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ABSTRACT

The splitting method is one of the primary approaches to
make important rare events happen more frequently in a sim-
ulation and yet recover an unbiased estimator of the target
performance measure, in the context where this performance
measure is highly influenced by the rare event. In many rare-
event situations, simulation is impractical (because the esti-
mators are much too noisy) unless such a method is used.
Randomized quasi-Monte Carlo (RQMC) is another class of
methods for reducing the noise of simulation estimators, by
sampling more evenly than with standard Monte Carlo (MC).
It typically works well for simulations that depend mostly on
very few random numbers. In splitting, on the other hand,
we simulate Markov chains whose sample paths are usually a
function of a long sequence of independent random numbers
generated during the simulation. In this paper, we show how
a new RQMC technique called array-RQMC can be used to-
gether with splitting to obtain estimators with smaller vari-
ance than what can be obtained by either of the two methods
alone, and discuss the difficulties that have to be tackled to
further increase the efficiency. We do that in a setting where
the goal is to estimate the probability of reaching a given
set B before returning to the set A when starting from state
x0 ∈ A, where A and B are two disjoint subsets of the state
space and B is very rarely reached. This problem has several
practical applications.

1 INTRODUCTION

We consider a discrete-time Markov chain {X j, j ≥ 0} with
arbitrary state space X . Let A and B be two disjoint subsets
of X and let x0 ∈ A, the initial state. The chain starts in state

X0 = x0, eventually leaves the set A, and then may eventually
reach B or return to A. Suppose the first exit time from A
is at time 0 (this is when we start counting time). Let τA =
inf{ j > 0 : X j ∈ A}, the first time when the chain returns to
A after leaving it, and τB = inf{ j > 0 : X j ∈ B}, the first time
when the chain reaches the set B. The goal is to estimate µ ,
the probability that the chain reaches B before it returns to A,
i.e. µ = P[τB < τA]. This probability is assumed to be very
small, e.g., 10−10 or even less.

This problem occurs in many practical situations; see, e.g.,
Nicola, Nakayama, Heidelberger, and Goyal (1991), Goyal,
Shahabuddin, Heidelberger, Nicola, and Glynn (1992), Hei-
delberger (1995). For example, suppose we want to estimate
the expected time until failure for a complex multicompo-
nent system whose initial state is “new”. Components fail
once in a while and are replaced by new ones after some ran-
dom delay. When the set of working components satisfies
certain conditions, the system is operational, otherwise it is
in the failed state. Let A = {x0}, the set that contains only
the “new” state, and let B be the set of failed states. Suppose
we are interested in estimating E[τB], the expected time until
failure for a new system. By a standard argument (Goyal,
Shahabuddin, Heidelberger, Nicola, and Glynn 1992), we
have

E[τB] = E[min(τA,τB)]/µ.

In this expression, E[min(τA,τB)] is easy to estimate by stan-
dard simulation, but µ is often very difficult to estimate be-
cause it is very small. For example, if µ = 10−10 and we
do straightforward simulations to estimate it, by running n
copies of the chain up to the stopping time τ = min[τA,τB],
we must take n = 1012 (a huge number) to be able to ex-
pect that the event {τB < τA} occurs about 100 times. For
n < 1010, we are likely to observe no single occurrence of
this event, in which case the estimator of µ takes the value 0
and is rather useless.

A similar problem occurs in a queueing system when we
want to estimate the expected time until the number of cus-
tomers in the queue exceeds a given number (Parekh and
Walrand 1989, Sadowsky 1991). For example, the customers



could be packets in a telecommunication network, the num-
ber to exceed could be the size of the buffer used to store the
packets waiting to be transfered at a communication switch,
the set B could be the set of states for which the buffer over-
flows, and A would be the states where the buffer is empty.
Then, E[τB] represents (roughly) the average time between
buffer overflows and µ is the probability that the buffer over-
flows before returning to empty.

