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Abstract

In this paper, we use low discrepancy sequences as a variance re-
duction tool for the Monte Carlo simulation of loss models in broad-
band telecommunication networks. We have already applied this tech-
nique to product-form multi-class queuing networks and to a partic-
ular loss model representing a cellular system with dynamic resource
sharing. We generalize here this last result to a broader class of loss
models and we give some enlightenments and precise details on the
behavior of the method.

1 Introduction

The interest in loss models has increased in the last decades, due to the broad
and growing prominent class of systems they represent. A system from which
resources are available is called a loss system if, when an arrival customer
does not found a sufficient amount of required resources, this customer is
lost. The first model of this kind is the Erlang loss model which has resulted
in the well-known Erlang loss formula (Ross 1995, Chapter 1). A lot of work
has been done ever since to generalize this expression.

The loss model we consider is the one in (Ross 1995). It can represent
circuit-switched telephone networks, single service telephone networks with
fixed routing, ATM networks, as well as the stochastic knapsack problem.



Using some minor modifications, it is also possible to modelize other sys-
tems such as, for instance, ATM networks with bidirectional links or ATM
networks with route separation or with multiplexing across routes.

In the sequel, the inter-arrivals between calls are supposed to be expo-
nentially distributed (which is not necessarily the case for holding times)
so that the stationary probabilities have a product-form solution known a-
part from a normalization constant. Performance measures can be expressed
as simple functions of those normalization constants, whose computation is
then an important challenge. When the state space is large, a direct com-
putation is intractable but we can use some efficient methods such that for
instance convolution or fast Fourier transforms (Kobayashi and Mark 1997,
Ross 1995). Nevertheless, these combinatorial algorithms can not be used
for all topologies, so that we have sometimes to use Monte Carlo methods as
in (Ross 1995, Ross and Wang 1992), where importance sampling to reduce
the estimator’s variance.

In the present paper, we improve these last results by using randomized
quasi-Monte Carlo methods developed in (Cranley and Patterson 1976, Tuffin
1996a, Tuffin 1997a, Tuffin 1997b, Tuffin 1998). Such techniques use low
discrepancy sequences (Niederreiter 1992) as a variance reduction technique.
These sequences have the property to be quickly uniformly distributed over
the integration space. This can lead to great improvements by reducing the
confidence interval width with respect to a standard Monte Carlo method.
This technique has already been applied in (Tuffin 1997b) to product-form
multi-class queuing networks (as an improvement of the work done in (Ross
and Wang 1997)) and in (Tuffin 1996b) to a particular loss model which
represents a cellular system with dynamic resource sharing (Fleming et al
1995). We apply here our technique to the generalized class of loss models
studied in (Ross 1995). It is a more general model than the one described
in (Tuffin 1996b), which, using trivial adjustments, fits the same kind of
framework.

The paper is organized as follows. In Section 2 we present the model on
which we will work and in Section 3 we recall the Monte Carlo method of
(Ross 1995, Ross and Wang 1992). Next, we describe the randomized quasi-
Monte Carlo method in Section 4 and we give numerical experimentations in
Section 5. Finally, we describe in Section 6 an integral representation of nor-
malization constants developed in (Kobayashi and Mark 1997). Simulation
using this integral form seems to be a promising direction for further work,
especially if randomized quasi-Monte Carlo methods are used. We explain



then what are our current limitations. Finally, we conclude in Section 7.

2 Model

The model we use here is more detailed in (Ross 1995) and represents a wide
range of telecommunication applications. We consider a system consisting in
J links with a capacity of C; bandwidth units for link j. There are also K
classes of calls. Each call class k£ (k=1,---, K) is characterized by

e Independent Poisson arrival processes with rate A.

e Independent holding times (not necessarily exponentially distributed)
with mean 1/ .

e A route Ry C {1,---,J} which is a subset of links required for example
to connect two nodes.

e The by bandwidth units required in each link 5 € Ry for a call. In
the case of ATM networks with peak rate admission, by denotes the
peak rate of a class-k service (k =1,---, K). In the case of statistical
multiplexing, it denotes the effective bandwidth.

Suppose that a class-k call arrives. If there is a link j € Rj such that
more than C; — by bandwidth units are already used, then the call is lost.
Otherwise, the call is admitted and by is deduced of the available capacity of
each link 7 € Ry until the service is completed.

