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Abstract

In this paper, we give necessary and sufficient conditions that ensure the validity of
confidence intervals, based on the central limit Theorem, in simulations of highly reliable
Markovian systems. We take recourse to simulation because of the frequent huge state
space in practical systems. So far the literature has focused on the property of bounded
relative error. In this paper we focus on “bounded normal approximation” which asserts
that the approximation of the normal law, suggested by the central limit Theorem, does not
deteriorate as the reliability of the system increases. We see that the set of systems with
bounded normal approximation is (strictly) included in the set of systems with bounded
relative error.
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1 Introduction

Fault tolerant multi-components systems (which tolerate also fault propagation),
such as computer or telecommunication systems, are becoming more and more re-
liable. Such systems are often represented by Markovian models. Direct computa-
tional time of dependability metrics in these models, like the MTTF (Mean Time
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To Failure) or the availability, is very expensive. Also, approximate numerical tech-
niques like state lumping and unlumping e.g. [4] and state aggregation and bounding
e.g. [10] require considerable computer time and memory. Crude Monte Carlo simu-
lation (i.e. sampling from the embedded Markov chain using the original probability
measure) is inefficient because of the rarity of the system failure events. Thus we use
variance reduction methods, principally importance sampling techniques. A general
description of this technique can be found in [8]. In the literature, a number of
schemes have been proposed for highly reliable Markovian systems. These include
Bias1 failure biasing [9] (also called simple failure biasing), balanced failure biasing
[13], Bias2 failure biasing [5] and failure distance biasing [2]. All these schemes in-
crease the probability of transitions corresponding to component failures and thus
make that the system failure events happen more often. The estimates are then ad-
justed to make them unbiased. Shahabuddin [13] introduced the notion of bounded
relative error. If an estimator enjoys this property, we only need a fixed number of
replications to obtain a confidence interval having a fixed relative error, no matter
how rarely system failures occur. Shahabuddin [13] showed that balanced failure bi-
asing has the bounded relative error property for a large class of reliability models;
the paper also showed that the Bias] failure biasing scheme has the bounded relative
error property for a special class of systems called balanced systems. A more general
study of when or when not a scheme has bounded relative error may be found in
[12].

The confidence interval is developed from the approximation of the distribution
of a normalized sum of independent and identically distributed random variables by
the normal distribution, as suggested by the central limit Theorem. In this paper,
we show that we also have to consider the validity of this normal approximation.
We develop conditions under which the error in the normal approximation remains
bounded as systems failures become rarer - we call the latter bounded normal ap-
proximation. To obtain bounded normal approximation is as important as to obtain
bounded relative error, because it justifies the validity of the confidence interval, and
hence the use of the method, for a fixed number of observations, as the reliability
increases. Moreover, we prove that bounded normal approximation implies bounded
relative error.

This paper is organized as follows: in section 2, we recall the model specification
given by Nakayama in [12]| which is a slightly modified version of the one originally
presented by Shahabuddin in [13]. In section 3 we give the theorem that gives con-

ditions under which one gets bounded normal approximation. Section 4 shows that



schemes with bounded normal approximation are also ones with bounded relative
error and that the inclusion is strict. It is also shown in the same section that the
balanced failure biasing scheme has the bounded normal approximation property for
a large class of reliability models and that the three other commonly used schemes
have the property for a more restrictive class of models. Finally we conclude in

section 5.

2 Model presentation

We use the notations of [13] and [12]. A function f is said to be o(c?) if f(g)/e? — 0
as ¢ — 0. Similarly, f(¢) = O(e?) if | f(¢)| < c1¢¢ for some constant ¢; > 0 for all €
sufficiently small. Tt is said to be O(g?) if |f(g)| > cpe? for some constant ¢ > 0 for
all ¢ sufficiently small. Finally, f(¢) = ©(&?) if f(¢) = O(¢?) and f(g) = O(&4).