The two primary techniques for dealing with rare-event sim-
ulation are importance sampling and splitting. Importance
sampling changes the probability laws that drive the evolu-
tion of the system, to increase the probability of the rare
event, and multiplies the estimator by an appropriate like-
lihood ratio so that it has the correct expectation (e.g., re-
mains unbiased for µ in the above setting). A major diffi-
culty in general is to find a good way of changing the proba-
bility laws. We refer the reader to Glynn and Iglehart (1989),
Glynn (1994), Heidelberger (1995), Bucklew (2004) for the
details.

In the splitting method, the probability laws of the system re-
main unchanged, but an artificial drift toward the rare event
is created by terminating the trajectories that seem to get
away from it and cloning (i.e., splitting) those that are go-
ing in the right direction. Again, an unbiased estimator is
recovered by multiplying the original estimator by an ap-
propriate factor. We give more details in the next section.
The method can be traced back to Kahn and Harris (1951)
and has been studied by several authors, including Bayes
(1972), Villén-Altamirano and Villén-Altamirano (1991),
Villén-Altamirano and Villén-Altamirano (1994), Garvels
and Kroese (1998), Glasserman, Heidelberger, Shahabuddin,
and Zajic (1998), Glasserman, Heidelberger, Shahabuddin,
and Zajic (1999), Garvels (2000).

In this paper, we concentrate on the splitting method and ex-
amine how it can be combined with randomized quasi-Monte
Carlo (RQMC) to further reduce the variance. L’Ecuyer,
Lécot, and Tuffin (2005) recently proposed a new RQMC ap-
proach called array-RQMC, based on earlier work by Lécot
and Tuffin (2004), and designed primarily for Markov chains
having a totally ordered state space and which evolve for a
large number of steps. At first sight, this method seems to be
highly compatible with splitting. The goal of this paper is to
examine the degree of improvement obtained by their combi-
nation, as well as the difficulties encountered and which have
to be tackled to obtain an additional gain.

The remainder of the paper is organized as follows. In the
next section, we recall the main principles of splitting in the
setting where we want to estimate µ = P[τB < τA]. In Sec-
tion 3, we describe the array-RQMC method and how it can
be implemented in our setting. We additionally discuss the
potential difficulties of the method. Numerical illustrations
are given in Section 4 with two examples: firstly an Ornstein-

Uhlenbeck (mean-reverting) process for which B is the set of
states that exceed a given threshold, and secondly a tandem
queue where B is the set of states where the number of cus-
tomers waiting at the second queue exceeds a given value.
We finally conclude and provide hints for future research in
Section 5.

2 MULTILEVEL SPLITTING

To define the splitting algorithm, it is convenient to intro-
duce a function h : X → R that assigns a real number to
each state of the chain. This h is called the importance
function (Garvels 2000, Garvels, Kroese, and Van Ommeren
2002). Define the real-valued process {Z j = h(X j), j ≥ 0}.
We assume that A = {x ∈ X : h(x) ≤ 0} and B = {x ∈ X :
h(x) ≥ L} for some constant L > 0. In the multilevel split-
ting method, we partition the interval [0,L) into m subin-
tervals with boundaries 0 = L0 < L1 < · · · < Lm = L. For
k = 1, . . . ,m, define Tk = inf{ j > 0 : Z j ≥ Lk}, let Dk = {Tk <
τA} denote the event that the process Z reaches level Lk be-
fore returning to level 0, and define the conditional proba-
bilities pk = P[Dk | Dk−1] for k > 1, and p1 = P[D1]. Since
Dm ⊂ Dm−1 ⊂ ·· · ⊂ D1, we see immediately that

µ = P[Dm] =
m

∏
k=1

pk.

The basic idea of splitting is to estimate each probability pk
“separately”, by starting a large number of chains in states
that are generated from the distribution of XTk−1 conditional
on the event Dk−1. This conditional distribution is called the
entrance distribution at threshold Lk−1 and we shall denote
it by Gk−1.

This is done in successive stages, as follows. In the first
stage, we start N0 independent chains from the initial state
x0 and simulate each of them until time min(τA, T1). Let R1
be the number of those chains for which D1 occurs. Then
p̂1 = R1/N0 is an obvious unbiased estimator of p1. The
empirical distribution of these R1 entrance states XT1 can be
viewed as an estimate of the conditional distribution G1.

