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Competition Among Providers in Loss Networks
Patrick Maillé and Bruno Tuffin

Abstract—Communication networks are becoming ubiquitous
and more and more competitive among revenue-maximizing
providers, operating on potentially different technologies. In this
paper, we propose to analyze the competition of providers playing
with access prices and fighting for customers. Considering a
slotted-time model, the part of demand exceeding capacity is
lost and has to be resent. We consider an access price for
submitted packets, thus inducing a congestion pricing through
losses. Customers therefore choose the provider with the cheapest
average price per correctly transmitted unit of traffic. The
model is a two-level game, the lower level for the distribution
of customers among providers, and the upper level for the
competition on prices among providers, taking into accountwhat
the subsequent repartition at the lower level will be. We prove
that the upper level has a unique Nash equilibrium, for which
the user repartition among different available providers is also
unique, and efficient in the sense of social welfare. Moreover, even
when adding a higher level game on capacity disclosure with a
possibility of lying for providers, providers are better off being
truthful, and the unique Nash equilibrium is thus unchanged.

Index Terms—Competition, Game theory, Pricing and resource
allocation.

I. I NTRODUCTION

T ELECOMMUNICATION networks are now managed by
commercial service providers trying to attract customers

in order to maximize their revenue. A typical example is the
Internet: The network was indeed initially just a connection
of academic and cooperative sites, but it has now moved
to a much broader entity, whose access for customers is
enabled by selfish and competitive providers. Furthermore,
instead of having a network per application, all applications
(telephony, email, web browsing, video, games...) can now be
carried out using any technology, being the ADSL network,
FTTx, 3G wireless networks, WiFi or WiMAX (or LTE),
with heterogeneous quality of service (QoS) capabilities.This
convergence leads to a complex system which requires to
be analyzed from an economical point of view, taking into
account the technological specificities.

A. Contribution

We propose in this paper to study a competition game
among providers with heterogeneous and non-overlapping ca-
pacities (or spectrum if dealing with wireless). Those providers
are modeled by loss networks, such that if demand at a
provider exceeds capacity, demand in excess is lost and has to
be resent. Congestion pricing is applied by charging for sent
traffic instead of successfully received one. More precisely,
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the more traffic is observed, the more likely packets are
to be lost and then resubmitted (and paid again for). As
a result, the total price charged per successfully received
packet, named hereperceived price, is an increasing function
of demand. Customers are assumed infinitesimal, i.e., the
strategy of a single individual does not have any impact on
others: only a grouped action of a bunch of customers can
affect congestion levels, and thus perceived prices. Therefore,
when they act selfishly, their global repartition will obey the
so-calledWardrop’s principle [1], initially introduced in the
(equivalent) transportation domain: only providers with the
cheapest perceived price obtain some demand. We show that
whatever the access price at providers, there exists such a user
equilibrium situation, and that the (common) perceived price
at all providers with positive demand is unique. Knowing how
customers will distribute themselves for any combination of
prices, providers try to maximize their revenue by playing with
their prices. We therefore end up with a two-level Stackelberg
game [2], where the providers are the leaders, using by
backward induction the anticipated decision (the repartition)
of customers to determine their strategy. We show that there
exists a uniqueNash equilibriumfor the pricing game, and we
characterize it explicitly. A Nash equilibrium is a price profile
such that no provider can unilaterally improve its revenue.We
show that this non-cooperative case actually and surprisingly
leads to the same configuration than the cooperative case,
when all actors, i.e., providers and customers, jointly tryto
maximize the sum of their utilities -also known associal
welfare-.

This paper is related to [3], where the same pricing tools
were applied, but users were assumed to be sensitive to their
total submitted traffic, not for received one. As a consequence,
lost packets were somewhat considered as satisfactory because
they were not resubmitted. We consider here the more realistic
situation where traffic that counts is the successfully transmit-
ted one. Even if the results look similar to those in [3], thatnew
model requires a reformulation of the problem and a complete
rewriting of all proofs.

B. Related work

The general framework of the paper is that ofnon-
cooperative game theory[2]. In telecommunications, game
theory has been used a lot in the last decade to model the
behavior of distributed algorithms, with potentially selfish
actors (see for example [4] and references therein).

We deal here more specifically with telecommunications
pricing, a topic of active research [5]–[9]. Remark how-
ever that most of the studies are dealing with a monopoly,
whereas we consider here anoligopoly. Oligopolies have
been extensively studied in other areas than telecommunica-
tions [10], but telecommunication networks have specificities



2

(e.g., congestion effects on QoS) that are not encompassed
by most models. Moreover, competition is a reality in the
current telecommunication world, and needs to be taken into
account, since it can lead to significantly different results than
monopoly situations [11]. For other competition models, with
different assumptions and atomic users, the reader can look
at, among others, [12]–[17].

The case of users’ distribution following Wardrop’s prin-
ciple has been considered in [18], where price competition
among producers is studied without congestion effects on the
user side, but with a negative externality on the supply side
through some production costs. Our model also has some
demand-related costs (that we interpret as management costs),
but we consider that their level is low with respect to revenues,
as can be expected in wireless networks where most costs
come from infrastructure and are independent of demand. We
moreover introduce a particular form of negative externality on
the user level, that is typical for limited capacity networks with
losses. Other references [19]–[21] apply Wardrop’s principle
on the user level to study competition. In all those papers the
externality is the expected delay, not the loss probabilitylike
here.