We suppose that the system has C' types of components, with n; components
of type i. The total number of components is then N = ¥ n,;. The system is
subject to random failures and repairs with exponential laws. The model is given by
a continuous time Markov chain (CTMC) (Y}):>o defined on the finite state space S
where each x € S gives for all : = 1,...,C, the number of operational components
(also called up components) of type i, n;(x). We label the state with all components
up as 1. We suppose that this is the initial state. S is partitioned into two subsets
U and F, where U denotes the set of up states and F' the set of down states. We
assume that if z € U and y € S with n;(y) > n;(z) for all component types ¢, then
y € U. Of course, 1 € U. Failure propagations are allowed. Let p(y;x,7) be the
probability that, if the system is in state x and a component of type ¢ fails, the
system goes directly to state y by means of propagations. A transition (z,y) from
a state x to a state y is said to be a failure transition if V1 < i < C, n;(y) < ni(z),
with a strict inequality for some type #; this is denoted y > x. We define in an
analogous way the repair transitions, which we denote as y < x. Let I' be the set
of possible transitions. When we are in state x, a repair occurs to state y with rate
w(z,y). A failure of a component of type i occurs exponentially in state x with rate
Ai(z). Given that failures are rare, we introduce a rarity parameter £ > 0, such that
e < 1 such that

Xi(z) = a; ()@,

where a;(x) > 0 and b;(z) > 1 are independent of €. In the same way we suppose



that
p(y, x, Z) =g (lE, y)&.di(x,y)
where d;(z,y) > 0 is integer-valued, c;(z,y) > 0 and ¥ yes p(y; z,7) = 1. We assume

that repair rates u(z,y) are independent of e.

The infinitesimal generator of Y, denoted by Q = (¢(x,¥))syes, is given by

E/?:l ne(x)\e(2)p(y; 2, k) ify >z
q(z,y) = pw(z,y) ify <2
0 elsewhere

for z # y, and —q(2,2) = ¥,., ¢(z,y). Define ¢(x) = —q(z,r) and let us denote
by X the canonically embedded discrete time Markov chain (DTMC) and by P its

transition matrix. If we call by = min;<;<¢ b;(1) and

bz, y) = { ming_ {b;(z) + di(x,y) :Oni(a:)ai(a:)p(y; x,i) >0} iiz : z

is the exponent of the order of magnitude of the rate of the transition (x,y), we have
[12] that for any (z,y) € T,

Ot ifxr #£1
O(cblew)=bo) if x = 1.

P(z,y) = {

Define ¢ as the corresponding measure on the sample paths of the DTMC. It is
known that the MTTF (Mean Time To Failure) can be expressed by the ratio [5]

min(1p 1 )—1

Eg (Zk:o 1/Q(Xk))
Es(lrp<ry)) ’

(1) MTTF =

where 7 is the hitting time of the DTMC X to set F' and 77 the hitting time to
state 1. This performance measure is estimated by means of regenerative simulation.
As the numerator can be efficiently estimated with crude Monte Carlo simulation,
most papers in this area focus on the estimation of v = E<I>(1[TF<71])- Importance
sampling is used in [5], [13], [12]. As a matter of fact, a crude Monte Carlo simulation
is statistically inefficient, so very large sample sizes are required to achieve accurate

estimators of v as ¢ — 0. We choose a new matrix P’ and evaluate

Y= E<I>’(1[TF<T]_]L)



with for all path (zg,---x,), the likelihood function L is

_ O{(Xo, -+, Xpp) = (20, -, 70)}
O{(Xg, -+, Xrp) = (20, -, 20)}

bl TF

L(zg, - - xp)

and @ is the measure corresponding to matrix P’. The most commonly used choices
are balanced failure biasing [13], Biasl failure biasing [9], Bias2 failure biasing [5]
and failure distance biasing [2].

