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Abstract Security is one of the main concerns in current telecommunication net-
works: the service providers and individual users have to protect themselves against
attacks, and to this end a careful analysis of their optimal strategies is of essential
importance. Indeed, attackers and defenders are typically agents trying strategically
to design the most important damages and the most secure use of the resources, re-
spectively, and the natural modelling framework of these interactions is that of non-
cooperative game theory. This chapter aims at providing a comprehensive review
of game-theoretic aspects of security. We first describe the basics on game theory
through simple security problems, and then present and discuss some specific prob-
lems in more detail. Finally, we also deal with security economics, focussing on the
selfish relationships between customers and providers as well as between competing
providers, which represents another important aspect of our non-standard approach
towards security risk assessement.

1 Introduction

Telecommunication networks are becoming ubiquitous in our society, the most ob-
vious example being the success of the Internet. One of the main reasons of this
success is scalability, which means that a huge network can be managed properly at

Patrick Maillé
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no - or no significant - additional cost compared to a small one. The key issue here
is decentralization of decisions over all nodes of the network. On the other hand, it
is often assumed that nodes cooperate by properly using the designed protocols, but
playing with their parameters could improve one node’s position in the network, at
the expense of the others. For this reason, non-cooperative game theory has recently
come into play in the telecommunication community to analyse selfish behaviour,
and try to design mechanisms with the right incentives.

This chapter focuses on a specific aspect of telecommunication networks: their
security. Network security mechanisms aim at protecting against “natural” failures
and voluntary attacks. While the former risk is related to reliability issues and can
be estimated through analytic or simulation methods, the latter implies that the ac-
tions of the attacker be foreseen and countered. The choice of a security mechanism
therefore depends on the defender’s knowledge of the possible attacks. On the other
hand, an attacker will take into account the target’s defense strategies when deter-
mining its own attack type. Each actor therefore considers the actions of the others
when striving to optimize her own objective. Such interactions between actors with
conflicting interests are typically the object of non-cooperative game theory.

The goal of a security mechanism is to provide the highest possible level of pro-
tection, therefore one might think that defenders should simply choose the most
complete available protection. However, an improvement in the security level of-
ten has a counterpart cost in terms of bandwidth, computational power or money,
that decreases the overall performance or benefit from the service. Some real-time
applications for example cannot use the most secure mechanisms because of delay
constraints, and in general choosing a defense strategy, i.e., an appropriate security
mechanism for a given service, implies a trade-off between the costs of the mech-
anism and the incurred risks [12]. Likewise, the best strategy for an attacker might
not be to develop all known attacks, because of the cost of running those attacks,
and because this would increase the likelihood of being detected. It therefore ap-
pears that the ”security game” played among attackers and defenders is not trivial
in general since no dominant strategies can be exhibited.

There are indeed several kinds of situations in the network security domain where
actors have conflicting interests and must deploy complex strategies in order to reach
the most profitable outcome. Examples of such situations include worm propaga-
tion, creation of trust networks, intrusion detection scenario learning, and reputation
mechanisms. Due to the nature and complexity of the interactions among actors,
game theory is particularly well-suited to analyze all those cases.

Again, the use of economical concepts - and particularly game theory - to study
telecommunication networks has encountered a soaring interest for the last fifteen
years. Several kinds of applications of game theory have yielded important evolu-
tions in different fields. Those fields include for example network routing, resource
sharing and flow control, power control in wireless networks, pricing, as well as
incentives to cooperate in ad hoc or peer-to-peer networks. Since the inner nature
of telecommunication networks includes the fact that several agents share a set of
resources and the actions of each one may affect the others, it seems natural that
game theory is perfectly adapted to depict the network externalities and help pre-
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dict the outcome of the interaction among self-interested users. Another relevant
aspect mixing network security and game theory is the economic relationship be-
tween users and service providers. Indeed, providers have to define the right level
of security to attract and sufficiently protect customers, but the introduction of secu-
rity often implies a reduction of Quality of Service (QoS) and therefore potentially
also of demand. This trade-off has to be analyzed through a proper cost model. As
a result, security can therefore be an important parameter in revenue management,
especially in an environment where providers compete for customers.

This chapter precisely focuses on the game-theoretic aspects of network secu-
rity issues for a broad range of scenarios, which are placed right at the cornerstone
between telecommunications, economics and applied mathematics. This interdisci-
plinarity is particularly critical during the modelling part of user preferences in net-
work security situations: the challenge is then to convert some technical telecommu-
nication considerations such as security mechanisms, strategies and protocols and
their consequences in terms of performance, into the economical concept of util-
ity. Likewise, studying the modelled situations as non-cooperative games involves
competences in several fields of applied mathematics and game theory, such as op-
timisation theory, the theory of repeated games, of Markov Decision Processes, and
eventually agent-based simulation.

The remainder of the chapter is organized as follows. In Section 2, we review
the basic notions on game theory, by using some simple and illustrative examples
from security. Specific security games and solutions are then described in Section 3.
The implications and consequences on the economic interactions between users and
providers are described in Section 4. We finally conclude and describe the main
challenges to be addressed in the future in Section 5.