As described in the previous subsection, the present paper
is related to one of our previous works [3], but we now
include the fact that retransmissions are taken into account
in the demand level. It is actually a more relevant and key
new assumption, that leads to completely different proofs.

C. Organization of the paper

This paper is organized as follows. Section II presents
the general model. Section III defines the socially-optimal
situation, i.e., the cooperative situation with providersand
customers jointly maximizing social welfare. In Section IV, we
describe and characterize how customers distribute themselves,
following Wardrop’s principle, for any fixed profile of provider
prices. Using that user equilibrium, Section V shows that there
exists a unique equilibrium for the price competition among
providers, and that the corresponding outcome is actually
socially optimal. Section VI studies the potentiel interest for
providers to lie about their real capacities in a competitive
environment and then to artificially increase congestion for a
potential larger revenue due to resent packets. Finally, Sec-
tion VII summarizes the contributions and presents directions
for future research.

II. GENERAL MODEL

We consider a setI := {1, . . . , I} of I ≥ 2 providers
in competition at an access point. Time is slotted and each
provider i (i ∈ I) can serveCi > 0 packets (or units, seen
as a continuous number) per slot. If demand exceeds capacity
at a given provider, demand in excess is lost. Lost packets
are assumed to be chosen uniformly over the set of submitted
ones. If di is the total demand at provideri, the number of
served packets is actuallymin(di, Ci), meaning that packets
are actually served with probabilitymin(Ci/di, 1). Users are
assumed to be charged a pricepi for eachsubmittedpacket
instead of each served one. This induces acongestion pricing

to yield incentives to limit demand, the negative externality
of congestion being expressed in terms of losses experienced
by users. The total income of provideri is dipi and the total
service “rate” isdi min(Ci/di, 1). Then the averageperceived
price per served traffic unit at provideri is therefore

p
i
= pi/ min(Ci/di, 1) = pi max(di/Ci, 1).

Charging on sent packets instead of successfully transmitted
ones may seem unrealistic. However, that mechanism can be
seen as a volume-based pricing scheme, with a congestion-
dependent charge. Somewhat equivalently, it can also be seen
as a consequence of the more frequently used time-based
charging with a fixed price per time unit. Indeed, when
congestion occurs on a networki and packets are lost, having
to send them again multiplies the total transfer time (and thus
the price paid) by the mean number of transmissions per packet
max(1, di/Ci).

We assume that total user demand is a functionD(·) of
the perceived pricep, and thatD is continuous, derivable,
and strictly decreasing withp on its support[0, pmax) (with
possibly pmax = +∞), and thatlimp→+∞ D(p) = 0. We
moreover assume thatD(0) >

∑

i∈I Ci, i.e., that there is
some congestion: the total resource available is not sufficient
to satisfy the maximum demand level. Finally, we assume
that D(0) < +∞: if the access were free, then the total
demand would be finite. Remark that this last assumption can
be easily met, by considering the sending capacity limits of
user machines.

We also define the functionv : q 7→ inf{p : D(p) ≤ q}
(with the conventioninf ∅ = 0), that we call themarginal
valuation functionat the q-th unit of demand. From our
assumptions onD, v(q) is finite for all q ≥ 0. From an
economic point of view,v(q) represents the maximum price
per traffic unit at which theq traffic units could be sold.

We finally defineV (q), the overall valuation, as the sum
of the marginal valuations of theq units of users with largest
willingness-to-pay, i.e.,

V (q) :=

∫ q

x=0

v(x)dx.

The economic interpretation ofV (q) is the total value of the
first q served units of traffic, for users who are willing to pay
the most for the service. Those marginal and overall valuation
functions will be useful to characterize the socially-optimal
situation and the distributiond := (d1, . . . , dI) of customers
among providers, obtained from a given price profile.

The goal of each provideri is, by playing on its unit price
pi, to maximize its net benefit

Ri(p1, . . . pI) := pidi − ℓi(di),

wherepidi is the money earned directly from demand, and
ℓi(di) represents the cost for provideri of managing a demand
level di. We assume that for alli, ℓi is nondecreasing.

Most of our results are valid under the following assumption
preventing provider management cost functions from being too
steep. Remark that this assumption seems reasonable, since
management costs are in general very small with respect to
infrastructure costs (that are independent on current demand,
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and thus not considered here), and with respect to incomes
from customers.