We suppose that the system verifies the three following properties:
e Al: the DTMC X is irreducible on S.

e A2: for every state x # 1 € S, there exists a state y such that y < x and
(z,y) €T.

e A3: for each state z € F, such that (1,z) € T, ¢(1,2) = o(e™).

In [13], the author proves the following result.

Theorem 1 (Shahabuddin(1994)) There ezists a strictly positive constant r such
that v = ©(e").

In the same paper, the concept of bounded relative error is defined as follows:

Definition 1 (Shahabuddin(1994)) Define o3, as the variance of the random
variable 1[7F<71]L under probability measure ®' (which has mean v) and z; as the
1 — 6/2 quantile of the standard normal distribution (i.e., mean 0 and variance 1).

Then the relative error for a sample size I is defined by

o /I
o

REZZg

We say that we have a bounded relative error if RE remains bounded as e — 0.

In [13, Proposition 3], it is shown that any P’ with elements that are independent
of £ gives bounded relative error. From this, it is shown that balanced failure biasing
gives bounded relative error for all systems and that Biasl failure biasing scheme
gives bounded relative error for balanced systems (i.e. systems for which failure
transitions from state 1 have order 1 probabilities whereas failures from other states
have probabilities of the same order of €). The fact that failure distance biasing and
Bias2 failure biasing schemes give bounded relative error for balanced systems can
also be inferred easily from Proposition 3 of [13].

Nakayama [12| gives more general conditions of when or when not a biasing

scheme gives bounded relative error. We now review the main result of that paper.
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Let us denote by A,, the set of paths from 1 to F' without returning to state 1 and
with probability ©(¢™), that is

Ap={(xg, ,xn): n>1, 00 =12, € Fa; € {1,F} for 1 <i <n-1,(z;,z;41) €T

and ®{(Xo, -+, Xrp) = (z0, -+, 20)} = O(e™)}.

y AT

We can then obtain a necessary and sufficient condition on the importance sampling
measure to have a bounded relative error, which basically says that failures must

not be excessively rare under @'

Theorem 2 (Nakayama(1996)) Consider any importance sampling measure '
corresponding to a transition matriz P' such that for any (z,y) € T, if P(x,y) =
O(e?), then P'(z,y) = O(e?). Then we have bounded relative error if and only if for
all (zg, -+, xn) € Ay, r <m < 2r —1,

{(Xo, - Xrp) = (20,7 -+, 2n) } = O(™™ ™).

3 Normal Approximation

We need the following important result concerning the convergence speed of the
Student’s statistic to the normal law in the central limit theorem. The proof for the

case where o is known can be found in [3].

Theorem 3 (Berry-Esseen) [1] Let p = E(|X — E(X)?), 02 = E((X — E(X))?)
and N (z) be the standard normal distribution. For Xi,---, X i.i.d. copies of X,
define X; = 17" X;, 62 = I7' Y1 (X; — X1)? and let Fy be the distribution of
the centered and normalized sum (X, +-- -+ X1)/(61VI)— E(X)V/1/61. Then there

exists an absolute constant ¢ > 0 such that, for each x and I

cp
File) = M(a)| < 0

3
Definition 2 If pgy = Eg 1[TF<71]L — E¢:(1[TF<TI]L)‘O> denotes the third-order

absolute moment and c¢ the standard deviation of the random variable 1[TF<71}L un-

der probability measure ®', then we say that we have bounded normal approxrimation

if per /o3 remains bounded as e — 0.

