
state. Similarly we shall use the notation τ to denote τn+1 at steady state.
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5.2 Expectations

By symmetry we have IE[Y ] = C/2, and also clearly IE[f(Y )] = 1/2. Using the
previous expressions for τ and then taking expectation we obtain at steady
state

IE[τ ] = IE

[
Y

1 − β

2η
f(Y ) +

(C − Y )(1 − β)

2η
(1 − f(Y ))

]

= (1 − β)IE[Y f(Y )]/η.

(12)

This can also be obtained alternatively by an up-down crossing argument: If
we denote by Zn the rate of flow 1 just after Tn, then the expected decrease
in rate at Tn is

IE[Yn − Zn] = (1 − β)IE[Y f(Y )].

The average increase in the rate ηIE[τ ] should compensate for the average de-
crease in the rate, from which we obtain (12). Next we express the expectation
of the surface:

IE[S] =
1 − β

8η
IE
[
(1 + 3β)Y 2f(Y ) + (−(3 + β)Y 2

+ 2C(1 + β)Y + C2(1 − β))(1 − f(Y ))
]

=
1 − β

8η

(
− (3 + β)IE[Y 2] + 4(1 + β)IE[Y 2f(Y )]

− 2C(1 + β)IE[Y f(Y )] + C2 3 + β

2

)
.

Proposition 2 The average throughput of a flow in a symmetric network of
two flows is given by

Ȳ =
1 + β

3 + β
C,

independent of the sampling function f .

Proof: We need to compute IE[S]/IE[τ ], but for that we first need to compute
several unknowns: IE[Y f(Y )], IE[Y 2] and IE[Y 2f(Y )]. In order to obtain them,
we shall also need to obtain the unknown IE[Y 3].

Our first relation between the unknowns is obtained by writing that IE[(Yn)2] =
IE[(Yn+1)

2] and using our previous expressions to write Yn+1 in terms of Yn:

IE[Y 2] = IE
[(

1 + β

2

)2

Y 2f(Y ) +
1

4

(
(1 + β)Y + (1 − β)C

)2

(1 − f(Y ))
]

Note that the term IE[Y 2f(Y )] cancels out here, and we obtain a simple rela-
tion between the unknowns IE[Y 2] and IE[Y f(Y )].
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IE[Y 2]


1 −

(
1 + β

2

)2

 =

C2

8
(1 − β)(3 + β) − C

2
(1 − β2)IE[Y f(Y )].(13)

To obtain an expression for IE[Y 2f(Y )] we use the fact that at steady state
IE[(Yn)3] = IE[(Yn+1)

3] and substitute our previous expressions to write Yn+1

in terms of Yn:

IE[Y 3] = IE
[(

1 + β

2

)3

Y 3f(Y ) +
1

8

(
(1 + β)Y + (1 − β)C

)3

(1 − f(Y ))
]
.

Note that the term IE[Y 3f(Y )] cancels out here, and we obtain a relation
between all the unknowns IE[Y 3], IE[Y 2], IE[Y 2f(Y )] and IE[Y f(Y )]:

IE[Y 3]
(
1 − 1

8
(1 + β)3

)
=

3C

8
(1 + β)2(1 − β)IE[Y 2]

− 3C

8
(1 + β)2(1 − β)IE[Y 2f(Y )]

− 3C2

8
(1 + β)(1 − β)2IE[Y f(Y )]

+
C3

8
(1 − β)2(2 + β).

Another relation is obtained by using the fact that by symmetry IE[Y 3] =
IE[(C − Y )3] (since C − Y is the rate of the second flow). This gives

IE[Y 3] =
1

2

(
3CIE[Y 2] − 3

C3

2
+ C3

)
=

1

2

(
3CIE[Y 2] − C3

2

)
. (14)

We thus have three equations with four unknowns. If we had four independent
equations this would have given us a single solution for the unknowns. But
noting that the coefficients of these unknowns do not depend on the function
f , this would mean that the unknowns do not depend on f . This is however
not the case, since we already saw above that IE[Y 2] is different for different
functions f . We shall carry however the calculations in order to check whether
the average rates will turn out not to depend on f .

Using the previous relations, we can express IE[S] in terms of IE[Y f(Y )] by

IE[S] =
(1 − β)(1 + β)IE[Y (f(Y )]C

η(3 + β)
.

Using the expression (12) of IE[τ ], we obtain the result.
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6 The symmetric case: second moment of the throughput

Even if all possible loss strategies provide the same average throughput in
steady-state in the symmetric case we can wonder about the variability of the
throughput. In real-time applications that may use AIMD protocols in order
to be TCP-friendly, it is clearly advantageous to have the lowest possible
throughput variability.