As in (Ross 1995), define IC; as the set of classes using link j, i.e., K; =
{ke{l,---,K} : j€ Ry}. A state of the system is given by the vector

n:(nla"'anK)

where ny is the number of class-k calls (k = 1,---, K) in the system. The
state space is then

SZ{’I’LE]NKIZblnlSOj v1§j§J}
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Moreover, we define the set Sy of states for which a class-k call (k=1,---, K)
is admissible by
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Denote by X = (Xj,--, Xk) the equilibrium random vector such that
Xy (k=1,---, K) is the steady state number of class-k calls. Let py = Mg/
for k=1,.--, K be the traffic intensity of class k. Following (Ross 1995), X
has the following probability distribution
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is the normalization constant.

For link j € {1,---, J}, let U; = ¥yex, be Xk be the equilibrium amount
of bandwidth used. An important measure on this model is the asymptotic
blocking probability for a class-k call
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where Gi, = Ynes, [Thei p*/ns! is the normalization constant for the same
system but with a bandwidth capacity C; — by instead of C; in each link
j € Ry, i.e., using state space Sy instead of S (Ross 1995, page 160). Note
that these constants allow to compute many other performance measures, so
that the knowledge of their values is a challenging point.

There exist efficient combinatorial algorithms to compute the normaliza-
tion constants and then the loss probabilities, but these methods do not work
for all topologies (i.e., shape of Ry, Vk) (Ross 1995). In fact, computing these
values is a NP-complete problem, so that we use simulation techniques.

As a last remark, note that this model is very general; with very simple
modifications on the state space S, it can also represent (Ross 1995)

e an ATM network with dynamic service/dynamic-route separation;

e an ATM network with static or dynamic-service separation/multiplexing
across routes;

e a cellular system with dynamic resource sharing as described in (Flem-
ing et al 1994).



3 Monte Carlo simulation

As the normalization constants are unknown, it is impossible to simulate
directly the random vector X, so we simulate a random vector Y with a
distribution the closest to X. By this, we do what is called in Monte Car-
lo theory importance sampling (Fishman 1997). Let us explain how it is
implemented in (Ross 1995, Ross and Wang 1992).

For 1 <k < K, let Ny = min{C}/b; : j € Ry} be the maximal possible
number of class-k calls in the system and Yj be a truncated Poisson random
variable with parameter -, and values in {0, - - -, Ny}. To facilitate the anal-
ysis, we suppose that the Y, (k = 1,---, K) are independent. Define also
Y = (Yi,---,Yk) with values in S with

S={Q“wNﬁX'“X{Q“wA%L

and note p its probability distribution, which is therefore a product of trun-
cated Poisson laws. Then

0= % sm =T, (25 )

"k
where f(n) = [T, %kk—!]l(n € §) and [E,(-) is the expectation with respect
to probability measure p. .

Using I independent vectors Y@ with the same law as Y, estimators of

G and By (k=1,---, K) are respectively
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with ® = f/p and ®®)(Y®) = (YN 1(Y® € &,). Using the Central

Limit Theorem as I — oo, we obtain a confidence interval at risk 5% for Bj,
(k=1,---,K)
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where \ .
(s¢)2 = g2(@®) — 2T Cov(®, @) + (T1F)202(3)

can easily be estimated (Fishman 1997).
All the problem is reduced now to the choice of parameters v, (k =
1,--+, K). The heuristic developed in (Ross 1995, Ross and Wang 1992) is

to take
e = (14.15(1 — 2))%pp for k=1,--+ K

where z = maX:LSjSJ(ZkEIC]. bgpr)/C; is assumed not to be greater than one.

4 Simulation using randomized Quasi Monte
Carlo methods

4.1 Quasi-Monte Carlo methods

Quasi-Monte Carlo methods are devoted to the computation of integrals of
functions g defined over [0,1]°, say, to compute [ g(z)dz. We describe
here how these techniques operate and we will see in sub-section 4.3 how
to use them to our performance evaluation problem which is to work out a
summation instead of an integration.

Quasi-Monte Carlo methods (Niederreiter 1992) are deterministic analogs
of Monte Carlo ones and use low discrepancy sequences (€®);cy which have
the property of having a fast uniform distribution. The approximate value of

Jio,= 9(%)d is then — Z g(€™) and an error bound is given by the Koksma-

=1
Hlawka Theorem (Nlederrelter 1992):

720 — [ o(w)da| < V(5)D; ((€9)ien)

where V(g) is the variation of ¢ and
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is the discrepancy of the I first elements of the sequence (£®));eny. The con-
vergence speed is then given by the decreasing speed of the discrepancy. For

6



low discrepancy sequences, this speed is O(I7'(In I)*), which is conjectured
to be the best possible (Niederreiter 1992, Tuffin 1997a). Consequently, if
V(g) is finite, the Koksma-Hlawka bound leads to an error in O(I=!(In I)*),
faster than the one of Monte Carlo methods which is in O(1~/2).