This property is essential because if it does not hold, the required number of observa-

tions necessary to perform a good normal approximation, and then a good confidence
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interval coverage, may increase with the system reliability (assuming that oe is at
least well approximated). For centered intervals, if pg /03, is bounded, the coverage
error is controlled from Berry-Esseen Theorem because, if z5 is the 1 — §/2 quantile
of the standard normal distribution,

C ’
1F1(25) = Fi(—23)] = (1= )| < |Fy(zs) = N(z8)| + [ Fr(=25) = N(=29)| < 272,
Uq)/\/j
Let us now study if bounded pg/ /03, is also a necessary condition to control the
confidence interval coverage. It is known (see [6] or [7]) that, if the observations X;
(¢=1,---,1) in Theorem 3 come from a nonsingular distribution (which is not true

in our application), we have the Edgeworth expansion

Fi(z) = N(z) = M(x) l6al;i/j(2;v2 +1)+ % (% — 3) (—3z + 2°)

1 (ps\? 3 5 1 3
AETY; (F) (3x — 2x —x)—ﬂ(3x+x) +o(1/1),

where M is the density of the standard normal distribution and p; = E((X —
E(X))’) for j = 3,4. A similar type of expansion can be found for the case where
o is known [7]. This suggests that the quality of the normal approximation depends
on p3/0® in the term in 1/+/T in the Edgeworth expansion of Fy(z) — N (x), term
very similar to the fraction p/o® in the Berry-Esseen Theorem. Even for centered
confidence intervals with confidence level 1 — ¢, the quality of the coverage may
depend on p3/03: the difference between the nominal and the actual coverage for

nonsingular distributions is

Fy(zs) — Fi(—2) — (1—6) = M(z) lgil (%)2 (325 — 223 — 27) — %(37,5 23
@) +61_I (% - 3) (=325 + zg)] +o(1/1),

which depends on the quantity p3/c?, similar to p/o?.

To see if bounded pg: /o3, is also a necessary condition, we then study (abusively)
this Edgeworth expansion. Define 34 and ps e as the third and fourth-order
moments of the random variable 1[TF<71]L. We can see from (2) that the coverage
error is in most cases uncontrolled when pg /03, is unbounded, as, except in very
marginal cancellation cases, j3q /03 is unbounded if and only if pe /o3, is. We
also remark that, for centered intervals, bounded p3 e /0§ and p4e/cg do not

imply a bounded coverage error as the term o(1/I) depends also on ¢ and may be
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unbounded, so only the Berry-Esseen Theorem ensures that the coverage error is
limited as ¢ — 0.
Let us define now a class of importance sampling measures. This class increases

the probability of each failure transition from a state x # 1.

Definition 3 Let Z be the class of measures ® corresponding to matriz P’ defined
as follows: for all (w,y) €T, w#1 andy > w,

if P(w,y) = 0(c%), then P'(w,y) = 0(=*1)
and for all (w,y) with either y < w or y » w and w =1,
if P(w,y) = 0(c%), then P'(w,y) = O(c%).

This definition is similar to Definition 2 of [12]. The difference is that the new
failure probabilities from w # 1 are in O(¢?!) instead of O(e?) in [12], to ensure
that |A}| < oo V¢, where A} is defined below. Denote

For &' an importance sampling measure, denote

Am,k = {(:EOa Tty -Tn) S A : @{(X()a Tty XTF) = (IO’ e 7$n)} = ®(€m)

and (I)I{(XO’ o Xop) = (o, 00, T0)} = ®(€k)}’
A:‘, = U Amzk’
m,k : m—k=t
and let s be the integer such that o2, = ©(£*). In most cases,
o2 .

s = min {j € IN:J(zg,--+,z,) €A, a{(XO,---,XTF) = (zg, -+, xn)} = @(57)} ,
but there also can be cancellation of the highest order terms of v and Eg (1[TF<71]L2)
when these quantities are of the same order of magnitude, so that s > 2r may occur.

A necessary and sufficient condition on @’ to obtain a bounded normal approxi-

mation is the following:

Theorem 4 The normal approximation is bounded for a fized number of observa-
tions and a measure ®' € T if and only if Yk, m such that m —k <r, (xg,---,z,) €
A ks

'{(Xo,--, Xpp) = (20, -+, 20)} = Q(€3m/2—3s/4)

Y TF
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(i.e. k <3m/2—3s/4), and, in the cancellation case (i.e. s > 2r), if we have also

the conditions
o0

@) Y S (Ko, X)) = (20, @)} = O(35/275T),
t=r+1 (EO;"',xn)EA;
and (i7) Vk > 0, on the subset Ay of AL, the cancellation is of order I, (i.e.