2 A game theoretic perspective on network security

This section presents the fundamental concepts of game theory that will be useful in
our security context. The very general principles of Game Theory presented in sub-
section 2.1 allow us to define a large number of game types, with specific forms or
rules. In Subsection 3.1 we continue with discussing related work which focuses on
the simplest (non-trivial) game models, where each user has just a finite number of
choices and the game is played only once. Going one step further, we then introduce
and discuss respectively three types of more complex games that have received spe-
cific attention in the context of security, namely repeated games, stochastic games,
and Bayesian games, in Subsections 2.2, 2.3, and 2.4.
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2.1 Fundamental concepts

Game theory is a mathematical framework which allows modelling conflict and
cooperation between two or more separate parties, the players. Players are assumed
to behave rationally, i.e., they are triggered by the selfish incentive of maximizing
their individual benefit, which is usually expressed in terms of a utility function.
During the game, which follows certain rules, players can choose and implement a
strategy from a set of different behavioral options, the so-called strategy space, in
order to maximize the payoff they are receiving as an outcome of the game.

Hence, formally a game is described by the number n of players, their strategy
spaces and their payoff functions, Si and ui, respectively, for each player i (1 ≤ i ≤
n):

G = {n;S1,S2, ...,Sn;u1,u2, ...,un}. (1)

Based on that description, game-theoretic analysis attempts to understand the prob-
able behaviour of the players, regarding their strategy choice, and thus to determine
the presumable outcome of the game. In some cases, this works relatively straight-
forwardly, for instance if each of the players can identify a “dominant strategy”,
i.e., a strategy with which this player is better off independently of the behaviour
of his opponents, and which directly leads to an equilibrium situation. A much
broader equilibrium concept, the so-called Nash equilibrium, is achieved if an op-
eration point is reached where each player is giving her best response facing her
opponents’ strategies, i.e., for none of the players there is a unilateral incentive to
change her strategy, given that the strategies chosen by all opponents are fixed. For-
mally, if s = (s1, . . .sn) is the profile of strategies with si ∈ Si, and if s−i stands for
the profile of strategies excluding player i, a Nash equilibrium is a profile s (with
s = (si;s−i) ∀i) such that ∀1≤ i≤ n,

ui(s)≥ ui(t;s−i) ∀t ∈ Si.

In other words, the strategy of each player i is a best reply to the strategies of the
others.

Note that individual elements of the strategy space Si are called pure strategies,
whereas a mixed strategy can be described as a linear combination of two or more
pure strategies, with weights summing up to 1 which may be interpreted as the prob-
ability distribution πi = (πi,t)t∈Si for player i choosing randomly among the pure
strategies involved. The goal is then to determine for each player i the probability
distribution maximizing the expected utility ∑

n
j=1 ∑s j∈S j ui(s1, . . . ,sn)∏

n
k=1 πk,sk .

A Nash equilibrium in mixed strategies is then a set of probability distributions
(πi)1≤i≤n such that ∀i and any other probability vector π̃i = (πi,t)t∈Si ,

n

∑
j=1

∑
s j∈S j

ui(s1, . . . ,sn)
n

∏
k=1

πk,sk ≥ ∑
t∈Si

∑
j 6=i

∑
s j∈S j

ui(t;s−i)π̃i,t ∏
k 6=i

πk,sk .
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Whereas the existence of a pure strategy Nash equilibrium cannot be guaranteed,
it can be demonstrated that any static game with a finite number of players and finite
strategy spaces has at least one Nash equilibrium in mixed strategies, i.e., a profile
of distributions such that the choice of each player maximizes its expected payoff
or utility.

Within the taxonomy of games, the distinction between static and dynamic games
is worth mentioning: whereas in static games, all players simultaneously choose
a strategy without further knowledge about their opponents’ decisions, dynamic
games are characterized by a sequence of moves, where each player gives an an-
swer based on the entire history of the game. Repeated games are a specific class of
dynamic games and basically represent a sequence of static games. More details on
those games are given in Subsection 2.2.

Based on these introductory remarks, we will discuss more specific game-
theoretic issues at various places in the rest of the chapter; for a detailed comprehen-
sive introduction we kindly refer to standard textbooks like [10] or [21]. Similarly,
for applications in telecommunication networks, involving a lot of participants with
different interests, the reader is advised to consult [3] and references therein for an
overview of the type of problems that can be modelled in this way, including routing,
resource allocation, and queueing management. Game theory has indeed appeared
as a promising tool to study interactions in that context. A last related issue is net-
work pricing, which can fruitfully be studied using game theory tools (see [8]).

In the rest of this section, we will introduce the different kinds of security-related
games in more detail and discuss specific examples.

2.2 Repeated games

Repeated games are a simple way to include the time aspect into game theory. Based
on a classical one-shot game, we assume that the same game is played repeatedly
for a number T (possibly infinite or random) of periods.

Traditionally, it is assumed that players value more the present than the future
periods, which is modeled by considering the discounted sum ∑

T
t=1 δ t−1ui(st) as the

overall payoff function of each player i, where δ ∈ [0,1] is called the discount factor,
st is the (possibly mixed) strategy profile played at period t, and ui the corresponding
utility for player i.

In repeated games, a strategy for a user describes the action choice he should
make depending on the whole history of past actions. Repeated games thus allow us
to model some kind of reputation effects, where the past actions of a player can be
sanctioned or rewarded by his opponents. Such games have interesting properties,
such as the fact that the set of equilibria can become quite large (this result is known
as the “Folk Theorem” [21]).
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2.3 Stochastic games

Like repeated games, stochastic games also have a form of memory, but in a more
complex fashion. The game is still played over (discretized) time, but memory is
represented by a state, which in the context of network security can for example
describe the current feature of the data (not compromised, compromised, stolen),
the type of application used, the ongoing attacks and activated countermeasures,
etc.

The state space traditionally is assumed to be finite, where each state corresponds
to

• some payoff value for each player,
• an action set for each player,
• and some transition probability value for each state, that depends on the actions

taken by the players at the current period. The value corresponding to a state is
the probability that the system be in that state for the next period.