In the second stage, we start N1 chains from these R1 en-
trance states, by cloning (splitting) some chains if we want
N1 > R1, and continue the simulation of these chains inde-
pendently up to time min(τA, T2). Then p̂2 = R2/N1 is an
unbiased estimator of p2, where R2 is the number of those
chains for which D2 occurs. This procedure is repeated at
each stage. In stage k, we pick Nk−1 states out of the Rk−1
that are available (by cloning if necessary), simulate indepen-
dently from these states up to time min(τA, Tk), and estimate
pk by p̂k = Rk/Nk−1 where Rk is the number of chains for
which Dk occurs.

Even tough the p̂k’s are not independent, it turns out that



the product p̂1 · · · p̂m = (R1/N0)(R2/N1) · · ·(Rm/Nm−1) is an
unbiased estimator of µ (Garvels 2000).

There are many ways of doing the splitting (Garvels 2000).
For example, one may clone each of the Rk chains that
reached level k in ck copies for a fixed integer ck, in which
case Nk = ckRk is random. This is called fixed splitting. In
contrast, in the fixed effort method, we fix a priori each value
of Nk and make just the right amount of splitting to reach
this target value. One way of doing this is by sampling the
Nk starting states at random, with replacement, from the Rk
available states. This is called random assignment and is
equivalent to sampling from the empirical distribution of the
states. In a fixed assignment, on the other hand, we would
split each of the Rk states the same number of times (or ap-
proximately the same number of times, in the case where Nk
is not a multiple of Rk). In practice, the fixed effort method
tends to perform better, because it reduces the variance of the
number of chains that are simulated at any given stage, and
we prefer a fixed assignment strategy to a random assignment
because it amounts to using stratified sampling over the em-
pirical distribution, and thus typically reduces the variance.

Under a number of simplifying assumptions (e.g., that P[Dk |
Dk−1,XTk−1 = x] does not depend on x) and for the fixed split-
ting setting, it has been shown (Villén-Altamirano, Martinez-
Marrón, Gamo, and Fernández-Cuesta 1994, Garvels and
Kroese 1998) that the efficiency of the splitting method is
maximized by selecting the thresholds so that pk ≈ e−2 ≈
0.135 and E[Nk] = N0 for each k. This gives m ≈−(ln µ)/2
stages. However, these simplifying assumption typically do
not hold, so these results only give guidelines, and more im-
portantly the pk’s are unknown in practice and selecting the
appropriate threshold may be difficult. Moreover, the choice
of the importance function h may have a large impact on
the performance of the method and is not trivial (Garvels,
Kroese, and Van Ommeren 2002).

3 ARRAY-RQMC

3.1 Array-RQMC for simulating Markov chains

Array-RQMC is a simulation method recently designed by
L’Ecuyer, Lécot, and Tuffin (2005) to simulate a Markov
chain {X j, j ≥ 0} defined by some distribution ν0 for the
initial state X0 and a stochastic recurrence

X j+1 = ϕ(X j,U j) (1)

where the U j are independent random vectors uniformly dis-
tributed over [0,1)d . The method assumes that the state space
X is totally ordered. It simulates N copies of the Markov
chain in parallel, using at each step of the chain a so-called
highly-uniform point set, which contains N points that are
more evenly distributed in the unit hypercube than typical

random points. This induces a negative correlation among
the copies of the chains, resulting in a better approximation
of the probability distribution of X j than with standard Monte
Carlo (MC), for each j, and consequently a variance reduc-
tion of the performance estimator of interest.

The basic idea is to simulate the N chains in parallel as
follows. The N initial states Xi,0, i = 0, . . . ,N, are gener-
ated from the initial distribution ν0, using an RQMC point
set PN,0 = {u0,0, . . . ,uN−1,0} in [0,1)d0 , where ui,0 is used
to generate Xi,0, assuming that at most d0 uniform random
numbers are required to generate the initial state. The N
chains are then sorted in increasing order of their state, to
get the empirical distribution function of X1. The states at
the next time step are selected from the previously sorted
ones. We assume that d uniforms are necessary to generate a
transition according to the recurrence (1). An RQMC point
set PN,1 = {u0,1, . . . ,uN−1,1} in [0,1)d , randomized indepen-
dently from the previous one, is used, where ui,1 serves to
generate Xi,1 from Xi,0. The chains are sorted again accord-
ing to their state, and this process is repeated at successive
steps with independent RQMC point sets until all chains have
reached their stopping times. At each step, only the chains
that have not yet reached their stopping times are considered
and sorted; the other chains are ignored and for convenience
their state is assumed to be ∞ in the algorithm.