> |L(g,+++,2) — y| = O(e"*) ) with 1,4, > s/2 — k/3.
($0,"',Zn)€Ar+k,k
The additional conditions (i) and (ii) for the cancellation case mean that each path
in A} with ¢t > r is sufficiently rare to ensure that the cancellation has no incidence
on the bounded normal approximation property. Before proving this theorem, let

us demonstrate the following lemma:

Lemma 1 If®' € 7, then
o 2] < [SIH < +oo ;

e For all ¢ sufficiently small, ¥Vt and (xq,--+,1,) € A}, L(zg, -+, x,) < knlet,

where k and n are strictly positive constants independent of € and (xg, -+, x,).

e For all e sufficiently small, Vt, k and (xq, -+, 2s) € Dpiip, P{( X0, -+, Xrp) =
(20, +,2n)} < ab'e*, where o and § are strictly positive constants independent

of € and (xq, -+, ).

o There erists a constant I, > r, independent of € and (xo,--,2Tn) € Arikp,
such that > |L(zq,++, %) — 7| = ©(e"*) and, for all ¢ sufficiently

(1'07"'7‘7"71)€A7'+k,k
small, a strictly positive constant v¥ independent of k, ¢ and (xo, -+, z,) € Al

such that, Yk > 0, ¥(zo, *+, %) € Ay, |L(zoy -+, 20) — 7] S el

o Fore sufficiently small, Vt > r and (zo, -+, x,) € A}, v > |L(xg, -+, 2p)—7] >
/2.

Proof: On A}, since ® € Z, we can not have more than ¢ failures from a state
different than 1, then not more than ¢ + 1 failures on the whole path. After each
failure, we can not have more than N —1 repairs on [7# < 77]. We can not then have
more than (N — 1) repairs on the whole path, so, the total number of transitions

can not be greater than ¢tV + 1. Thus
A < [S]

For the second part, by a similar argument to the one in [11, p. 547|, as I is
finite, for all & sufficiently small (i.e. 3Y > 0 such that Ve < Y), for all (z,y) € T,



P
% = v(z,y)ed®Y) 4 o(c¥®)) < 2u(z, )@Y where d(z,y) > 0if z =1 or
T,y

y <z,dz,y) > 1ifx # 1 and y > x (by definition of class 7) and v(z,y) > 0.
Then

< 2V(:ck,:vk+1)sd(z’“z’°+1).

Let v/ = max{2v(z,y) : (z,y) € '} and v, = max(1,v'). We can remark that
v, < oo since |S| < oco. On Al as P75 d(ag, 2x41) =t and n < tN + 1 as seen in
the proof of the first part of this Lemma, then
n—1
L(zg, -+, xy,) < & H 2w (xp, Tpy) < eV
k=0
If we take n = vV, and k = v, we obtain the desired inequality.
Using the same arguments as in Point 2, there exist functions e and f such that,
on Ay k(S AY),

n—1 n—1

®'{(Xo,- -+, Xrp) = (w0, -+, 20)} = [[ P'(@k, 2611) < [] f (@, Ty )e@emr) < ablek
k=0 k=0

where a and ¢ are strictly positive and independent of (zg,---,z,) and e.