As for repeated games, one has to define an overall payoff function for each player,
that is classically chosen as a discounted sum of the per-period payoffs.

Stochastic games are hard to study analytically, since the number of states in-
creases exponentially with the number of players and of strategy choices. Therefore
the equilibria of such games are often computed numerically. On the other hand,
those games allow us to model some quite rich scenarios. They are therefore well-
suited for some types of attacks like intrusion, which usually implement a sequence
of attack steps before reaching their goal.

2.4 Bayesian Games

Bayesian games are characterized by incomplete information about the opponents
(e.g., their payoff functions). In a security context, this is e.g. used to model the
difference between malicious attackers and non-malicious ordinary users who are
accessing the system regularly. To model this, we assume that in the game the sys-
tem is facing a subject, where the subject can be of one out of several types (for
instance malicious or not in the most simple case, but there can be more types, such
as malicious users with different interests), and users with different available secu-
rity services. This type (and the corresponding payoff function) is assumed to be
private knowledge to the subject, whereas the system only can have a certain belief
on that, e.g., a probability distribution between malicious/non-malicious users. In
the course of the game, players can update their initial beliefs because of the actions
observed according to Bayes rule.

So-called signalling games are a particularly interesting example of Bayesian
games. Here, there is an informed player (agent) knowing the type of the opponent
(principal). The principal is unaware of the agent’s type and has to start the game
with an initial belief. During the game, however, the principal is able to update
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her initial belief based on signals originating from actions of the agent, until the
principal eventually manages to deduce the type of her opponent.

This type of games requires an extension to the concept of an equilibrium: Thus,
a Bayesian Nash equilibrium is defined as a strategy profile together with a proba-
bility distribution characterizing the belief about the types of the opponents, which
maximizes the expected payoff assuming that strategies and beliefs of the other
players are fixed. Note that, similarly to normal-form games, the existence of one or
more Bayesian Nash equilibria can be proved when the numbers of pure strategies
are finite, since Bayesian strategies can be interpreted as mixed strategies.

3 A detailed look on concrete security games

In this section, we present some security games/contexts that have been introduced
in the literature. As we shall see, several types of interactions can be modelled as
a non-cooperative game, depending on the aggregation level, services, time scale,
and types of attacks considered. We are going to present specific games illustrating
the most significant interactions when dealing with security. The most basic kind of
game between an attacker and a defender is analyzed in Subsection 3.1, where each
player has the choice between two strategies: doing nothing or launching a costly
attack or detection procedure. The Nash equilibrium (in mixed strategies) is deter-
mined. A more complicated game is then described in Subsection 3.2, where more
actions are possible for each player and the information available to players may
be incomplete. The interactions between the attacker and the defender can then be
studied as a repeated Bayesian game, whose study allows us to identify the most rel-
evant parameters in the attack and defense strategies. In the same family of games,
one can try to incentivize the defenders in a network to participate to a common
defense strategy, for the best of the whole network. Such games are described in
Subsection 3.3. While those three subsections are for direct interactions among de-
fenders and attackers, no information about the network topology is used either in
player payoffs or in their strategies. Subsection 3.4 considers games on networks,
were attacks and defenses have to be placed appropriately on the different links.
Likewise, attacks can be performed by worms, for which the trade-off is between a
discrete and a fast propagation to maximize the dissemination. Such worm propaga-
tion games are presented in Subsection 3.5. Subsection 3.6 highlights the problem
(not fully modelled yet) of interdomain incentives for confidentiality when an inter-
mediate node is supposed to forward the traffic of his neighbors. Then we believe
the most important kinds of games, and their goals, will be presented.

Remark that all the games presented in the previous sections have applications in
security modelling. As other works than those we are going to describe in details,
repeated game models have frequently been used, for instance in [1] to represent
the interactions of nodes in a wireless mobile ad hoc network (MANET). Here the
attacks considered are only passive attacks, which consist in some nodes refusing
to act as a relay for the communication flows of the others. The repeated feature
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of the game allows us to build mechanisms that sanction non-contributing nodes,
in order to create incentives for collaboration. Likewise, in [28] the fact that the
game has a form of memory, is used to detect and isolate malicious nodes among
a whole set of wireless ad hoc nodes. Similarly, the stochastic game approach is
used in [17] to model attacks directed against specific applications, against com-
munication capacities, or against databases. Numerical studies lead to some mixed
Nash equilibria, i.e., at some state(s) players should choose their action accord-
ing to a given probability distribution. [25, 29] apply stochastic game models as
well, to study other specific attack scenarios, and numerically compute mixed Nash
strategies. The Bayesian approach is also considered in security games, for example
in [23]. There, the authors consider two types of attackers, namely “normal users”
whose behavior is only driven by selfishness, and “malicious nodes” that intend to
maximize the damage done. The defender has an a priori belief about the probability
of its opponent being of each type, and updates that probability as it observes the
attacker moves. That belief is also used to determine the probability of using the
detection mechanisms.