Assumption A:The management cost functionℓi of every
provider i ∈ I is Lipschitz-continuous on[0, Ci] with a Lip-
schitz constantκi smaller than the global marginal valuation
of the sum of all provider capacities. In other terms,

∀i ∈ I, ∀x, y ≤ Ci, |ℓi(x) − ℓi(y)| ≤ κi|x − y|,

with κi ≤ v
(
∑

j∈I Cj

)

.
Remark 1:Remark that Assumption A is satisfied for ex-

ample if the functions(ℓi)i∈I are derivable and convex, and
such that

∀i ∈ I, ℓ′i(Ci) ≤ p∗,

whereℓ′i is the derivative ofℓi, andp∗ = v
(
∑

j∈I Cj

)

.
For some results, we will need a stricter assumption, that

includes an elasticity condition on demand:
Assumption B:In addition to Assumption A, we assume

that for unit prices larger thanp∗ := v
(
∑

j∈I Cj

)

, the
demand functionD is sufficiently elastic:

y ≥ p∗ ⇒
−yD′(y)

D(y)
≥

1

1 − κ/y
, (1)

whereκi is the Lipschitz constant for the costℓi on [0, Ci],
κ := maxi∈I κi, and D′ is the derivative of the demand
function D.

Remark 2:When management costs are negligible (i.e.,
κi = 0 for all i ∈ I), then Assumption B consists in
demand elasticity being larger than1, an assumption often
made in economics to describe situations where demand is
highly sensitive to prices.

III. SOCIALLY OPTIMAL SITUATION

Following usual vocabulary from economics, we define
Social welfareas the sum of utilities of all actors in the
game -here, users and providers-. The total user utility is the
overall user valuation minus the total price paid, while thetotal
provider utility (revenue) is the total price paid minus thetotal
managing cost. Therefore, prices do not directly appear in the
expression of social welfare.

Proposition 1: For a demand configuration
d := (d1, ..., dI), social welfare is expressed by the
quantity

SW(d) :=

∑

i∈I min(di, Ci)
∑

i∈I di
V

(
∑

i∈I

di

)

−
∑

i∈I

ℓi(di). (2)

Proof: The first term in SW is the total valuation for the
service experienced by users. Indeed,V (x) is the total user
valuation, if thex users with largest willingness-to-pay are
served. For a given demand configuration, the total quantity
served is

∑

i∈I min(di, Ci). Moreover, when demand exceeds
capacity, then not all demand is served: among total demand
∑

i∈I di, only
∑

i∈I min(di, Ci) are served, the others getting
no service and thus having a zero valuation. Since we assume
that losses occur regardlessly of user willingness-to-pay, the
actual (per traffic unit) utility of a user having (per traffic

unit) willingness-to-payv is its willingness-to-pay times the
probability to be served, i.e.,

∑

i∈I min(di, Ci)
∑

i∈I di
v.

User are assumed infinitesimal, therefore the total user valua-
tion equals

∫
∑

i∈I
di

u=0

∑

i∈I min(di, Ci)
∑

i∈I di
v(u)du,

the first term in (2). The second term in (2) is simply the total
managing cost for the demandd.

In our next result, we characterize the most efficient demand
vectord, in the sense of social welfare.A priori, that demand
configuration may not correspond to users selfishly selecting
their provider.

Proposition 2: Under Assumption A, social welfare is max-
imized whendi = Ci for each provideri.

Proof: We consider any demand vectord, and we prove
that truncating the demanddi to the capacity of each provider
i ∈ I can only increase social welfare. Defining a new demand
vectordn = (min(di, Ci))i∈I , we have

SW(dn) = V

(
∑

i∈I

min(di, Ci)

)

−
∑

i∈I

ℓi(min(di, Ci))

≥

∑

i∈I min(di, Ci)
∑

i∈I di
V

(
∑

i∈I

di

)

−
∑

i∈I

ℓi(min(di, Ci))

≥ SW(d),

where the second line comes fromV being a concave function
with V (0) = 0, which implies thatαV (x) ≤ V (αx) for any
x ≥ 0 and0 ≤ α ≤ 1. The third line simply comes from the
nondecreasingness of cost functions(ℓi)i∈I .

As a result, we can look for an optimal demand profiledopt

in the compact convex setC :=
∏

i∈I [0, Ci]. The objective
function being continuous, such an optimal profile always
exists.

Now compare such an optimal demanddopt to the profile
dC := (C1, ..., CI). Since both profiles are in the setC, we
have

SW(dopt) − SW(dC)

= V

(
∑

i∈I

di

)

− V

(
∑

i∈I

Ci

)

+
∑

i∈I

(ℓi(Ci) − ℓi(di))

≤ v

(
∑

i∈I

Ci

)
∑

i∈I

(di − Ci) +
∑

i∈I

(ℓi(Ci) − ℓi(di))

≤
∑

i∈I

(

v

(
∑

i∈I

Ci

)

− κi

)

(di − Ci) ≤ 0.

where we used the concavity ofV on the second line, and
Assumption A on the last line. This concludes the proof: the
demand vectordC performs as least as well as any other
demand vector in terms of social welfare.
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IV. WARDROP EQUILIBRIUM FOR USERS

Let us investigate the necessary and sufficient conditions
for a demand vectord to be a user equilibrium following
Wardrop’s principle [1]. That principle states that users always
choose the cheapest options, so that for a stable situation,all
users who have the same set of available options end up paying
the exact same price. It was first introduced to model driver
route choices in transportation, but can easily be applied to
our problem, yielding:

1) Providers getting some demand have the same perceived
price, which is the cheapest one. This can be written as

di > 0 ⇒ pi max(1, di/Ci) = min
j∈I

pj max(1, dj/Cj).