In an analogous way, for the proof of the fourth part, for all € sufficiently small,
for all (zg, -+, xn) € Apyr i, there exist [(zg, -« -, z,) > 7 and v (xg, - -+, T,) > 0 such
that |L(I07 e 7In)_’7| = G(EI(EO"”J”)) and |L(£E0, Ty ivn)_/ﬂ < VT(SEOv T In)gl(mo,m’zn)'
Let [, = min l(xg,---,2,) and v = max vi(xg,---,2,) (VF < 00

7k (mo"":mn)eArﬁ-k,k ( 0 ) (mO;"'amn)EA{r ( 0 ) (

because Al < 00). Then we obtain the fourth part of the Lemma.
For all ¢ sufficiently small, for all ¢ > r and (x¢,---,2,) € AL, from point 2
y ’ I I tr p
of this Lemma, v > v — L(xg,- -+, 7,) > v — kn'e’. Since v can be written as v =
% o axe™* with ag > 0, we have also v — kn'e" > % vVt > r if, for all £ sufficiently
1 1/(t—r)
small, kn'e’ < @H VYt > r, which is equivalent to ¢ < ——— (@> vVt > r.
3 nt/t=r) \ 3k

1 1/(t—r)
But inf ——— (ﬂ) > 0, so we obtain the fifth part of the Lemma. |
t>r nt/(t_r) 3K

Proof of the Theorem:
Necessary condition: Suppose that there exist k,m € IN and (x¢, -, 2,) € Ak
such that £ = 3m/2 — 3s/4 4+ k" with k' strictly positive and m — k < r. This means
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that ®'{(Xo, -+, Xpp) = (w0, -+, 7,)} = O(e3™/2735/4+%") "We have then

sy TR

Py = Z |L(y07"'ayn)—W‘SCI)’{(XO,"',XTF) = (yﬂaayn)}
(Yo, yn)EA

> ‘L(Io, e 7xn) - /7|3 él{(Xm e 7-XTF) = (*T07 Y xn)}
@(83(m—k)+k) — @(635/2_%’).
Thus per /o3 = O %) — +oo0.
In the cancellation case, suppose that there exists £’ > 0 such that
Z Z CI)'{(XO,---,XTF) = (2o, Tn)} = 9(538/2_3T_k’)-
t=r+1 (zg, a0 )EA,
Then, from Lemma 1, for e sufficiently small,

b > S Y (L@ ) — AP E{(Ker ) X = (20}

t=r+1 (zg, x5 ) €A}

7V o
= (5) Z Z (I)I{(Xﬂv""XTF) = (x07"'7xn)}
t=r+1 (mo,“',ﬂﬂn)EAQ
— @(635/2_k,).
In the same way, let us suppose that there exist £ > 0 and (zg,---,Zn) € Apjrk
such that |L(zg,---,2,) — | = O(') with | < s/2—k/3. Let I' =5/2—k/3—1> 0.
Then

Pa! Z |L(CIZ‘0,"',£L’”)—’}/‘3(1)1{(X0,"',X7—F) - (xO;"'a-Tn)}
@(63l+k) — @(535/2—3l’)‘

In both cases pgr /0y, is unbounded as £ — 0.
Sufficient condition: We have to show that

Pe = Z Z ‘L(xov"'7xﬂ)_7|3(1),{(X07"'7XTF) = (x0>"'7xn)} 20(638/2)-

t (107"';$n)EA;

Let (zg,---,2,) € A} such that t < r (i.e, m —k <7). As

(X, -+, Xrp) = (20,5 T0)} = O(3m/2-3s/4)

for all (xg,---,2,) € A g, m — k <1, we have
® €3m
e n) = P+, o) = 0 )} = Gt O)
_ ®(€3m)
- Q(€2(3m/2—35/4))
= O(¥/?).
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As ¥, ., |A}| < 400 and by the first part of Lemma 1,

Z Z |L(zg, -+, 2n) _7‘3@{()(0,...,)(@) = (2o, *,Zn)} 20(635/2)‘

t<r (IO,"',-’L'n)EA;