3.1 Play detection/attack or not: Mixed Nash equilibria

In [2], Alpcan and Başar1 introduce a model where the attacker has two choices,
i.e., launching an attack or doing nothing, while the defender’s choices are to trig-
ger or not its (costly) detection scheme. The authors observe that for reasonable
values of the payoffs for each outcome, the game has no Nash equilibrium in pure
strategies. This is easy to see: if the attacker always attacks, then the victim always
defends, so the attacker would be better off not attacking; on the contrary if the at-
tacker never attacks, then defending is only costly for the victim that should thus
never defend, which precisely makes attacks profitable to the attacker. A convenient
way to visualize this is to represent player utilities depending on their actions in a
matrix where player 1 (defender) actions correspond to rows, player 2 (attacker) to
columns, and the terms in the matrix are written in the form (u1,u2) with ui the util-
ity (payoff) of player i. An example of this so-called normal form representation is
given in Figure 1. In that example, a,b,c,α,γ are all positive numbers. We assume
here that triggering the detection mechanism (resp. launching the attack) is costly to
the defender (resp. the attacker), whereas doing nothing has no cost. In general, the
cost for the defender of missing an attack is much larger than the cost of running
the detection scheme, i.e., c� b. We now see that as soon as c > 2b there exists
a unique Nash equilibrium in mixed strategies: we denote by πde f the probability
of the defender triggering the detection scheme, and by πatt the probability of the
attacker launching the attack. To have a Nash equilibrium with 0 < πde f < 1, i.e.,
positive probability for both possible choices, the utilities are

1 In [2], the authors actually first define a cooperative game where nodes in a sensor network
should collaborate to improve intrusion detection, but we do not describe this model since this
chapter focuses on noncooperative games.
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Attack No attack

(a,−α) (−b,0)

(−c,γ) (0,0)

Trigger detection

No detection

Fig. 1 A 2-player attacker-defender game in normal form: the defender chooses a line and the
attacker a column.

ude f (πde f ,πatt) = aπde f πatt −bπde f (1−πatt)− cπatt(1−πde f )
uatt(πde f ,πatt) = −απde f πatt + γπatt(1−πde f ).

Computing the conditions ∂ude f /∂πde f = 0 and ∂uatt/∂πatt = 0 gives respectively
πatt = b

a+b+c and πde f = γ

α+γ
. Note that another interesting view/interpretation to

get the relations obtained from ∂ude f /∂πde f = 0 and ∂uatt/∂πatt = 0 is that the
defender should be indifferent between triggering the detection scheme or not, in
terms of expected payoff (otherwise he would simply choose the best strategy). This
also gives

πatta− (1−πatt)b =−πattc+(1−πatt)×0, (2)

where the left-hand (resp. right-hand) side of (2) is the defender’s expected payoff
if he triggers the detection scheme (resp. does nothing). Similarly we also get from
the opposite side

−πde f α +(1−πde f )γ = πde f ×0+(1−πde f )×0.

The (existing and unique) Nash equilibrium of the game therefore corresponds
to

• the defender choosing to trigger the detection mechanism or do nothing with
respective probabilities γ

α+γ
and α

α+γ
;

• the attacker choosing to launch the attack or do nothing with respective probabil-
ities b

a+b+c and a+c
a+b+c .

Interestingly, in such games the mixed strategy choice of each player is made such
that its opponent has no preference among its possible actions, so that it can also
choose a mixed strategy.

Alpcan and Başar then extend that kind of model by considering several types
of attacks, and the corresponding defense type has to be chosen by the defender
to detect the intrusion. Another interesting extension proposed in [2] consists in
considering that before choosing its defense strategy, the defender has an imperfect
knowledge of the type of attack chosen by the attacker: the set of possible attacks
is partitioned into sets, and the defender knows to which set the attack (if any) be-
longs. Some payoffs for each player correspond to each situation in terms of attack
presence, attack type, defense trigger, and defense type.
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[14] presents some very similar but concrete situations of network security (to
be more precise: information warfare) games, with specific numerical values, that
also lead to simple strategy sets. The specific examples introduced allow us to ex-
hibit some particular outcomes and phenomena. The so-called evildoer game has
the same form as the basic model of [2] (see Figure 1), i.e., it has two players - an
attacker and a victim - with two possible choices each, and no pure Nash equilib-
rium. The conclusions for that game also hold for another interpretation of the game,
called vandal game in [14]: here Jormakka and Mölsä do not consider defense strat-
egy, but only the fact that the victim will simply not use the service (say, a network),
and thus not suffer from the attack. Then the same reasoning as in Figure 1 is valid:
since the attacker’s objective is to maximize victim’s harm, then it should not always
attack (but only with some probability) because then the victim would simply avoid
the service.

The same kind of attacker-defender game is studied in [5]. The number of strate-
gies for each player is larger than two: several attack and countermeasure types
are considered. Moreover, the actual payoffs corresponding to some given strategic
choices are not deterministic, since attacks are supposed to succeed with a proba-
bility that depends on the activated countermeasures. Nevertheless, players are as-
sumed risk-neutral, i.e., only sensitive to payoff expectations, so introducing success
probabilities does not change the game type. The modeling effort made in the paper
to quantify the payoffs for each player is worth mentioning.

• The attacker is assumed to be sensitive to a Return On Attack criterion, that in-
volves some financial equivalents of the value of a successful attack, the costs of
building and launching it, and its success probability.

• The defender acts so as to maximize some Return On Investment, that is calcu-
lated based on the monetary cost of the countermeasures, the value of the good
to protect, the potential impact of an attack, and the attack success probability.

All the games mentioned above have no pure Nash equilibrium, thus only mixed
strategies lead to equilibria: players would then randomize their action choice, ac-
cording to a specific probability distribution as we did for the example of Figure 1.

The game presented in [22, 23] has the same features than [2, 14], but introduces
an interesting refinement: the defender might not know what kind of attacker he
is facing. More precisely, the “attacker” can either be a regular network user that
simply may not want to offer some service (the passive attack discussed above), or
a badly intentioned actor that possibly launches active attacks. The defender has an
a priori knowledge of the probability of the attacker being of one type or the other,
and may update those probability values based on some observations of the attacker
actions or messages, according to Bayes’ rules. Again, the resulting Bayesian game
applied to intrusion detection does not exhibit any pure Nash equilibrium.
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3.2 Incentive-Based Attacker Modeling

In their fundamental paper [16], Liu et al. introduce a systematic method to model
attacker intent, objectives and strategies (AIOS), based on combining the incentives
of an attacker as well as his cost into a single utility function. Moreover, they pro-
pose a game-theoretic formulation of AIOS in order to capture also the relationship
to the objectives and strategies of the defender and allow for inferring AIOS auto-
matically.