(3)
Indeed, if a provider has a positive demand and a
larger perceived price than a competitor, then part of
its customers would churn to the cheapest.

2) The total amount of data that users want to successfully
transmit depends on the perceived price per successful
transmission. This writes

∑

i∈I

min(di, Ci) = D(p), (4)

where
p := min

j∈I
pj max(1, dj/Cj),

i.e., the lowest perceived price among all providers. The
left-hand side of (4) is the total rate of successful trans-
mission, that takes into account the capacity limitations
of each provider’s access network.

This allows to formally define the user equilibrium.
Definition 1: For given capacityC := (C1, . . . , CI) and

price p = (p1, . . . , pI) configurations, auser equilibriumis
a demand configurationd = (d1, . . . , dI) such that for all
i, j ∈ I,







di > 0 ⇒ pi max(1, di/Ci) ≤ pj max(1, dj/Cj),
∑

k∈I

min(dk, Ck) = D

(

min
i∈I

pi max(1, di/Ci)

)

.

(5)

(6)

Condition (5) re-expresses (3), the fact that all providers
with positive demand have the same perceived unit price,
otherwise part of the demand will have interest in changing
providers. Condition (6) is a formulation equivalent to (4). The
assumption that received data is the quantity of interest isby
usingrk = min(dk, Ck) in (5) instead ofdk if we were using
the amount of sent data.

Remark that we can equivalently write a user equilibrium
as a vectord such that(d, p) is a solution of the system

(S)







(pi max(1, di/Ci) − p)di = 0, ∀i ∈ I

pi max(1, di/Ci) − p ≥ 0, ∀i ∈ I
∑

i∈I

min(di, Ci) − D(p) = 0,

di ≥ 0, ∀i ∈ I

p ≥ 0.

(7)

(8)

(9)

(10)

(11)

In the system(S), p stands for the common value of the
perceived price at all providers that get demand.

The following proposition characterizes the user equilibria
corresponding to fixed capacities and prices.

Proposition 3: For any capacity and price configuration
where prices are strictly positive, there exist a (possiblynot
unique) user equilibrium demand configuration. Moreover, at
a user equilibriumd, the common perceived unit pricep of
providersi with di > 0 is unique and equals

p = min{p : D(p) ≤
∑

i∈I

fi(p)}, (12)

where fi(p) := Ci1l{p≥pi}, (13)

with 1lX the indicator function, of value1 if condition X is
verified, and0 otherwise.
Remark that we have amin in (12), sinceD is continuously
nonincreasing andfi is right-continuous and nondecreasing
for all i ∈ I.

Proof: We follow the same steps as those taken in [22]
to establish the existence of a solution for the system(S). But
the results of [22] do not directly apply, due to the distinction
between demand flowd and successful flowr, thus we adapt
the proof. We first show that(S) is equivalent to the nonlinear
complementarity problem described by the system

(S′)







(pi max(1, di/Ci) − p)di = 0 ∀i ∈ I,

pi max(1, di/Ci) − p ≥ 0 ∀i ∈ I,
(
∑

i∈I

min(di, Ci) − D(p)

)

p = 0,

∑

i∈I

min(di, Ci) − D(p) ≥ 0,

di ≥ 0 ∀i ∈ I,

p ≥ 0.

(14)

(15)

(16)

(17)

(18)

(19)

A solution of(S) is obviously a solution of(S′). Now consider
a solution(d, p) of S′: if it is not a solution of(S), then we
necessarily havep = 0 and

∑

i∈I min(di, Ci) > D(p). This
last inequality means that there existsi ∈ I with di > 0,
which implies from (14) thatp = pi max(1, di/Ci) > 0, a
contradiction.

Therefore the set of Wardrop equilibria corresponds to the
set of solutions of(S′), which we now show is non-empty.
First define a constantK1 < +∞ satisfying

{

K1 > maxi∈I
Civ(Ci)

pi

K1 > maxi∈I Ci,

which exists under our assumptions onD, and a constant
K2 < +∞ such that

K2 > max
i∈I

{K1pi/Ci}. (20)

Remark that we then have

∀i ∈ I, D(piK1/Ci) < Ci. (21)

We define the functionΦ : R
|I|+1 → R

|I|+1 by

Φ(d, p) = (Φ1(d, p), . . . , Φ|I|+1(d, p))
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with Φi(d, p) =







min(K1,[di − pi max(1, di/Ci) + p]+) if i ≤ |I|,

min(K2,[p +D(p)−
∑

j∈I

min(dj , Cj)]
+) for i= |I|+1,

(22)

(23)

where[x]+ stands for the positive part ofx.
Since Φ is a continuous function that maps the cube

[0, K1]
|I| × [0, K2] onto itself, from Brouwer’s fixed point

theorem it admits a fixed point(d̂, p̂). We now prove that this
point is a solution of(S′), i.e., it is a Wardrop equilibrium.