But the problem with these methods is that, even if the convergence is
fast, the error is unknown in practice because usual error bounds like the
Koksma-Hlawka one depend on unknown or extremely large quantities. For
example, this is the case of the variation, which is in general unknown and
large, and of the discrepancy for which the only valuable known behavior
is the asymptotic one (Tuffin 1997a). Thus, we combine Monte Carlo and
quasi-Monte Carlo methods to benefit of the advantages of each of them: fast
convergence speed for quasi-Monte Carlo and error estimate (by means of a
confidence interval) for Monte Carlo.

4.2 Randomized-quasi-Monte Carlo methods

We consider here I random variables
70 = Zg<{U<i> +¢e0y),

i=1,---,I, where the U® are ii.d. random variables uniformly distributed
over [0,1]* and {-} denotes the fractional part of each coordinate of a vector
of R*. With respect to quasi-Monte Carlo methods, a random part is then
inserted in Z® by adding the same random variable to each point of the
low discrepancy sequences in the quasi-Monte Carlo estimation. We hope
that the uniform distribution of (6®);c will reduce the variance of Z®) with
respect to the one of the average of L i.i.d. g(UW) (I =1,---,L). The new
(unbiased) estimator of [ s g(z)dz is then

X7 = g XN 6U +¢0)) (2

1=11=1

Using the Central Limit Theorem on the I independent random variables
Z® i=1,-.-,1, we obtain a confidence interval for the integral. As shown
in the following Theorem, the low discrepancy sequence reduces the variance
of the estimator:



Theorem 1 (Tuffin 1996a,1997a, 1997b) For every low discrepancy sequence
P = (D) e over [0,1)° and every function g of bounded variation V (g),
then

(T EaU+€0D) = 0Lt og 1)) @

In the same way, if g is a Riemann-integrable function (or such that g and
g% have a convergent generalized Riemann integral) such that there erist a
step function h and a constant M with

0-2(}7” L’ 5) - 02(ga La 5)
o?(h, L,§)

sup <M, (4)

>1

where o?(f, L, &) = o? (% SF L FHED + U})) for every function f, then (3)
1s satisfied as well.

The aggregate convergence speed of the estimator given by (2) is then
O(I7'2L='(In L)*) and can be faster for smooth functions (Tuffin 1998).
In (Tuffin 1996a) we have found by means of numerical tests, that Sobol’
sequences using the Gray code as implemented in (Press et al 1992) are the
low discrepancy sequences which give the best results.

4.3 Application to loss networks problem

To use the randomized quasi-Monte Carlo method for the computation of
(1), we may just consider now the function g : [0, 1]% — R defined by

N1 Ng
glur, - ug) = Do e Do By, ng) X

n1=0 nig=0

iy L(Fe(ne — 1) < ug < Fr(ng)), (5)

where Fi(n) = IP(Y) < n) is the distribution function of Y;, for k =1,---, K.
It can easily be seen that the random variable g(U) with U uniformly dis-
tributed on [0, 1)* has the same distribution function than ®(Y") (as defined
in Section 3).

However, this algorithm generates each random variable Yy (k =1,---, K)
in a time increasing with Nj, because we have to compare u; € [0,1)



with the values Fy(ng), (ny = 0,---, Ni). This can be improved using the
alias algorithm (see (Fishman 1997) for a description) which generates Y
(k=1,---,K) in a O(1) time, that is, independent of Ny. We now briefly
describe the function associated with this technique to be able to later find
the convergence speed of the randomized quasi-Monte Carlo method. The
alias algorithm uses pre-computed tables Qg, Dy and Fy (k= 1,---,K) to
obtain the desired probability distribution (Fishman 1997). Define then

1D (ug, ) = TNk + Vg < Qr(|(Ni + Dug)),
Dk(L(Nlc + 1)ukj) == nlc)

19 (ug,ng) = TH{(Ng + Dug} > Q[ (Vi + Dug)),
Ep([ (N + Dug]) = ny)

where | | is the floor function. The function g corresponding to this algorithm
is then given by

N Ng
gluy, -+ ug) = D -0 Y Bng, - ng) X
n1=0 ng=0
K
IT 19 (ug, i) + 1) (g )] (6)
k=1

The variance of the randomized quasi-Monte Carlo estimator has the follow-
ing convergence property, showing the advantage of its use on our problem:

Theorem 2 For each choice of function g ((5) or (6)), the variance of the

random variable
L

LS g+

=1
is O(L=2(In L)?).