To this end, [16] starts from the basic assumptions that security attacks are usu-
ally intentional (i.e., planned), that both attacker and defender only possess incom-
plete information about their respective opponent, and that the success of an attack
is always relative to the protection level of the attacked system (and vice versa). The
attacker intents can vary widely, but may be subsumed under the notion of an incen-
tive which is assumed to be quantifiable. Typical examples are, to be quantifed with
the same units, the amount of profit earned, the amount of terror or damages caused,
directly or due to no-show of users because of the threat. Together with certain con-
straints like attack cost or risk of detection, the resulting utility function describes
the objective of the attacker and is supposed to be maximized by the attacker.

Modelling attacker strategies is considered to be more sophisticated, as they have
to account for a sequence of potentially very different actions which determine a
series of battles between attacker and system. This may lead to extraordinarily com-
plex strategy spaces, and also comparing different attack strategies is far from being
trivial, as the efficiency in terms of system security degradation strongly depends on
countermeasures performed by the system.

The formalization of these AIOS models starts from perceiving the attacker and
likewise the environment (comprising the non-malicious users) as peers of the sys-
tem under attack. The system is separated into a production-oriented service part
and a security-related protection part and is assumed to actively take defense ac-
tions. Then, attacks are described as games between rational attackers and defenders
whose Nash equilibria allow us to infer attacker strategies, whereas deriving the in-
tention and objectives of the attacker is based on detecting strategic patterns which
are matched against insights gained during a learning phase. Together with related
accuracy and sensitivity analyses, this is supposed to significantly advance the risk
assessment of security attacks.

Eventually, this general approach leads to a more fine-grained taxonomy of AIOS
models along two orthogonal dimensions, i.e., the correlation among attack actions
and the accuracy of intrusion detection. Whereas a low correlation of attack actions
suggests the application of Bayesian repeated games, high correlation leads to (po-
tentially multi-stage) dynamic game models.

The paper concludes with an instructive case study modelling attacker strategies
for a Distributed Denial-of-Service (DDOS) attack on a system which is countered
by the popular pushback mechanism, i.e., by identifying and rate limiting those
packet flows that cause the DDOS attack. To this end, user traffic is classified as
either good (non-malicious), bad (malicious), or poor (non-malicious, but with the
same properties as malicious traffic). Assuming a unique attacker together with mul-
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tiple legitimate users, in the corresponding repeated Bayesian game (see Subsection
2.4) the system is uncertain about the type of each user and may only resort to a
respective probability distribution. The action space of the attacker consists of sev-
eral DDOS attacks, the action space of the legitimate user includes a variety of
network applications and services, and the action space of the system is determined
by the potential defense postures of each router (specified by a large set of charac-
teristic parameters like congestion checking time, target drop rate, rate-limit time,
maximum session number etc.). As far as the utility functions are concerned, the
attacker’s utility depends on the attack’s impact on both the system and the legiti-
mate users, whereas the utility of the non-malicious users boils down to the relative
availability of the system. Finally, the utility function of the system is determined by
the tradeoff between the absolute impact of the DDOS attack and its relative impact
on the system availability.

As this game is way too complex for an analytic treatment, [16] presents exten-
sive simulations based on ns-2 where a total of 11 defense strategies are investigated.
Legitimate user traffic is based on real-world Internet traces, whereas the attacker’s
action space is determined by the number of “zombies” (i.e., hosts controlled by
the attacker) as well as varying attack traffic patterns and total volumes. For the re-
sulting 64 different possible attack strategies, the corresponding average payoffs for
attacker, legitimate users and system are calculated and analyzed. Whereas some
resulting insights are widely consistent with the existing mainstream opinion e.g.,
on the impact of total zombie number or drop rate preferences, also some surprising
consequences may be drawn: For instance, neither rate nor pattern of the attack-
ing traffic is of significant relevance for the attacker’s payoff function, but only the
number of zombies and the properties of the traffic aggregate matters. Similarly,
the simulation results allow a clear identification of the relevant defense parameters
of the system. Finally, a total of 42 different Nash equilibria has been calculated
and allows further inferences for the attacker’s strategies, for instance with respect
to traffic patterns or the optimal ratio between bad and poor traffic, and even leads
us to bounds for the attacking capacity of the attacker (i.e., the worst-case dam-
age caused) and the assurance capacity for the defending system (i.e., the resilience
against DDOS) which are of central relevance for any risk assessment purposes.

3.3 Passive attacks in collaborative networks: enforcing
cooperation on defenders

As previously mentioned, a passive attack is the action of a network participant
refusing to provide some service. In peer-to-peer file sharing networks, a passive
attack would consist in offering no files to the community. Likewise, in wireless ad
hoc networks, a node refusing to transfer packets is considered as making a passive
attack.

It is true that those passive, free-riding attacks are not motivated by a desire
to harm a machine, a network or a system, but rather simply by user selfishness.
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However, it is also reasonable to consider those noncooperative behaviors as attacks,
since the system does not work anymore if too many participants do not contribute
to it. More directly, a node which does not participate in the collective security by
refusing to provide useful information can be considered as a passive attacker.