The following Proposition gives a general expression for the second moment
of the throughput. As will be seen, this expression is not invariant any more,
in contrast to the first moment.

Proposition 3 Let IE[S2] denote the mean cumulative of the square through-
put between two loss epochs. The (average) second moment of throughput is

IE[S2]

IE[τ ]
=

1

3
(1 + β + β2)

IE[Y 3f(Y )]

IE[Y f(Y )]
.

Proof: The mean cumulative of the square throughput between two loss epochs
is given by

S2 =
1

3

(Yn+1)
3 − (βYn)

3

Yn+1 − βYn
τn+1 =

1

3
(β2Y 2

n + βYnYn+1 + Y 2
n+1)τn+1

if the loss is experienced at time n by session 1, and

S2 =
1

3

(Yn+1)
3 − (Yn)

3

Yn+1 − Yn

τn+1 =
1

3
(Y 2

n + YnYn+1 + Y 2
n+1)τn+1

otherwise. Using the previous results we have

IE[S2] =
1 − β

6η
IE




β2Y 2 + β

(
1 + β

2

)
Y 2 + Y 2

(
1 + β

2

)2

Y f(Y )

+
(
Y 2 +

Y

2
(Y (1 + β) + C(1 − β)) +

1

4
(Y (1 + β) + C(1 − β))2

)

× (C − Y )(1 − f(Y ))




=
1 − β

24η

(
(8 + 8β + 8β2)IE[Y 3f(Y )] − (7 + 4β + β2)IE[Y 3]

+ C(3 + 6β + 3β2)IE[Y 2] − C(3 + 6β + 3β2)IE[Y 2f(Y )]

− C2(3 − 3β2)IE[Y f(Y )] + C3(2 − β − β2)
)
.

Following the proof of Proposition 2, the only unknowns left are IE[Y f(Y )]
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and IE[Y 3f(Y )] and we get

IE[S2] =
1

3η
(1 − β)(1 + β + β2)IE[Y 3f(Y )].

We then obtain the result.

Since we still have two unknowns, one could argue that their ratio is constant.
Actually, it is not the case from the following proposition where we compare
the second order moment for the three loss strategies (constant, proportional
or largest flow).

Proposition 4 Let β = 1/2. Using the constant loss probability scheme, we
get

Qcst =
IE[S2]

IE[τ ]
=

5

24
C2 ≈ 0.2083C2

whereas when the loss is applied to the largest flow (LTL strategy), we have

Qltl =
IE[S2]

IE[τ ]
=

4

21
C2 ≈ 0.1905C2

and the scheme with proportional losses gives

Qpro =
IE[S2]

IE[τ ]
=

679

3396
C2 ≈ 0.19994C2.

We see from the proposition that in the symmetric case, the LTL strategy is
to be preferred (in terms of lower second moment), whereas the strategy of
fixed loss probability has the worst performance.

Proof of Proposition 4: Consider the scheme with constant loss probability.
Since f(Y ) = 1/2, we have IE[Y jf(Y )] = IE[Y j]/2 ∀j. From Equation (13),
we get IE[Y 2] = 2C2/7. Then, from (14), IE[Y 3] = 5C3/28, leading to the
result.

If we look at the scheme where the loss is experienced to the largest flow in
its periodic behaviour, we can directly get IE[S2] from the mean cumulative of
the square throughput between loss epochs Tn and Tn+2 by

2IE[S2] =
∫ 2C/7

0
(x + 2C/7)2dx =

8

147
C3.

Since IE[τ ] = C/7, we get the result.

Let us now look at the scheme with proportional losses. We have F (Y ) = Y/C.
From [9], we have IE[Y ] = C/2, IE[Y 2] = 7C2/26, IE[Y 3] = 2C3/13, IE[Y 4] =
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679C4/7358. This leads to E[Y f(Y )] = 7C/26 and E[Y 3f(Y )] = 679C3/7358,
which gives the result.

7 Discussion and future research

We have presented in this paper various loss strategies that determine which
flow will lose a packet when a congestion occurs. We have shown that such
loss strategies may have a considerable impact on the throughput variability
(which may be an important performance measure in real-time applications
that use AIMD protocols to be TCP-friendly) but that they all lead to the
same average throughput in the special case of a symmetric network with two
flows. Among three specific strategies that we introduced, we have shown in
the above setting that the LTL strategy (i.e., the strategy that drops a packet
from the flow with highest throughput) has the best performance in terms
of throughput variability, and moreover, it guarantees a positive share of the
throughput even when the RTT of one of the flows becomes arbitrarily large.