For intuitive justifications, additional details, and illustra-
tions of the degrees of improvement that are obtained in prac-
tice, the reader is referred to L’Ecuyer, Lécot, and Tuffin
(2005). A confidence interval is easily obtained by consider-
ing independent replications (i.e., randomizations) of groups
of N chains. For a one-dimensional state space and under cer-
tain additional conditions, these authors have shown that the
array-RQMC technique converges in O(N−1/2) in the worst
case. In contrast, the MC method converges in O(N−1/2) in
the (probabilistic) sense that the width of a confidence inter-
val converges at this rate. L’Ecuyer, Lécot, and Tuffin (2005)
have also shown that for a special variant of array-RQMC,
under certain assumptions, the variance converges to zero as
O(N−3/2).

3.2 Array-RQMC combined with splitting

In order to apply array-RQMC to the splitting approach, an
adaptation is required. The probabilities pk, k = 1, · · · ,m,
are estimated one after the other. Since µ is the product
of the pk’s, the principle is to successively estimate each
pk by the array-RQMC method previously described, and
to use the product of estimators as the overall estimator, as
realized in the standard splitting methodology. Let X (k) de-
note the Markov chain {X j, j ≥ 0} between times Tk−1 and
min(τA,Tk).

We start with N0 chains. We first estimate p1 by using the



array-RQMC algorithm for the Markov chain X (1): the N0
chains are simulated in parallel according to (1) and sorted
after each time step. Each chain evolves until the stopping
time min(T1,τA). If R1 is the number of chains for which D1
occurs, R1/N0 is an unbiased estimator of p1. The states of
these R1 chains are stored and their empirical distribution is
used as an unbiased estimator of the distribution of XT1 .

At the second level, N1 chains are started from those R1 states
according to one of the aforementioned splitting policies, and
are simulated in parallel using the same array-RQMC proce-
dure on X (2), each chain being simulated until its stopping
time min(T2,τA). The probability p2 is estimated by R2/N1
where R2 is the number of chains for which D2 occurs. These
R2 chains are then split again, and so on, until all the prob-
abilities p3, · · · , pm have been estimated. As in L’Ecuyer,
Lécot, and Tuffin (2005), it can be readily verified that the
estimator of each pk is unbiased.

The algorithm is described in Figure 1. It basically consists
in adding a loop to the algorithm of L’Ecuyer, Lécot, and Tuf-
fin (2005) for the estimation of the probability pk of reaching
each successive level. For simplicity, we assume that d0 = d
and consider a single replication. This entire procedure must
be repeated using independent randomizations to get a confi-
dence interval.

This algorithm is not very complicated in principle. How-
ever, several practical issues must be addressed for the com-
bination of splitting and array-RQMC to be really effective.
These difficulties include the following.

1. Recall that the number of time steps before reaching the
next level or coming back to A is random and may have
large variability, especially when k is large, because the
chain then starts farther from A and requires a larger
number of steps to come back to A. For the array-
RQMC method, this causes the number of points used at
each step of the chain to decrease with the step number,
within a given splitting level, thus reducing the RQMC
efficiency because only a few points from the RQMC
point set are used in the later steps.

2. The empirical distribution of the entrance states in Dk
tends to deteriorate (as an approximation of the exact
distribution) as k increases, due the fact that it is derived
from the empirical distribution at the previous level, so
the approximation error accumulates from level to level.
As a result, the variance reduction from array-RQMC is
expected to decrease with k.