In that context, the objective is to incentivize players to contribute to the service,
either through sanctions or through rewards. Some appropriate mechanism thus has
to be defined, such that rational and selfish players are better off participating to
the service provision. This implies for example building reputation scores based on
past behaviour, and using those scores to possibly exclude misbehaving nodes from
the system [19]. The goal is to prevent passive DoS attacks, that consist in simply
not participating to security (if we place it into our context instead of specifically
MANETs in [19]). If non-participating nodes are isolated from the network, a rep-
utation mechanism can, at a low cost, enforce participation. Formally, assume we
have N nodes (players), and that the utility of node i (1 ≤ i ≤ N) depends on both
his payoff yi and the relative share σi = yi/(∑N

j=1 yi) by

αiu(yi)+βir(σi)

with u() differentiable, strictly increasing and concave, and r() is differentiable,
concave and maximized at 1/N. Weights αi,βi ≥ 0 characterize node i. If k nodes
cooperate, it induces a (network) benefit B(k) (increasing and concave), and a cost
C(k) (such that kC(k) is increasing) for implemening the procedures, thus a payoff
yk = B(k)−C(k). Reputation is included in functions B() and C(). Conditions for a
Nash equilibrium to occur can be derived. Under proper conditions on B() and C(),
it can be ensured that at least half of the nodes will cooperate.

Those attacks are also addressed in [1], where the proposed mechanism is evalu-
ated using a repeated game model.

3.4 Routing problems, or “cat-and-mouse” games

We now describe some intrusion detection games played on a physical network,
where strategies involve some routing decisions. Since the paradigm and modeling
are quite different, we present them in a separate subsection devoted to “security
routing games”. In this subsection, we consider games that are played over the links
(or node interfaces) of a network. The strategy sets are either a single link in the net-
work (chosen to carry out an attack, or to put an attack detection device), or a whole
routing strategy (choice of flow or attack spreading among different available paths).
In those games, the attacker can try to intercept normal traffic (he is then the cat),
or to reach a destination while avoiding detection (he is then the mouse). Likewise,
according to the considered service, the network manager chooses to place specific
detection mechanisms to protect important links and/or provide a higher security in
general.
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Those interactions can be modeled as two-player zero-sum games, i.e., games
where what is won by a player is necessarily lost by the other one: if player 1 gets
U1 then U2 =−U1. The (possibly mixed) Nash equilibria for that game are such that
the corresponding utilities (UN

1 ,UN
2 ) verify

UN
1 =−UN

2 = max
s1

min
s2

U1(s1,s2) = min
s2

max
s1

U1(s1,s2)

where si, i = 1,2, is a mixed strategy for player i, i.e., a distribution probability over
the strategy set of player i.

Kodialam and Lakshman [15] consider such a game between an attacker trying
not to be detected, and an active defender. The attacker is located at some point
a of the network, and his target location is denoted by t. The goal of the attacker
is to select a path to send his malicious packet so as to minimize the detection
probability. To do so, he might choose some highly loaded links in order to become
less detectable. (The background traffic on each link e is denoted by fe.) On the other
hand, the defender’s objective is to select which links to scan so as to maximize that
detection probability (subject to a constraint B in the total number of scanned bits
per time unit).

Then the authors prove that the Nash equilibrium value of the detection probabil-
ity is B/M( f ), where M( f ) is the maximum possible flow from a to t on a network
assuming each link e has capacity fe. Also, the player strategies at Nash equilibrium
are derived:

• if mi denotes the flow on the ith path from a to t for the maximum flow mentioned
above, the attacker chooses to use that path with probability mi/M( f ).

• the defender selects a minimum cut of that maximum flow, that is therefore made
of links e where the maximum flow is fe. Then the defender chooses to scan each
of those links e with probability B fe/M( f ).

The model and results are also extended to the case where the attacker can choose
among several points to origin the packet from, and to the case of several potential
targets.

A model with roles somehow inversed is also of interest. In [6], Bohacek et al.
consider a user willing to send some flow from one point to another, through a
network with vulnerable links: if the attacker decides to attack a link ` (e.g., for
eavesdropping) used by a user packet, then there is a probability p` that the packet
gets intercepted. The strategies are thus as follows:

• The attacker has to spread his scanning effort among the links.
• The defender has to choose routes for his flow. He actually uses stochastic rout-

ing, i.e., determines a distribution over the next-hop possibilities for each node
(avoiding cycle possibilities).

Two different games are studied.

1. Online games: the attacker can scan one physical interface at each node, and
therefore chooses a probability distribution over the interfaces, for each node.
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For each link, the transfer delay τ` gets augmented by T` if the packet is inter-
cepted. The objective of the attacker is to maximize the total expected transfer
time. Then the authors express the Nash equilibrium as a saddle point, and show
that the corresponding equilibrium strategies can be computed in a distributed
way.

2. Offline games: now the attacker only chooses one link to perform his attack. A
strategy for the attacker is therefore a probability distribution over all links. The
attacker objective is to maximize the probability of intercepting user packets,
which shall be minimized by the defender (zero-sum game).
To include path lengths into players objectives, the authors add a penalty related
to the path length. More precisely, they define the variable χε as being 0 if the
packet does not get intercepted, and (1 + ε)t−1 if it is during the tth hop. The
attacker (resp. defender) objective is to maximize (resp. minimize) the expected
value of χε .
The authors show how the saddle point can be computed, using the solution of a
flow maximization problem in a network where the capacity constraint on link `
is p`. This solution is interestingly similar to the one obtained in [15] for reversed
roles.
Note that the ε parameter tunes the system according to the user preferences for
short paths with respect to security. In particular, if ε is small then the defender
will fully exploit the path diversity in the network by spreading his flow along all
paths, whereas he concentrates on shortest paths when ε increases.