The mathematical study of the sharing of bandwidth under various loss strate-
gies turns out to be quite involved. So far we have not been able to get explicit
expressions for the asymmetric network with two flows when the LTL or the
proportional loss strategies are used. We have provided however an (involved)
explicit expression for the throughput for the case of constant loss strategy.
For the symmetric case, however, we have obtained an explicit expression for
the throughput under an arbitrary loss strategy.

The cases of more than one link and more than two flows, however interesting,
are beyond the scope of this paper. In particular, we indeed use the model of
[7] where there is a single bottleneck, common to all the flows that traverse it.
So far we have not been able to apply our analytical approach to study more
than two flows; this is left for future research.

Many open problems remain: 1. Is there any probabilistic argument that can
explain the invariance of the average throughput in the loss strategy phe-
nomenon in the case of two flows? 2. Does the invariance of the throughput
holds for the case of more than two competing symmetric flows? 3. What is
the reason for the fractal behavior of the throughput sharing under LTL? 4.
How to implement LTL? Note that a desirable way of implementation should
be stateless, and it should make use only of local information available at the
bottleneck element.
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A Proof of Proposition 1

Using (3), the recursive equation (1) becomes

Y
(i)
n+1 = γ(i)

n Y (i)
n

(
1 − ηi∑N

j=1 ηj

)
− ηi

∑
j �=i γ

(j)
n Y (j)

n∑N
j=1 ηj

+ C
ηi∑N

j=1 ηj

. (A.1)

Since N = 2, we have
Y (2)

n = C − Y (1)
n (A.2)

and ∀i ∈ {1, 2} and j ∈ {1, 2} with j �= i,

Y
(i)
n+1 = γ(i)

n Y (i)
n

(
1 − ηi∑2

k=1 ηk

)
− ηi

γ(j)
n (C − Y (i)

n )∑2
k=1 ηk

+ C
ηi∑2

k=1 ηk

leading to

Y
(i)
n+1 = Y (i)

n

(
γ(i)

n − (γ(i)
n − γ(j)

n )
ηi∑2

k=1 ηk

)
+ C

ηi∑2
k=1 ηk

(1 − γ(j)
n ). (A.3)

If we define
B(i)

n = γ(i)
n − (γ(i)

n − γ(j)
n )

ηi∑2
k=1 ηk

and
A(i)

n = C
ηi∑2

k=1 ηk

(1 − γ(j)
n ),

Equation (A.3) can be written

Y
(i)
n+1 = Y (i)

n B(i)
n + A(i)

n . (A.4)

In steady-state, we get

IE(Y (i)) =
IE(A(i))

1 − IE(B(i))
. (A.5)

To compute the mean throughput of session i, we have

Ȳ (i) =
IE(S(i))

IE(τ)
,

where IE[S(i)] is the average cumulated throughput between two congestion
epochs.

First, since ((a(1)
n , a(2)

n ))n is a sequence of independent random vectors, γ(i)
n and

Y (i)
n are independent and

IE[τ ] =
C − IE[γ(1)]IE[Y (1)] − IE[γ(2)]IE[Y (2)]∑2

k=1 ηk

. (A.6)
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Let
ξi =

ηi∑2
k=1 ηk

.

Using

IE[γ(i)] = 1 − pi + βipi

IE[A(i)] = Cξi(1 − IE[γ(j)]) = Cξipj(1 − βj)

IE[B(i)] = (1 − ξi) IE[γ(i)] + ξiIE[γ(j)] = ξjIE[γ(i)] + ξiIE[γ(j)]

= 1 − (1 − βi)ηjpi + (1 − βj)ηipj∑2
k=1 ηk

,

IE[Y (i)] =
IE[A(i)]

1 − IE[B(i)]
=

Cηipj(1 − βj)

(1 − β2)η1p2 + (1 − β1)η2p1
.

Note that IE[B(i)] = IE[B(j)] do not depend on the session and can then be
written IE[B].

We can deduce that

IE[τ ] = C
(1 − β1)(1 − β2)p1p2

(1 − β2)η1p2 + (1 − β1)η2p1
.

We now need to compute IE[S(i)] in terms of p1 and p2. If we note S(i)
n , the

cumulated throughput between n-th and n + 1-th congestion epochs, we have

S(i)
n =

1

2
(Y

(i)
n+1 + γ(i)

n Y (i)
n )τn+1

=
1

2
(Y (i)

n B(i)
n + A(i)

n + γ(i)
n Y (i)

n )
C − γ(i)

n Y (i)
n − γ(j)

n Y (j)
n∑2

k=1 ηk

=
1

2
(Y (i)

n B(i)
n + A(i)

n + γ(i)
n Y (i)

n )
(1 − γ(j)

n )C + (γ(j)
n − γ(i)

n )Y (i)
n∑2

k=1 ηk

=
(
Y (i)

n

(
C(1 − γ(j)

n )(B(i)
n + γ(i)

n ) + (γ(j)
n − γ(i)

n )A(i)
n

)
+
(
CA(i)

n (1 − γ(j)
n )