• Assume thatd̂i = K1 for somei ∈ I, then from (22)
we havep ≥ pi max(1, K1/Ci) > 0. Thus (21) implies
that D(p̂) < Ci = min(d̂i, Ci) ≤

∑

j∈I min(d̂j , Cj).

Consequently, from (23) and(d̂, p̂) being a fixed point
of Φ, we havep̂ = 0, which is a contradiction.

• Likewise, if p̂ = K2 then from (20),

p̂ > piK1/Ci ≥ pi max(1, d̂i/Ci) ∀i ∈ I,

where the second inequality comes fromK1 > Ci and
d̂i ≤ K1. This implies from (22) that̂di = K1, ∀i ∈ I,
which cannot happen as proved just before.

As a result,(d̂, p̂) is a solution of the system
{

d̂i = [d̂i − pi max(1, d̂i/Ci) + p̂]+ ∀i ∈ I

p̂ = [p̂ + D(p̂) −
∑

i∈I min(d̂i, Ci)]
+,

which is exactly equivalent to the system(S′). Thus we have
proved the existence of a Wardrop equilibrium.

Now we consider a Wardrop equilibrium, and characterize
the minimum perceived pricep. From Condition (8),

pi < p ⇒ di > Ci, (24)

while from (7) we get

pi > p ⇒ di = 0,
pi = p ⇒ di ≤ Ci.

(25)

Using Inequality (24), then (9) and finally (25), we get
∑

i∈I

1l{pi<p}Ci ≤ D(p) =
∑

i∈I

min(di, Ci) ≤
∑

i∈I

1l{pi≤p}Ci,

which gives (12).
Remark 3:Figures 1 and 2 display the two possible con-

figurations for determining the Wardrop equilibrium perceived
price p. Either the stairstep curve summing up the capacities
at the charged prices crosses the demand function on a
horizontal part, or it happens on a vertical part. In any case,
the existence and uniqueness ofp are ensured (because one
curve is increasing while the other is strictly decreasing), as
shown in Proposition 3.

Remark 4:Total demand served is thereforeD(p). For
all providers with pricepi 6= p, demanddi is then di =
1l{pi<p̄}Cip/pi. All providers such thatpi = p (if any) share
the remaining demandD(p)−

∑

j:pj<p dj , all possible sharing
with 0 ≤ di ≤ Ci providing a Wardrop equilibrium. That
situation is illustrated in Figure 2. In that sense, there is
not always uniqueness for the Wardrop equilibrium, and the
corresponding revenues for each provider are not necessarily

Unit price

Quantities
D(p)

C1

p1

C2

p2

C3

p3

C4

p4p

Fig. 1. Wardrop equilibrium for four providers and a given price configura-
tion: the common perceived price at each provider with positive demand (i.e.,
providers1, 2, 3) is p. Here the intersection occurs on an horizontal part of
the stairstep curve.

Unit price

Quantities
D(p)

C1

C2 +C3

C4

p1 p4p = p2 = p3

Fig. 2. Wardrop equilibrium for four providers and a given price configura-
tion: the common perceived price at each provider with positive demand (i.e.,
providers1, 2, 3) is p. Here the intersection occurs on a vertical part of the
stairstep curve.

unique. Note nonetheless that the resulting total revenue is
always the same. Moreover, we will see in the following that
when providers are at a Nash equilibrium of the pricing game,
then the corresponding user Wardrop equilibrium is unique.

V. PRICE COMPETITION AMONG PROVIDERS

In this paper, we consider that providers setting their prices
is the upper stage of a two-level game, where the lower stage
corresponds to users reacting according to the Wardrop equi-
librium described in Definition 1. We assume that providers are
aware of their advantage of playing first, i.e., they anticipate
and take into account users’ reaction when determining their
price. That common knowledge complicates the competition
among providers, and is the purpose of the analysis in this
section.

Our main result is a complete characterization of the Nash
equilibrium of the pricing game, taking benefit from the above
corresponding characterization of the Wardrop equilibrium.

Proposition 4: Under Assumption B, there exists a Nash
equilibrium of the price war among providers, given by

∀i ∈ I,

{
pi = p∗

di = Ci
,
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wherep∗ = v
(
∑

j∈I Cj

)

, that is

∑

i∈I

Ci = D(p∗). (26)

Moreover, if cost functions(ℓi)i∈I are strictly increasing, then
there is no other Nash equilibrium.

In words, the proposition means that at equilibrium, all
providers set the same price, such that demand equals the total
capacity of the system.

Proof: The proof can be decomposed into two steps:

1) We first show that if cost functions are strictly increas-
ing, only the point such thatdi = Ci and pi = p∗ ∀i,
with p∗ = v

(∑

i∈I Ci

)
can be a Nash equilibrium;

2) then we prove that that point is indeed a Nash equilib-
rium. Remark that we do not need the strict increasing-
ness of cost functions for that part.

Step 1: Uniqueness of the Nash equilibrium.
Assume that there exists a price configurationp that is a

Nash equilibrium of the pricing game, and decompose the set
of providersI into three disjoint subsets:I = Is ∪ I0 ∪ Iu,
where

Is := {i ∈ I : di > Ci}, (27)

I0 := {i ∈ I : di = Ci}, (28)

Iu := {i ∈ I : di < Ci}. (29)

We will show that Is and Iu are empty sets, which then
implies from (7) and (9) that the price configuration is
p = (p∗, ..., p∗).