3. In the case of multidimensional state spaces, both the
choice of the importance function for selecting the split-
ting levels and the ordering of the states are (related)
non-trivial issues (Garvels, Kroese, and Van Ommeren
2002, L’Ecuyer, Lécot, and Tuffin 2005). In general, the

states could be ordered by the value of the importance
function, in which case its choice has a double impact.

4. The optimal number of levels to minimize the vari-
ance of the estimator, derived by Villén-Altamirano,
Martinez-Marrón, Gamo, and Fernández-Cuesta
(1994), Garvels and Kroese (1998), is valid only for
the fixed splitting algorithm and under additional con-
ditions. This optimal number may differ significantly
for the fixed effort method, used in our experiments in
the next section. Our empirical investigations indicate
that it tends to be larger. The optimal number of chains
to simulate at each level may also differ from level to
level. Finding these (jointly) optimal numbers is not
necessarily easy. Fortunately, rough approximations
may suffice because the variance is often not very
sensible to small changes in these numbers.

5. RQMC has been proved to be asymptotically more ef-
fective than MC only when the integrand is a smooth
function (Owen 1998, L’Ecuyer and Lemieux 2002).
But here, we estimate the probability pk of reaching the
next level by an average of indicator functions, for each
k. Indicator functions are definitely not smooth, so it is
unclear a priori if array-RQMC can bring any improve-
ment, even asymptotically.

In the next section, we show that despite these difficulties, the
combination can still bring significant variance reductions.
We also discuss specific ways of tackling them for our exam-
ples. Future research on how to better address these issues
should lead to further efficiency improvements.

4 EXAMPLES

The following examples are toy problems, for which the ex-
act answer is known beforehand. They are used to illustrate
and evaluate the performance of the proposed method.

4.1 The Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process is a continuous-time sto-
chastic process {R(t), t ≥ 0} that obeys the stochastic dif-
ferential equation

dR(t) = a(b−R(t))dt +σdW (t)

where a > 0, b, and σ > 0 are constants, and {W (t), t ≥ 0} is
a standard Brownian motion (Taylor and Karlin 1998). This
model is also known as the Vasicek model for the evolution
of short-term interest rates (Vasicek 1977). In that context, b
can be viewed as a long-term interest rate level toward which
the process is attracted with strength a. This process is mean-
reverting, in the sense that it is attracted downward when it



Initialization.
Select m d-dimensional QMC point sets P̃k,Nk−1 = (ũ0, . . . , ũNk−1−1), 1 ≤ k ≤ m, and a ran-
domization of each P̃k,Nk−1 such that (a) each randomized point is a uniform random vari-
able over [0,1)d and (b) if Pk,Nk−1 = (u0, . . . ,uNk−1−1) denotes the randomized version, then
P′k,Nk−1

= {((i+0.5)/Nk−1, ui), 0 ≤ i < Nk−1} is “highly uniform” in [0,1)d+1.
Select the m thresholds 0 = L0 < L1 < · · ·< Lm = L.

Estimate each pk.
For (k = 1; k <= m; k++)

Simulate in parallel Nk−1 copies of the chain, numbered 0, . . . , Nk−1−1 as follows:
Initialize the chains, according to the initial distribution if k = 1, or according to the
splitting policy and the Rk−1 states if k > 1.
Sort the chains according to their state.
For ( j = 1; X (k)

0, j−1 < ∞; j++)
Randomize P̃k,Nk−1 afresh into Pk,Nk−1 = {u0, . . . ,uNk−1−1};

For (i = 0; i < Nk−1 and X (k)
i, j−1 < ∞; i++)

X (k)
i, j = ϕ(X (k)

i, j−1,ui);

Sort (and renumber) the chains for which X (k)
i, j < ∞ by increasing order

of their states. The empirical distribution of the sorted states X (k)
0, j , . . . ,X

(k)
Nk−1−1, j

provides an estimator of the distribution of X (k)
j .

Output.
Return ∏

m
k=1 Rk/Nk−1 as an estimator of µ .

Figure 1: Combined array-RQMC/splitting algorithm

is high and attracted upward when it is low. The constant σ

indicates the strength of the noise.