Consider the case where s < 2r. Since

i Z CI)I{(XO’ o 'aXTF) = (5507 e ,l‘n)} <1

t=r (IO’...,zn)EAIt

and V¢, Y ®{(Xo,---,X;.) = (20, -, 2,)} <1, Lemma 1 implies that

) TF
(o, ,xn)EA]

SN Lo ) AKX X)) = (0 s}

t=r (ZO,~~~,zn)EA;

o0
oY (P 3k + 3y e + kPP (X, -+, Xop) = (20,000, T0) }

t=r (10,"',In)€A2

=YY (Ko X)) = ()

t=r (-TO,"',CL'n)EA;

00
+ 2(372’{77):51‘/ + 37H2772t€2t + ’{37731‘/531‘/) Z (I)’{(Xm e )XTF) = (xﬂa T -Tn)}
t=r (Io,-",flﬁn)EAQ

V43R (me) + 3k Y () + K2y ()
t=r

t=r t=r

IN

IN

= O+ O(%) + O(7) + O(c%) = O(e¥/?)

because 21 > s.

Consider now the cancellation case. First, by Lemma 1 and the condition on

A'I‘—Hc,ka
Z ‘L(IO, cee xn) —_ 7|3¢’{(X0’ sl X’TF) = (‘/'C()a e ’xn)}

(zo,xn)EAL

= Z Z |L(I0,-.-,xn) _’Y|3(bl{(X07"',XTF) = (-TO;"',xn)}
kZO (EO""’J“”)EAT+k,k

< > > v 3Bk g ek
kZO (EO""’J“”)EAT+k,k

< > > v abreds?

k>0 (zo,2n)EAr 4k k

= |AyPas et = 0(e3/?).
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o0
Second, consider the sum on U A}. Using point 5 of Lemma 1,
t=r+1

i Z ‘L(‘TO"""T“) _7|3CI>I{(X0""1XTF) = (x07"'>mn)}

t=r+1 (l‘o,---,mn)EA;

< 73 i Z (I)I{(X()a"'?XTF) = (w0, Tn)}

t=r+1 (zO,"',In)EA;

for ¢ sufficiently small. But by assumption

BN (X X)) = (20 )} = O,

t=r+1 (Z(),"',In)EAQ

Thus the normal approximation is bounded. [ ]

4 Difference between bounded normal approxima-

tion and bounded relative error

In the following theorem we prove that the class of measures with bounded normal

approximation is included in the class of measures having bounded relative error.

Theorem 5 Consider a measure ®' € Z. If we have bounded normal approzimation,

we have bounded relative error.

Proof: In the cancellation case, we have bounded relative error by definition, so
the Theorem is true. Then we only have to prove the Theorem in the case without

cancellation, i.e. s < 2r. Suppose that we have a bounded normal approximation.

By definition of s there exists at least one m > r and one path (z¢,--,2z,) € Ay,
such that & {(Xo, -, X)) = (20,-,2,)} = O(e*), thus ®{(Xo,- -, X,,) =
(2, ,x,)} = O(e?™ ). As we have bounded normal approximation, 2m — s <

3m/2—3s/4 = 3/4(2m—s), then 2m—s < 0. Then ®'{(Xo, -+, X;,) = (zo, -+, xp)} =
©(1) because we have always 2m > s.
Let (Yo, -, yn) € A, and 7' > 0 be such that ®'{(Xo, -+, X;p) = (Yo, *,Yn)} =

O(¢™). By definition of 7,

2r>2r —1r'>s5=2m>2r
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with the previous m, then

s = 2r.