We first prove thatIs = ∅. Assume it is not the case, and
consideris ∈ Is. From (7), we havepis

< p and dis
=

Cis
p/pis

, leading to

Ris
= Cis

p − ℓis

(

Cis

p

pis

)

. (30)

Consider provideris unilaterally increasing its unit pricepis

to pn
is

, with pis
< pn

is
< p. Then from (12) we have

D(p) ≤
∑

i∈I

Ci1lp≥pi
=
∑

i∈I

Ci1lp≥pn
i

andp < p ⇒ D(p) >
∑

i∈I

Ci1lp≥pi
≥
∑

i∈I

Ci1lp≥pn
i
,

which implies (again from (12), but applied to the new
price profile) that the perceived price at the new Wardrop
equilibrium is unchanged:pn = p. Therefore, sincepn

is
< p

by hypothesis, Relation (30) is still valid with new prices,and
the revenue change for provideris is

Rn
is
− Ris

= ℓis

(

Cis

p

pis

)

− ℓis

(

Cis

p

pn
is

)

> 0,

due to the strict increasingness ofℓis
. This contradicts the fact

that p is a Nash equilibrium and as a consequence,

at a Nash equilibrium, Is = ∅. (31)

Assume now thatIu 6= ∅ at a Nash equilibrium price profile
p. Since we necessarily haveIs = ∅, then from (9),D(p) =

∑

i∈I di <
∑

i∈I Ci = D(p∗), with p∗ = v
(∑

i∈I Ci

)
. This

implies that
p > p∗. (32)

We first briefly rule out the possibility thatD(p) = 0: if it
were the case, all providersi ∈ I would have profit−ℓi(0).
But any provideri ∈ I unilaterally changing his price topn

i =
v(Ci) would get a total demandCi and obtain profit

Rn
i − Ri = Civ(Ci) − ℓi(Ci) + ℓi(0).

Sincev(Ci) > v(
∑

i Ci) = p∗, under Assumption A, we have
Rn

i − Ri > Ci(p
∗ − κi) ≥ 0. ThusRn

i > Ri, a contradiction.
Consequently, at a Nash equilibriumD(p) > 0.

Now, the assumptionIu 6= ∅ implies that there exists a
provideriu such that

diu
< min(Ciu

, D(p)). (33)

Indeed, there exists at least a provider inIu, and if that
provider does not verify (33), then he gets all the demand
D(p), and therefore every other provideri has demanddi =
0 < min(Ci, D(p)) and verifies (33).

Recall that every provideri ∈ I haspi ≥ p, from (8) and
Is being empty. We now prove that provideriu can strictly
improve its benefit by changing its price frompiu

≥ p to
pε

iu
:= p − ε for a sufficiently smallε > 0. We distinguish

two cases.

• If Ciu
≤ D(p), then we easily see from (12) that the new

perceived pricepε verifies

pε
iu

= p − ε < pε ≤ p.

By changing its price top − ε, provider iu is the only
provider with the lowest declared unit price, therefore
from (7)-(8), its new demanddε

iu
equalsCiu

pε

p−ε , which
tends toCiu

whenε tends to0.
• If Ciu

> D(p) then for ε sufficiently small (such that
D(p − ε) ≤ Ciu

), provider iu gets all the demand, i.e.,
dε

iu
= D(p−ε). Whenε tends to0, that demand tends to

D(p) because of the continuity of the demand function.

Consequently, for a sufficiently smallε, the demand for
provider iu of switching from pricepiu

to price p − ε can
be arbitrarily close toy := min(Ciu

, D(p)) > diu
, and the

corresponding revenue gain can then be arbitrarily close to

p(y − diu
) − ℓiu

(y) + ℓiu
(diu

) ≥ (p − κi) (y − diu
)

︸ ︷︷ ︸
>0

≥ (p − p∗)(y − diu
)

> 0,

where the first and second line come fromy ≤ Ciu
and

Assumption A, and the last line stems from (32). Conse-
quently, provideriu can strictly improve its net benefit by
unilaterally changing its declared price, which contradicts the
Nash equilibrium condition and establishes that we necessarily
have

at a Nash equilibrium, Iu = ∅. (34)

Relations (31) and (34) imply that at a Nash equilibrium,
di = Ci for all i ∈ I. Then the demand relation (9) implies
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that p = p∗, while (7) givespi = p for all i ∈ I. At a Nash
equilibrium, each provideri necessarily declares unit price
pi = p∗.
Step 2:pi = p∗, ∀i is a Nash equilibrium.

We now consider the price profilep such thatpi = p∗, ∀i.
For that price profile, we havedi = Ci for all i ∈ I, and
p = p∗. First note that all providersi ∈ I get a revenue larger
than−ℓi(0):

Ri+ℓi(0) = p∗Ci−(ℓi(Ci)−ℓi(0)) ≥ Ci(p
∗−κi) ≥ 0, (35)

where the inequalities come from Assumption A.
Let us now prove that no provider has an incentive to change

his price if all the others keep their price top∗. Without loss
of generality, consider a possible move of provider1 from p∗

to pn
1 6= p∗. We distinguish two cases.