Suppose the process is observed at times t j = jδ for j =
0,1, . . . and let X j = R(t j). Let A = (−∞,b], B = [L,∞) for
some constant L, and x0 ≥ b. We want to estimate the proba-
bility that the process exceeds level L at one of the observa-
tion times before it returns below b, when started from x0. In
terms of the transition function described earlier, we have

ϕ(x j,U j) = x je−aδ +
σ

√
1− e−2aδ

√
2a

Φ
−1(U j)

where Φ is the standard normal distribution and U j is uni-
formly distributed over [0,1).

The levels Lk are defined simply as equidistant thresholds
on the value of the state X j. If we were considering the
continuous-time process, the entrance distribution Gk at each
level Lk would be degenerate at Lk. But because of the time
discretization, the entrance distribution has positive support
over the entire interval [Lk,∞). In this setting, the simulation
starts from a fixed state only at the first level. The simula-
tion at level Lk determines p̂k and Ĝk+1, which becomes the
initial distribution for the simulation at level Lk+1. Previous
analyzes of splitting algorithms (e.g., Garvels 2000) assume
that only one level can be crossed at a time and this condi-

tion does not hold for the discrete-time Ornstein-Uhlenbeck
process (an arbitrary number of thresholds can be crossed in
a single jump). We nevertheless recover an unbiased esti-
mator by considering explicitly the possibility that the chain
crosses the next threshold in zero steps.

We ran three types of simulations for this Ornstein-
Uhlenbeck model, each one based on a fixed-effort splitting
technique. The first one is the standard MC splitting algo-
rithm, used as a reference. The other two are RQMC tech-
niques, namely classical-RQMC and array-RQMC, applied
on top of the splitting algorithm. For the classical-RQMC
method, the N chains are simulated with the N points of an
infinite-dimensional RQMC point set. The steps of any given
chain use successive coordinates of a fixed point. The points
must be infinite-dimensional because the number of steps is
random and unbounded. The results presented here were ob-
tained with randomly-shifted Korobov lattice rules with pa-
rameters taken from L’Ecuyer and Lemieux (2000), comple-
mented with a baker’s transformation (Hickernell 2002). For
the array-RQMC algorithm, we used Sobol’ digital nets with
a random digital shift (L’Ecuyer and Lemieux 2002). The
variance for the RQMC methods was estimated by making
30 independent replications of the entire procedure.

The results given here correspond to a time-discretized



Ornstein-Uhlenbeck process with parameters a = 0.1, σ =
0.3, x0 = 0.1, and δ = 0.1. We want to estimate the probabil-
ity that the discrete-time process {X j = R(t j), j > 0} exceeds
L = 4 before getting below 0. With these parameters, the for-
mula − ln µ/2 gives m = 9 as the optimal number of splitting
levels, but this formula is valid only for fixed splitting and
under additional conditions which are not met here.

Table 1: Results for the Ornstein-Uhlenbeck model

Method Mean Variance VRF
N = 210, with 8 equidistant levels

Standard MC 1.8E-8 7.2E-17
Classical-RQMC 1.6E-8 1.9E-17 3.8

Array-RQMC 1.6E-8 6.9E-18 10.5
N = 210, with 16 equidistant levels

Standard MC 1.6E-8 1.0E-17
Classical-RQMC 1.6E-8 2.5E-18 4.0

Array-RQMC 1.6E-8 1.3E-18 7.8
N = 210, with 32 equidistant levels

Standard MC 1.7E-8 7.1E-18
Classical-RQMC 1.6E-8 3.0E-18 2.4

Array-RQMC 1.6E-8 1.1E-18 6.7
N = 212, with 8 equidistant levels

Standard MC 1.6E-8 1.0E-17
Classical-RQMC 1.6E-8 3.3E-18 3.0

Array-RQMC 1.6E-8 1.7E-18 6.0
N = 212, with 16 equidistant levels

Standard MC 1.6E-8 2.6E-18
Classical-RQMC 1.6E-8 8.5E-19 3.0

Array-RQMC 1.6E-8 1.6E-19 16.0
N = 216, with 16 equidistant levels

Standard MC 1.6E-8 2.0E-19
Classical-RQMC 1.6E-8 4.1E-20 4.8

Array-RQMC 1.6E-8 5.6E-21 35.0

Table 1 provides results obtained by using m = 8, 16, and
32 levels, with N = 210, 212, and 216 chains simulated at
each threshold. In the table, “mean” is the empirical mean
(the estimate of µ), “variance” is the empirical variance of
the average of all 30N chains, and VRF stands for the vari-
ance reduction factor with respect to MC with splitting, i.e.,
the variance with MC divided by the variance with the given
RQMC method.