Proof: the function g is a finite sum of indicator functions of rectangulars with
sides parallel to the coordinate axis. Such a function is of bounded variation
(Morokoff and Caflisch 1995; p. 226), so using Theorem 1 we obtain the
result. O



5 Numerical illustrations

We apply the randomized quasi-Monte Carlo method to a network consisting
in a star topology (on which usual algorithms can not be applied, (Ross
1995,page 240)) with four links as described in Figure 1. We take here the
link capacities C; = 20, Cy = 30, C5 = 40 and C4 = 50. There is traffic
only between the six pairs of leaf nodes. There are two classes of traffic, then
K =12 classes of calls. The other specifications are displayed in Table 1.

Ca

C1 Cs

Cy

Figure 1: Star topology with four links

Class k | Route | by Pk Vi

1 1,2 1 5.0 5.48
2 1,3 1 5.0 5.48
3 1,4 1 5.0 5.48
1 2,3 1 5.0 5.48
5 2.4 1 5.0 5.48
6 3,4 1 5.0 5.48
7 1,2 5 1.0 1.58
8 1,3 5 1.0 1.58
9 14 5 1.0 1.58
10 2,3 5 1.0 1.58
11 2,4 5 1.0 1.58
12 3.4 5 1.0 1.58

Table 1: Data of the star topology example with four links

The results for Monte Carlo methods are given in Table 2, and for ran-
domized quasi-Monte Carlo ones in Table 3. To reduce the size of each table,

10



we only give the estimated confidence interval for loss probabilities of the two
As it can be observed in these Tables by considering

first classes of calls.

I Class| By, estimation | CI Width
106 |1 2.089900e-01 1.523e-02
10 |2 1.763586e-01 1.436e-02
108 |1 2.087760e-01 | 1.530e-03
108 |2 1.752015e-01 1.439e-03
210°] 1 2.086761e-01 3.412e-04
2107 2 1.750566e-01 3.210e-04

Table 2: Some Monte Carlo results for the star topology example with four

links

I | L Class| B, estima- | CI Width
tion
10%] 10* | 1 2.128194e-01 | 1.495e-02
10%2| 10* | 2 1.811122e-01 | 1.465e-02
103 10° | 1 2.104176e-01 | 1.518e-02
10%| 10% | 2 1.748653e-01 | 1.445e-02
10%2] 10° | 1 2.083600e-01 | 1.466e-03
10%( 108 | 2 1.745644e-01 | 1.382e-03
1021 21071 2.086721e-01 | 2.591e-04
10%2| 2101 2 1.750282e-01 | 2.516e-04

Table 3: Some randomized quasi-Monte Carlo results for the star topology
example with four links

the confidence interval widths, the improvements are not as large as expected
in Theorem 2 using a moderate number L of points of the low discrepancy
sequence (Sobol’ one), but they begin to be significant with a quite large L.

We consider also a smaller example with a star topology but with only
three links of respective capacities C; = 20, Cy = 30 and C3 = 40. Table 4
gives the other specifications regarding this example.

The results for Monte Carlo simulation are given in Table 5, and for
randomized quasi-Monte Carlo in Table 6. The improvement with low dis-
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Class k | Route | by, Pk Ve

1 1,2 1 5.0 5.48
2 1,3 1 5.0 5.48
3 2,3 1 5.0 5.48
4 1,2 5 1.0 1.58
5 1,3 5 1.0 1.58
6 23 |5 1.0 | 1.58

Table 4: Data of the star topology example with three links

I Class| By estimation | CI Width
106 |1 9.471070e-02 2.081e-03
106 |2 8.641567e-02 2.025e-03
108 |1 9.478580e-02 2.083e-04
108 2 8.646147e-02 2.026e-04
10° |1 9.472626e-02 6.586e-05
109 |2 8.642010e-02 6.407e-05

Table 5: Some Monte Carlo results for the star topology example with three
links
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crepancy sequences is greater and more quickly significant in this case than
for the example with four links.