)

+ (Y (i)
n )2

(
(γ(j)

n − γ(i)
n )(B(i)

n + γ(i)
n )
))(

2
2∑

k=1

ηk

)−1

(A.7)

From (A.4), since B(i)
n and Y (i)

n are independent, we get

IE[(Y
(i)
n+1)

2] = IE[(B(i)
n )2]IE[(Y (i)

n )2] + IE[(A(i)
n )2] + 2IE[Y (i)

n ]IE[B(i)
n A(i)

n ]

leading to

IE[(Y (i))2] =
IE[(A(i))2] + 2IE[Y (i)]IE[B(i)A(i)]

1 − IE[(B(i))2]
. (A.8)
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Using the fact that ∀k ∈ {1, 2}, (a(k)
n )2 = a(k)

n , we have

IE[(γ(i))2] = 1 − 2(1 − βi)pi + (1 − βi)
2IE[(a(i))2]

= 1 − (1 − β2
i )pi

IE[γ(1)γ(2)] = 1 −
2∑

k=1

(1 − βk)pk +

(
2∏

k=1

(1 − βk)

)
IE[a(1)a(2)]

IE[(A(i))2] = C2ξ2
i (1 − 2IE[γ(j)] + IE[(γ(j))2])

= C2ξ2
i (1 − βj)

2pj

IE[(B(i))2] = ξ2
1IE[(γ(2))2] + ξ2

2IE[(γ(1))2] + 2ξ1ξ2IE[γ(1)γ(2)]

= 1 − 2ξ1(1 − β2)p2 − 2ξ2(1 − β1)p1

+ IE
[(

ξ1(1 − β1)a
(1) + ξ2(1 − β2)a

(2)
)2
]

IE[B(i)A(i)] = CξiIE
[
ξiγ

(j) − ξi(γ
(j))2 + ξjγ

(i) − ξjγ
(i)γ(j)

]

= Cξi


(1 − βj)pj − ξi(1 − βj)

2pj − ξj

(
2∏

k=1

(1 − βk)

)
IE[a(1)a(2)]




IE[(Y (i))2] =

(
C2ξ2

i (1 − βj)2pj

+ 2
C2ξ2

i pj(1 − βj)
[
(1 − βj)pj − ξi(1 − βj)2pj − ξj

(∏2
k=1(1 − βk)

)
IE[a(1)a(2)]

]
ξ1p2 + ξ2p1 − β2ξ1p2 − β1ξ2p1

)

×
(

2ξ1(1 − β2)p2 + 2ξ2(1 − β1)p1 − IE
[(

ξ1(1 − β1)a(1) + ξ2(1 − β2)a(2)
)2
])−1

(A.9)

We also have

IE[(1 − γ(j)
n )A(i)

n ] = CξiIE[(1 − γ(j))2]

= Cξi(1 − βj)
2pj (A.10)

IE[(γ(j)
n − γ(i)

n )(B(i)
n + γ(i)

n )] =

= IE
[(

(1 − βi)a
(i) − (1 − βj)a

(j)
)

×
(
1 − ξj(1 − βi)a

(i) − ξi(1 − βj)a
(j) + 1 − (1 − βi)a

(i)
)]

= ξi(1 − βj)
2pj − (1 + ξj)(1 − βi)

2pi − 2(1 − βj)pj

+ 2ξj(1 − βj)(1 − βi)IE
[
a(i)a(j)

]
+ 2(1 − βi)pi

(A.11)
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IE
[
C
(
1 − γ(j)

n

) (
B(i)

n + γ(i)
n

)
+ (γ(j)

n − γ(i)
n )A(i)

n

]
=

= IE
[
C(1 − βj)a

(j)
[
2 − (1 + ξj)(1 − βi)a

(i) − ξi(1 − βj)a
(j)
]

+
(
(1 − βi)a

(i) − (1 − βj)a
(j)
)
Cξi(1 − βj)a

(j)
]

= C
(
2(1 − βj)pj − 2ξi(1 − βj)

2pj − 2ξj(1 − βj)(1 − βi)IE
[
a(i)a(j)

])
.

(A.12)

Inserting (A.9), (A.10),(A.11), and (A.12) into (A.7), we get an expression

of IE
[
S(i)

]
. Dividing by the expression (A.6) of IE [τ ], and denoting p12 =

IE(a(1)a(2)), αi = 1 − βi, p′i = αipi ∀i = 1, 2 and p′12 = α1α2p12, we obtain the
result.
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