• If pn
1 < p∗, then

D(p∗) =
∑

i∈I

Ci =
∑

i∈I

Ci1l{p∗≥pn
i
}

andp < p∗ ⇒ D(p) >
∑

i∈I

Ci ≥
∑

i∈I

Ci1l{p≥pn
i
},

which from (12) means thatpn = p∗. Therefore, (8) and
(7) imply thatdn

1 = C1p
∗/pn

1. The revenue difference for
provider1 is thus

Rn
1 − R1 = ℓ1(C1) − ℓ1(C1

p∗

pn
1

) ≤ 0,

where the last inequality comes from the nonincreas-
ingness ofℓ1. Remark thatRn

1 < R1 if ℓ1 is strictly
increasing.

• If pn
1 > p∗, then

p ≤ p∗ ⇒ D(p) >
∑

i6=1

Ci ≥
∑

i∈I

Ci1lp≥pn
i
.

Moreover, since all providersi ∈ I have a pricepn
i =

p∗ ≤ pn
1, then

D(pn
1) ≤ D(p∗) =

∑

i∈I

1l{pn
1
≥pn

i
}Ci.

As a result, from (12) the new perceived pricepn is such
that

p∗ < pn ≤ pn
1.

If pn < pn
1 thendn

1 = 0 from (7), andRn
1 = −ℓ1(0) ≤ R1

from (35).
If pn = pn

1 then (8) implies thatdn
1 ≤ C1 and dn

i > Ci

for all i 6= 1. Therefore(9) implies that

dn
1 = D(pn

1) −
∑

i6=1

Ci,

and the revenue change for provider1 is

Rn
1 − R1 = pn

1d
n
1 − ℓ1(d

n
1) − p∗C1 + ℓ1(C1)

≤ pn
1



D(pn
1) −

∑

i6=1

Ci



− p∗C1

+κ1(
∑

i∈I

Ci − D(pn
1))

< pn
1D(pn

1) − p∗D(p∗) + κ1(D(p∗) − D(pn
1))

= (pn
1 − κ1)D(pn

1) − (p∗ − κ1)D(p∗). (36)

where the second line comes from Assumption A, and
the third one frompn

1 > p∗ andD(p∗) =
∑

i∈I Ci. Now
consider the function

g(y) := (y − κ1)D(y) − (p∗ − κ1)D(p∗). (37)

We haveg(p∗) = 0. Moreover,g is derivable on[p∗, pn
1],

and its derivative has the same sign asyD′(y)
D(y) + 1

1−κ1/y ,
which is nonpositive under Assumption B. Consequently,
g(pn

1) ≤ g(p∗), and going back to (36) we haveRn
1 < R1,

concluding the proof.

VI. CAN PROVIDERS LIE ON THEIR CAPACITIES?

In the previous sections, we assumed that the total capacities
(Ci)i∈I were common knowledge of all participants. While
this may not be true in reality, we may consider that providers
be asked to declare their capacity level at the very beginning
of the interaction, i.e., before choosing their prices, or that the
used capacities have been learnt. A question that then naturally
arises, since providers are still assumed to be selfish, is related
to the capacity declaration strategy: is there an interest to lie
on one’s capacity? In this section, we answer negatively to that
question, by proving that truthfulness is a dominant strategy
for providers under Assumption B. As a result, even if we add
a third level -a game on declared capacities- on the considered
interaction -game on prices plus user choices-, there is still a
unique equilibrium, that is socially efficient.

To establish that result, we assume now that each provider
i ∈ I has to declare its capacity valueCi, and denote by
Cdec

i the value that it chooses to declare. First, remark that
only the declared valuesCdec

i ≤ Ci are feasible: whereas
provider i can easily artificially degrade its service rate, it
cannot increase it above its real capacityCi: a false declaration
aimed at increasing one’s demand to get a larger benefit would
be detected.

We assume that the capacity declaration occurs before the
providers set their price, i.e., they commit to a certain service
rateCdec

i . Then from Proposition 4, providers know that price
competition will lead to a unique Nash equilibrium where all
providers declare the same unit price

pNE = v

(
∑

i

Cdec
i

)

, (38)

and each provideri gets demandCdec
i . Providers should

therefore use that knowledge when choosing the capacity level
to declare.

Focusing on the net revenue of a provider, there are two
opposite effects of declaring a falsely low capacityCdec

i < Ci

instead of the real capacityCi:

• since the total available capacity decreases, from (38) the
unit selling price at equilibrium increases, and the man-
aging cost decreases because the quantity sold decreases;

• on the other hand, less quantity sold means less revenue.

The next proposition gives a sufficient condition for the latter
effect to overcome the former.
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Proposition 5: Consider that providers can artificially lower
their capacity. Under Assumption B, truthfully declaring one’s
real capacity is a dominant strategy for each provider.

Moreover, all providers truthfully declaring their capacities
is the only Nash equilibrium of the capacity declaration game,
and is a strict equilibrium.