3.5 Worm propagation games

Another important domain where it is believed that game theory could be applied
is the case of worm propagation [11]. Network worms are autonomous intrusion
agents that have created tremendous financial losses to users due to their propagation
through the Internet. The first major worm was Morris worm in 1988 which crippled
a substantial proportion of the Internet [26]. As another example, Slammer SQL
worm infected over 90% of the vulnerable hosts within just ten minutes[20].

Security managers create patches, but they generally need to be developped man-
ually and require some time, to first identify the problem, check that the patch does
not have side effects, and then distribute it. For this reason, worm containment pro-
cedures are being developed. We focus here on scanning worms for which an in-
fected node scans the adress space at a given rate and infects nodes whom it man-
ages to locate. Indeed, to propagate, a worm tries out many IP addresses to be sent to
and infect the corresponding host. Since those IP addresses are somehow randomly
chosen, many of the ones tried do not respond.

The approach for representing and analyzing worm propagation is characterized
by fluid models, which can adequately represent a large population of vulnerable
hosts. For a given population size N, assuming that once infected, a node remains
infected forever, the evolution of the number of infected nodes at time t, It follows
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in its simplest form (this equation being potentially different depending of the kind
of worm) the (epidemiologic) differential equation

dIt
dt

= β It(N− It).

In this equation β is a parameter representing the rate of infection of vulnerable
nodes by a given infected node. The equation depends on the number of infected
nodes (who send the worm), but also the remaining nodes to be infected (which will
become less likely to be reached). Some variations of this equation will for instance
be if whether or not worms are sent to uniformly chosen IP addresses, or “closely
chosen” ones. This kind of equation is typical of a worms propagation when the
effects of human counteractions and network congestion are ignorable. We then
experience a slow-start phase due to few nodes sending the worm, and a slow-finish
phase because at the end the remaining nodes are very few. In the slow-start phase
(the one of interest for detectors, since we are interested in finding times such that
It/N reaches say 5%), dIt

dt = βNIt , whose solution is It = I0e−βNt . Countermeasures
affect the rate at which nodes are infected. This is represented for instance in [11]
by a reduction factor θt which affects the scanning rate of a host which has been
infected for t time units. The equation now becomes in the slow-start phase

dIt
dt

= βN
[

I0θ0 +
∫ t

0
Isθt−sds

]
,

whose solution is It = I0 +
∫ t

0 It−sβNθsds. The epidemics will spread or die out ex-
ponentially fast depending on whether the integral

∫ t
0 It−sβNθsds is larger or smaller

than one.
The interplay between worm strategies and detection/containment techniques can

then described as a game, the worm trying to infect the network as much as possible,
while the network tries to slow it down. An important characteristic is that we are
in presence of a Stackelberg game with a leader, the worm, playing first its strategy,
to which the detection and containment technique responds (the follower). This sit-
uation makes the worm powerful in the sense that, taking into account the optimal
strategies of defenders, he can decide the strategy that optimizes his own interest,
i.e., the infection rate. The typical goal of such an analysis is to prevent global spread
before patches to be developped and distributed (i.e., a given fixed amount fo days).

In [11], the strategy of players is to choose the best quarantining strategy for
the detector, while the worm chooses a scanning rate. Quarantining means that af-
ter some time τ , an infected hosts connection attempts are blocked. We then have
θt = P[τ ≥ t]. There are also throttling mechanisms reducing the rate at which a node
makes new connections when considered suspicious. For Williamson’s throttle, con-
nection requests are processed at rate c connections per second. If the rate for gener-
ating non-wormy connection attempts is w, the slow-down factor is θt = c/(β +w).

Pay-off is the speed of spread (the growth exponent of the epidemic), which
has to be maximized for the worms, and minimized for the detector. The number
of unsuccessful scans can therefore be used to detect worms, as was suggested
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by [11] who study the game played between the worm designer setting the scan-
ning rate, and the worm detector setting the detection threshold for considering
a host as infected. Detection is performed through a CUSUM (cumulative sum)
test, minimizing the time between infection and detection for a given false posi-
tive rate. It declares a node infected at R if the log likelihood ratio of being in-
fected to being uninfected over a length k interval in the past exceeds a threshold
c: R = inf{n : max1≤k≤n ∑i=k n ln( f1(ti)/ f0(ti))≥ c}, where the ti inter-failure times
and f0 (resp. f1) is the desnity, assumed here exponential, under normal (resp. in-
fected) conditions. A detector can be designed to restrict the growth rate to no more
than a value ν , while simultaneously ensuring that the false alarm probability over
a specified time window T does not exceed a specified threshold. Interestingly in
[11], the optimal detector is such that the worm growth exponent is insensitive to
the scanning rate. As a consequence, the leader, the worm, does not have actually a
significant influence.

This paper rightfully stresses the importance of game theory for worm contain-
ment, pursuing in that direction, where the impact should be important. Several di-
rections can be exploited to study this kind of games, extending the set of available
strategies to the attacker and/or the defender. For example, one could imagine that
a properly chosen proportion of the IP addresses used by the worm are chosen from
the host’s recently contacted ones, in order to be detected later while still replicating
at the same speed. Some other complicated strategies, involving scanning rates that
change over time, could also be considered. It is important to note that scanning
worms are not the only kind of worms; there exists many other types. For instance
routing worms which uses BGP routing tables to only scan the Internet routable
address space, which allows them to propagate three times faster than a traditional
worm, and which can produce selective attacks. In a similar way to what was done
in [11] for scanning worms, it is clearly of interest to investigate the games that can,
or more exactly need, to be introduced between worm mechanisms and detection
procedures for each specific type of worms, and design more efficient reaction and
defense strategies.