We see that both RQMC methods reduce the variance com-
pared with MC. However, the classical-RQMC method only
brings a modest improvement, by a factor of 3 to 5, which
does not seem to increase much when we increase N. With
array-RQMC, on the other hand, the VRF clearly increases
with N and is quite significant for N = 216.

4.2 Buffer Overflow in a Tandem Queue

As in Parekh and Walrand (1989), Glasserman, Heidelberger,
Shahabuddin, and Zajic (1999), Garvels (2000) (among oth-
ers), we consider an open tandem Jackson queueing network
with two queues. The arrival rate at the first queue is λ = 1
while the mean service time is ρi at queue i, for i = 1,2. The
events are the arrivals and service completions (at any queue)
and X j =(X1, j,X2, j) is the number of customers in each of the
two queues immediately after the jth event. The set A con-
tains only the empty state (0,0) and B = {(x1,x2) : x2 ≥ `}
for some fixed threshold `, i.e., the set of states for which the
length of the second queue is at least `.

Garvels (2000) and Garvels, Kroese, and Van Ommeren
(2002) study the application of splitting to this model. A very
simple way to define the importance function is by setting its
value to the number of customers in the second queue. We
call this definition the “second queue function.” One draw-
back of this definition is that it ignores the state of the first
queue, neglecting its impact on the “distance” to the set B.
This impact can be important, especially when the bottleneck
is at the first queue (Garvels 2000).

Our second choice of importance function, which we call
“minimal distance function”, is defined by

h(x1,x2) = x2 +min(0,x2 + x1− `), (2)

which equals 2` minus the minimal number of steps required
to reach B from the current state. (To reach B, we need at
least `−min(0,x2 + x1 − `) arrivals at the first queue and
`− x2 transfers to the second queue.)

The two-dimensional state space also means that an ordering
of the states must be selected for the array-RQMC algorithm.
This order should reflect the “size” of the tandem queue, just
like the importance function. (More generally, the problem
of choosing the importance function for the splitting algo-
rithm is very similar to the problem of choosing the ordering
function for the array-RQMC method.) Here, we will sort
the states based on the value of the chosen function h (sec-
ond queue function, or minimal distance function), and two
states with the same value of h are not sorted.

For our numerical experiments with this example, we use the
parameter values ρ1 = 4, ρ2 = 2, and L = ` = 30. Table 2
gives the empirical mean, variance, and variance reduction
factors of RQMC compared with MC, for the two importance
functions defined above. Results are given for m = 10 and 20
equidistant levels, with N = 212 and 214 chains for the RQMC
methods, for again 30 independent replications of the entire
process.

No variance reduction is observed with the first choice of
importance function, but some reduction is observed for
the second choice. This illustrates the importance of a



Table 2: Results for the tandem queue

Method Mean Variance VRF
N = 212, m = 10, second queue function

Standard MC 1.2E-9 4.7E-20
Classical-RQMC 1.2E-9 7.1E-20 0.7

Array-RQMC 1.2E-9 5.3E-20 0.9
N = 212, m = 10, minimal distance function
Standard MC 1.2E-9 3.9E-20

Classical-RQMC 1.3E-9 1.9E-20 2.0
Array-RQMC 1.3E-9 9.6E-21 4.1
N = 212, m = 20, minimal distance function
Standard MC 1.2E-9 2.1E-20

Classical-RQMC 1.2E-9 4.4E-21 4.8
Array-RQMC 1.2E-9 6.8E-21 3.1
N = 214, m = 20, minimal distance function
Standard MC 1.2E-9 3.1E-21

Classical-RQMC 1.2E-9 1.5E-21 2.1
Array-RQMC 1.2E-9 7.8E-22 4.0

good selection of this function not only for the effective-
ness of the splitting technique, but also for the effectiveness
of the RQMC methods. In this example, array-RQMC and
classical-RQMC provide comparable variance reductions.