First recall from Game Theory that astrict Nash equilibrium
is a strategy profile such that each player is strictly worse off
by any unilateral deviation.

Proof: Without loss of generality, we prove that provider
1 strictly decreases its revenue by declaring a capacityCU

1 <
C1, when each competitori ∈ I \ {1} declaresCdec

i ≤ Ci.
First remark that due to the nonincreasingness ofv, As-

sumption B still holds with declared capacities and the cor-
responding pricep∗ = pNE. Therefore, the equilibrium of the
price competition game is unique and given by Proposition 4
with those declared capacities. In other words, if we define
Cdec

−1 :=
∑

i6=1 Cdec
i , the unit pricepNE at the price competition

equilibrium is then

pNE = v(Cdec
1 + Cdec

−1). (39)

Each provideri ∈ I gets demandCdec
i , and gets total benefit

Ri = Cdec
i pNE − ℓ1(C

dec
1 ). Notice thatpNE ≥ p∗.

Now let us compare any untruthful declarationCdec
1 =

CU
1 < C1, leading to provider1 revenueRU

1 , to the truthful
declarationCdec

1 = C1, with provider1 revenueRT
1 . We have

RU
1 − RT

1

= CU
1 v(CU

1 +Cdec
−1) − C1v(C1+Cdec

−1) + ℓ1(C1) − ℓ1(C
U
1 )

= (D(pU)−Cdec
−1)p

U+(D(pT)−Cdec
−1)p

T+ℓ1(C1)−ℓ1(C
U
1 ),

where pU := v(CU
1 + Cdec

−1), and pT := v(C1 + Cdec
−1). The

second equality comes fromD(pU) = CU
1 +Cdec

−1 andD(pT) =
C1 + Cdec

−1. Remark thatpU > pT sinceD is nonincreasing.
From Assumption A, we have

RU
1 − RT

1

≤ (D(pU) − Cdec
−1)p

U + (D(pT) − Cdec
−1)p

T + κ1(C1 − CU
1 )

= −(pU − pT)
︸ ︷︷ ︸

<0

Cdec
−1 + pUD(pU) − pTDpT + κ1 (C1 − CU

1 )
︸ ︷︷ ︸

=D(pT)−D(pU)

,

≤ (pU − κ1)D(pU) − (pT − κ1)D(pT). (40)

The last line, taken as a function ofpU, is of the same form
as in (37), and is therefore nonincreasing forpU ≥ pT under
Assumption B. Since it is null atpT, then pU > pT yields
RU

1 ≤ RT
1 , which proves that truthful declaration is a dominant

strategy. As a result, all providers being truthful is a Nash
equilibrium of the price declaration game.

Remark that as soon as one competitor declares a non-
zero capacity, thenCdec

−1 > 0, and the inequality in (40) is
strict. Therefore, the (truthful) Nash equilibrium is a strict
equilibrium, and the only possible other equilibrium would
consist in all providers declaring a null capacity, i.e.,Cdec

i = 0
for all i ∈ I. We now exclude that possibility.

Consider provider1, and assume all its competitors declare
a null capacity, i.e.,Cdec

−1 = 0. By declaring a null capacity
Cdec

1 = 0, provider1 would get a total revenueRU
1 = −ℓ1(0).

However declaring its true capacityC1 and setting its price to
v(C1) would yield a revenueRT

1 = C1v(C1)− ℓ1(C1). Under
Assumption A, the revenue gain is therefore

RT
1 − RU

1 ≥ C1(v(C1) − κ1) > 0,

where the strict inequality comes from the strict decreasing-
ness ofv. As a result, provider1 has an interest to deviate from
the situation where providers declare zero capacity, which
rules out that situation for being a Nash equilibrium, and
concludes the proof.

As a consequence of Proposition 5, even if providers have
the possibility to artificially reduce their service capacity
before fixing their prices, the final outcome of the competition
game still corresponds to the socially efficient situation pointed
out in Proposition 2.

VII. C ONCLUSION

This paper provides an analysis of a pricing game among
competitive telecommunication service providers with poten-
tially different but fixed capacities. According to the price pro-
file, we have been able to define and characterize the demand
repartition for selfish infinitesimal users, applying Wardrop’s
principle. Using the knowledge of what this repartition would
be, providers can play with their price in order to maximize
their revenue. We have proved the existence of a unique Nash
equilibrium for that game, where all providers set the same
price, for which demand exactly meets the sum of capacities.
We have also established that providers have no incentive to
artificially create some congestion by declaring a falsely low
capacity. It turns out that those interactions among selfish
agents (providers and customers) lead to an outcome that
maximizes social welfare, i.e., available network resources are
optimally used.

As extensions of this work, we would like to investigate
the viability of (or to define rules to make viable) scenarii
that might be more specific to wireless. For instance when a
provider is a virtual operator leasing capacity to a competitor
owning a license. Other scenarii of interest would regard
cognitive networks, i.e., the case when unused capacity can
be used by secondary users. In general, considering a capacity
expansion game is also an interesting issue. Indeed, capacity
can be an important parameter providers can play with, at the
same time as prices: what would the resulting equilibrium be?
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