Note that another potential level of game has been introduced in [27]. Instead of
looking at the game between a given worm and security tools, we can also look at
a larger time scale the race between worm writers and security managers. Indeed,
when a worm is circumvented, a new one generally appears needing a new fight.
Such a game is therefore a game for survival, in order to stay in the game. In [27],
a parallel is made with biological nature, and evolutionary game theory is described
as the appropriate tool.

3.6 Security/confidentiality issue in interdomain and ad hoc
networks

Another issue brought in by [7] is the inter-domain and ad hoc network case. A
user/domain is expecting its traffic to arrive at destination with an appropriate level
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of security/confidentiality. But this traffic often needs to be forwarded by other
providers/nodes that could behave maliciously. How to create incentives for a proper
behaviour in this case? This kind of problem has been extensively studied in the
literature to yield economic incentives to indeed forward traffic (see for instance
[4, 9, 13]), but not much was related to security/confidentiality incentives. It is sug-
gested in [7], but not solved yet, to play a repeated game, such that if a node defects
in providing the expected security/confidentiality, its own traffic will also be unse-
curely forwarded as a sanction, for at least a fixed amount of time. If the sanction is
long enough, this should prevent the nodes from misbehaving.

4 Economics of security

Besides the direct game-theoretic modelling of interactions between malicious at-
tacks and protection strategies, it has to be emphasized that security brings new
economic issues to network service providers, because of its growing importance
for companies or users. This has to be analyzed mathematically and, again, can be
treated by game theory to represent the business interactions between a provider and
its customers first, but also to represent competition among providers for customers
having to choose between different offers. The growth of a network such as the In-
ternet has had a positive externality from a business point of view, but has also a
negative externality when talking about security. As pointed out in [18], “businesses
have a strong incentive to seek profit from users (consumers) while cooperating –
and competing – in the provision of privacy and security”. This common sense state-
ment has to be verified though. Security can be provided at the network layer (with
protocols such as Secure Sockets layer (SSL)) or at the application layer, but can
be limited by the government public policy [18]. Note that security and economics
bring the problem of secure payment that will not be dealt with here [24].

4.1 Model based on risk percentage

We could for instance assume that a provider has different initial security levels (or
classes) ` ∈ {1, . . . ,L}, to which an intrusion risk r` is associated, with r`1 < r`2 for
`1 < `2 and a price p` with p`1 > p`2 for `1 < `2. Security levels may correspond
to various options concerning the availability of hardware or software security. De-
mand splits among the different classes, but an important characteristic of security
attacks is that the larger number of customers on a class, the more likely new attacks
will happen (according to Metcalfe’s or a power law), decreasing therefore the ac-
tual security level. Assuming non-atomic users, demand can then be characterized
by a so-called Wardrop equilibrium, i.e., a combination of price and actual secu-
rity risk which is the same for all classes having positive demand (otherwise users



Of Threats and Costs: A Game-Theoretic Approach to Security Risk Management 19

would have an interest in switching), and some classes have a null demand because
too expensive for the proposed level.

A typical situation for this kind of models is virus scan softwares, where different
softwares can have different efficiencies but are also sold at different prices. If many
users are known to use a typical software, then attacks will basically concentrate on
this population in order to reach more people.

Two situations can be considered: first all the levels are managed by a single
provider (a monopoly) which then tries to maximize its revenue by paying with
prices, and second the case where each security level is handled by an independent
provider, and providers compete for customers at a higher level by playing on prices
(an oligopoly).

Typical game-theoretic analysis of security management offers can be built this
way.

4.2 Coalitions

In the case of competing security service providers, the question of cooperation is
probably more relevant than in many other fields. Indeed, due to the interactions
among users, low security provided by a competitor induces a risk for its own cus-
tomers, and therefore a lower security level. Coalition formation can thus become
efficient for providers, in terms of reputation and revenue. It is therefore very in-
teresting to model and investigate the incentive for forming such coalitions, and
whether or not a full cooperation is the best solution for all providers. Such studies
would then involve tools from collaborative game theory, to study the sustainability
of coalitions and the effect of revenue repartition on the sustainable coalitions.

5 Conclusions

Whereas it has become clear that modelling and analysis of telecommunication net-
works security through non-cooperative game theory is of paramount importance,
this approach is nevertheless still in its infancy and has indeed attracted interest only
recently. As one of the key issues, we have identified the understanding of the inter-
actions between malicious users (attackers) and end users or the network manager
who expect a secure connection. Different such types of interactions have been in-
troduced and discussed in the present chapter, dealing for instance with intrusion
detection, denial-of-service attacks, or worm propagation, to mention just a few ex-
amples. In any case, the ultimate goal is to understand the equilibrium situation, and
therefore to try to design schemes or strategies to drive this equilibrium toward the
most secure situation. This can be done by the introduction of proper incentives for
instance. We have also highlighted that security additionally brings economical is-
sues for the providers in their relationships with users to propose the most profitable
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contracts, as well as in the competition between providers; those relationships can
again be analyzed within the framework of non-cooperative game theory.

Note that most of the games presented here and in the literature are of a rather
basic form, mainly due to the novelty of the issue. We have pointed out that there-
fore a lot of work remains to be done to represent practical scenarios as closely as
possible. On the other hand, the constant evolution of networking technologies re-
quires to adapt the presented issues, and raises new challenges to be tackled. Thus,
summarizing what has been said so far, we consider this game-theoretic perspective
on various security issues of significant interest for the research community as well
as of key practical importance for future industrial applications, and sincerely hope
that the presented survey will manage to further stimulate research in this seminal
field.
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