The worse improvements (in confidence interval width) on the first exam-
ple are due to the shape of the function to integrate: it consists in a larger
collection of rectangular characteristic functions, and the good distribution
of low discrepancy sequences needs in this case more time to be effective.
More exactly, the greater the number of rectangular characteristic functions
the integrand is composed of, the longer is the time needed to notice the
good approximation. However, for a sufficiently large number of points, the
accuracy given in Theorem 2 can be found, as seen in Tables 2 and 3. At
least, for a small number of used points of the low discrepancy sequence,
the results when using randomized quasi-Monte Carlo method are not worse
than when using Monte Carlo; moreover, for a large number of points, the
improvement is significant, so that it is interesting to use a quite large L.

I L Clasqy B, estima- | CI Width
tion
102 | 10* |1 9.443673e-02 | 1.569¢-03
102 | 10* | 2 R.618917e-02 | 1.474e-03
10 ] 10% |1 9.386954e-02 | 1.992e-03
10 | 10% | 2 8.534427e-02 | 1.940e-03
102 [ 106 |1 9.474012e-02 | 8.841e-05
102 | 106 | 2 8.642337e-02 | 8.446e-05
102 | 107 |1 9.473390e-02 | 1.746e-05
102 | 107 | 2 8.641809¢-02 | 1.574e-05

Table 6: Some randomized quasi-Monte Carlo results for the star topology
example with three links

Another important point to observe when studying the efficiency of a
Monte Carlo estimator is the computational time (recall that the efficiency
is 1/(0?t) where o7 is the estimator’s variance, using I random variables, and
t its computational time). The ratios of computational times of the random-
ized quasi-Monte Carlo method using I random variables and L points of the
Sobol” sequence with respect to the ones of Monte Carlo method using IL
random variables are given in Table 7 for star topologies with three and four
links. As it can be seen in Table 7, the gain in computational time is sig-
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Example 1 L ratio
star3 100 10000 | 0.725
star3 10000 | 100 0.73
star3 100 108 0.71
star3 100 107 0.71

star4 100 10000 | 0.66
star4 1000 1000 0.66
stard 100 106 0.65
stard 100 2107 | 0.64

Table 7: Ratio of computational times for the star topologies examples: time
for the randomized quasi-Monte Carlo method using I random variables and
L points of the Sobol’ sequence divided by the time for Monte Carlo method
using /L random variables

nificant and increases with the dimension (due to less partial summations).
Therefore, using the randomized quasi-Monte Carlo method is interesting:
it is faster and gives smaller confidence interval widths when using many
points.

6 Direction for further work: the integral rep-
resentation

In (Ross and Wang 1997), the Monte Carlo simulation using an integral
representation of the normalization constant available for a confined class
of product-form multi-class queuing networks is showed to be more efficient
than the one using its summation form. In (Tuffin 1997b), the improvements
when using randomized quasi-Monte Carlo methods are seen to be the largest
on the integral representation. Therefore, a promising way to improve the
previous results of this paper is to use (Kobayashi and Mark, 1997; equation
(6.34)) where, the normalization constant G is expressed as

1 G*(2z)
(2mi)? Jr z1+C

G= dz (7)
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with 2 = (z1,-++,2;) € ©/, 1 = (1,--,1), C = (Cy,---,Cy) € N’ by, =
(bxl(k € K1), -+, bpl(k € Ky)) € N7, 2be = [T7_, 2

j:l ] Y

o))

1 -2 k=1

and where I' is a simple closed contour about the origin, i.e., a Cartesian
product of, for each coordinate z; € C of z, closed contours of 0 not including
1.

Note that this integral form is quite different from the one for product-
form multi-class queuing networks because it is an integral over C7.

If a satisfactory Monte Carlo method is available, then turning it into a
randomized quasi-Monte Carlo one may give an accuracy improved of several
orders of magnitude because the dimension is J (often smaller than K') and
because quasi-Monte Carlo methods are known to be faster on continuous
functions (Tuffin 1997b).

However, we have not succeeded in finding an efficient Monte Carlo
method to simulate the real part of (7), even when using the imaginary part
as a control variate. The problem is that for quite large networks, we obtain
very bad estimations whatever the choice of the path around the origin is.
Thus finding a good way to choose the paths is a challenging open problem.

7 Conclusions

Loss models have very important applications in telecommunication and com-
puter systems. In this paper, we have considered a randomized quasi-Monte
Carlo method to analyse such loss models. We have shown that they are
very powerful by reducing the variance and the computational time, then
the efficiency of the estimator.

Next step on this subject is to use the integral form of normalisation
constants. As a matter of fact, randomized quasi-Monte Carlo are known to
give very good variance reductions when estimating integrals of continuous
functions.
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