Suppose that we do not have bounded relative error. There exists (zp,---,2,) € A,
with ®{(Xo, -+, Xrp) = (20, +, 20)} = O(e!) and ®'{(Xo, - -+, X)) = (20, -+, 2n)} =
O(e"), such that I’ > 2] — 2r, which means that I’ > 2] — s. But by definition of s,
s < 20 —1'. We have then proved the theorem. [ ]

We can find a system example with bounded relative error, but without bounded
normal approximation. Suppose that C' = 2, n; = ny = 2 and that the system is
operational if at least two components are operational. Let the transitions of the
DTMUC of this system be represented by the transitions on Figure 1, where the failed
states are shaded, and state 7, j means that there are : components up of type 1 and
j components up of type 2. If we use as importance sampling scheme Biasl failure

biasing, with the new probabilities described in Figure 2, then we have bounded

Figure 1: Transitions of system I
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relative error, but not bounded normal approximation. This means that, even if we
have bounded relative error, the confidence interval will have poor coverage for high

reliability values. For this example,

E(D(l['rp<71]) =2¢% + 0(53),

5
E¢1(1[7F<71]L2) = —266 + 0(66)
Po

and .
P = —468 =+ 0(58).
Po

For this system, Biasl failure biasing and failure distance biasing importance sam-

Figure 2: Biasl failure biasing importance sampling transitions of system I

pling measures give the same values for the moments, so, this is also an example of
the failure distance biasing importance sampling technique giving bounded relative

error but not bounded normal approximation.
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As a numerical illustration, if we make 10* different estimations with ¢ = 10710,
I = 10® and using the asymptotic expansions of v and o2, to consider the confidence
interval at confidence level 0.95, we can see that the true value is contained in the
confidence interval 94.6% of the time for balanced failure biasing and 98.9% for
Biasl failure biasing. Thus, with Biasl failure biasing, the coverage is significantly
better than the expected 95%. We can imagine that there may be systems producing
inverse effects.

We can also exhibit systems (with at least three types of components) with the

same property for the Bias2 failure biasing technique.

Theorem 6 Balanced failure biasing has the property of bounded normal approxi-
mation. Biasl failure biasing, Bias2 failure biasing and failure distance biasing do
not always have the bounded normal approrimation property. Nevertheless, for bal-
anced systems (i.e. systems for which failure transitions from state 1 have order 1
probabilities whereas failures from other states have probabilities of the same order

of €), all the above methods give bounded normal approxzimation.

Proof: The proof that balanced failure biasing give bounded normal approxima-
tion results directly from the necessary and sufficient condition given in Theorem 4
and from the fact that ®'{(X,, -+, X;,) = (2o, -+, 2n)} = O(1) (i.e. £ =0, where

y Xrp
k is the same as in the definition of A,, ;) for all paths to failure (xg,---,z,) € A,
because each probability in matrix P’ is in ©(1) [13]. As a matter of fact, the
condition of Theorem 4 on A} with ¢ < r is verified because £ = 0. Moreover, in
the cancellation case, A} = Ayq = () for ¢ > r and the cancellation on A, = A, ,
is at least of order I, > s/2 (otherwise 02, = O(¢?r)).The same arguments work
in the case of balanced systems. Counter-examples for Biasl failure biasing and
the distance-based technique are given above. A counter-example for Bias2 failure

biasing can also be built in a similar manner. ]

5 Conclusion

The objective of this paper is to define the concept of bounded normal approximation
and to emphasize its importance in the context of the evaluation of dependability
measures using Markov models. Then we give necessary and sufficient conditions to
obtain bounded normal approximation in simulations of highly reliable Markovian

systems. Up to now, literature has focused on bounded relative error. A good

16



importance sampling measure should verify both properties. In this context, we
show that bounded normal approximation always implies bounded relative error.
We then give examples to show that the reverse implication is not true.

Balanced failure biasing, that is known to give bounded relative error for the large
class of systems described, always gives bounded normal approximation. The other
three commonly used biasing schemes - Biasl, Bias2 and failure distance biasing -
are known to give bounded relative error when the system is balanced; these schemes
also give bounded normal approximation when the system is balanced. In short, all
the scheme-system combinations that are likely to occur in practice:

e balanced failure biasing for balanced or unbalanced systems,
e the other three schemes for balanced systems,

have the bounded normal approximation property.
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