5 CONCLUSION

Splitting is one of the main approaches to efficiently simu-
late rare events. RQMC techniques, on the other hand, are
well known to reduce the variance with respect to MC in cer-
tain settings. In this paper, we have examined the combi-
nation of the two methods to obtain an increased efficiency,
with a special focus on the array-RQMC method recently de-
signed for the simulation of Markov chains. The degree of
improvement was illustrated on two examples: an Ornstein-
Uhlenbeck model and two queues in tandem. For the first
example, a significant variance reduction was obtained com-
pared with splitting alone. A modest reduction was obtained
in the second example.

The improvement provided by array-RQMC over MC was
not as spectacular as for the single-queue example of
L’Ecuyer, Lécot, and Tuffin (2005), where variance reduc-
tion factors of several thousands were observed in certain
cases. There are several tentative explanations for this, sug-
gesting directions for further improvement of the method.
A first possible reason is that the number of time steps be-
tween two thresholds is highly variable. Also, the average
and variance of the number of steps that need to be simu-
lated at a given splitting level generally increase as we are
getting closer to the rare event, because it then takes longer

to come back to the absorbing set A. A possible improve-
ment would be to adopt a variant of the splitting technique as
in the RESTART algorithm (Villén-Altamirano and Villén-
Altamirano 1991, Villén-Altamirano and Villén-Altamirano
1994), where the simulation of most trajectories is stopped
whenever the state goes below the lower threshold of the cur-
rent level, instead of waiting until it reaches A. This would
reduce both the average and the variance of the number of
steps at a given level. Another important issue that deserves
attention is the choice of importance function and of the state
ordering for array-RQMC (both are strongly related). An-
other point worth noticing is that we estimate here a proba-
bility by the average of an indicator function, which is gener-
ally not the kind of function that favors RQMC methods. A
possible improvement would be to replace the indicator func-
tion by an estimator based on conditional expectations. We
are currently pursuing our investigations in these directions.
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versité de Montréal, Canada. He holds the Canada Research
Chair in Stochastic Simulation and Optimization. His main
research interests are random number generation, quasi-
Monte Carlo methods, efficiency improvement via variance
reduction, sensitivity analysis and optimization of discrete-
event stochastic systems, and discrete-event simulation in
general. He is an Area/Associate Editor for ACM TOMACS,
ACM TOMS, and Statistics and Computing. He obtained the
prestigious E. W. R. Steacie fellowship in 1995-97 and a Kil-
lam fellowship in 2001-03. His recent research articles are
available on-line from his web page: 〈http://www.iro.
umontreal.ca/∼lecuyer〉.

BRUNO TUFFIN received his PhD degree in applied
mathematics from the University of Rennes 1 (France)
in 1997. Since then, he has been with INRIA (Institut
National de Recherche en Informatique et Automatique)
at Rennes, France. He also spent 8 months at Duke
University in 1999. His research interests include de-
veloping Monte Carlo and quasi-Monte Carlo simulation
techniques for the performance evaluation of computer
and telecommunication systems, and more recently de-
veloping new Internet pricing schemes. His e-mail
address is <btuffin@irisa.fr>, and his web page is
<www.irisa.fr/armor/lesmembres/Tuffin/Tuffin en.htm>.

http://www.iro.umontreal.ca/~lecuyer
http://www.iro.umontreal.ca/~lecuyer
mailto:btuffin@irisa.fr
http://www.irisa.fr/armor/lesmembres/Tuffin/Tuffin_en.htm

	INTRODUCTION
	MULTILEVEL SPLITTING
	ARRAY-RQMC
	Array-RQMC for simulating Markov chains
	Array-RQMC combined with splitting

	EXAMPLES
	The Ornstein-Uhlenbeck Process
	Buffer Overflow in a Tandem Queue

	CONCLUSION

