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Abstract

Monte Carlo (MC) method is probably the most widespread simulation technique due
to its ease of use. Quasi-Monte Carlo (QMC) methods have been designed in order to
speed up the convergence rate of MC but their implementation requires more stringent
assumptions. For instance, the direct QMC simulation of Markov chains is inefficient due
to the correlation of the points used. We propose here to survey the QMC-based methods
that have been developed to tackle the QMC simulation of Markov chains. Most of those
methods were hybrid MC/QMC methods. We compare them with a recently developped
pure QMC method and illustrate the better convergence speed of the latter.
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1 Introduction

Monte Carlo (MC) simulation technique [5] has been widely used from the first days
of computer science (and even before), in all scientific fields, for computing integrals
or solving differential equations for instance. It is based on the law of large numbers
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which states that by sampling and considering the mean over a sample of the set
of possibilities we get a good approximation of the quantity of interest that almost
surely converges when the sample size increases. Its simplicity of use and the very
few required assumptions are probably the main reasons of its success. Especially
when compared with traditional numerical analysis techniques, MC methods are
argued to be insensitive to the problem dimensionality.

Quasi-Monte Carlo (QMC) [12] methods can be defined by analogy with MC,
by replacing the random sample by a sequence of ”well distributed” points (called
a low discrepancy sequence) that is expected to produce a faster convergence to
the true value. Whereas very promising theoretically, QMC methods suffer from
several drawbacks. The two main problems are the following. First, except if applied
non-directly and using specific and complicated techniques, the dimensionality of
the problem has to be known (and relatively small in practice). Second, the error
estimation, while possible in theory, is intractable in practice. For these reasons,
QMC has not been as applied as MC.

The goal of this paper is to review the QMC-based methods that have been
designed in order to circumvent the first of these two drawbacks. We survey how
hybrid techniques help in extending the range of application of QMC, for estimating
improper integrals and measures over stochastic processes such as Markov chains.
The contribution of the paper is a comparison of the hybrid methods of the literature
(14, 15, 18, 19] with a new deterministic QMC method [8] that can be seen as a
deterministic scrambling version of the scrambled algorithm of [19].

The layout of the paper is as follows. In Section 2 we recall the basic definitions
of MC and QMC and highlight the main drawbacks of QMC. In Section 3 we present
how, with the help of pseudo-random number, the range of applications of QMC
can be extended to the estimation of measures over stochastic processes. We com-
pare in Section 4 the convergence rate of hybrid methods with a new deterministic
technique that shows its superiority. Section 5 is devoted to the conclusions and
the perspectives of research.

2 Monte Carlo and quasi-Monte Carlo methods

2.1 Monte Carlo

Assume that we wish to compute the integral

I= f(z)dx.
[0,1)*
Let (X™)y<,<n be a finite sequence of N random and independent vectors uniform-
ly distributed over [0,1)*. By the law of large numbers, we know that an unbiased

estimator of Z is v

~1
fr= X F(X®)

n=0
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The variance of fy is then 0?/N; 0% being the variance of the random variable f(X)
where X is uniformly distributed over [0,1)°. From the central limit theorem we
know that the error

SNy =1
o
converges to a Gaussian law with mean 0 and standard deviation 1. This allows us
to compute a confidence interval for Z:

a0

fn — \/NfN+\/N

at confidence level o, where ¢, = ®~'(1£2) and @ is the distribution function of the
Gaussian law with mean 0 and standard deviation 1. The convergence speed of this
method is then, on average, O(N_I/Z), independent of the dimension of the problem
s. In a practical implementation, the estimator Z is computed by generating the
uniformly distributed variables X using pseudo-random numbers [5].

2.2 Quasi-Monte Carlo

In quasi-Monte Carlo methods [2, 12], the pseudo-random sequence is replaced by
a deterministic equi-distributed one P = (£(), so that the estimator is

1N
Nz:: (1)

A measure of equi-distribution is the following. Let B be a sub-interval of [0,1)*
and Ay(B,P) be the number of points in B among the N firsts of the sequence

73 - (f(n))ne]N, ].e
N-1
P)=> 1(¢™
n=0

To measure the quality of the repartition, the discrepancy of the N first elements
of P is defined by

A 0, x;
D}('P) = SE(l)Ii]s N(HZ 1j£7 x HZ‘Z .

The sequence P = (5("))nelN is then said to be equi-distributed if and only if

NhI—Ii—l Dy (P)=0. Error bounds for the approximation (1) of Z are obtained in
—+00

terms of the discrepancy. Let P be a partition of [0, 1]° in subintervals and A(f,.J)
be the alterned sum of f values at the edges of sub-interval .J. The variation in
sense of Vitali is defined by

Wi(f) = sup > |A(f, J)|

P jep
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From Vis(f), we define V(f), the variation of f in sense of Hardy and Krause by

S
k . .
vin= Y V8,0
k=11<i1 <-<igp<s
where V\Sﬁ)(f ;i1,...,0x) is the variation in sense of Vitali applied to the restriction
of f to the space of dimension & {(uy,...,us) € [0,1)° :u; =1 for j #iy,..., 0}
We then have the Koksma-Hlawka inequality:

1 X " "
an::lf(g( ) — /[071)5 f(x)de| < V(f)Dy(P). (2)

A sequence P = (™) . is said to be a low discrepancy sequence if Dy (P) =
O(N!(In N)*). It has been proved that, for a finite sequence, we cannot get better
than O(N~!(In N)*®)) where a(s) = s—1for s = 1,2 and a(s) = (s—1)/2 otherwise
[12]. There exist many low discrepancy sequences; we can quote for instance Halton
sequences [6], Kronecker sequences [2], Sobol” sequences [1, 16, 17], Niederreiter
sequences[10, 11], or Faure sequences [3, 4].

The Sobol, Niederreiter and Faure sequences are in the class of so-called (u, s)-
sequences that we describe now in more details since they will be used later on. For
an integer b > 2, an elementary interval in base b is an interval of the form

S Ta, ar+1
H [bqr’ bar > ’

r=1

with integers ¢, > 0 and 0 < a, < b¥ for 1 < r < s. If 0 < u < ¢ are integers,
a (u,q,s)-net in base b is a point set X consisting of b9 points in [0,1)* such that
D(Q; X) = 0 for every elementary interval @ in base b with measure 6“~7. The
analogous concept for an infinite sequence is defined as follows. If b > 2 and u > 0
are integers, a sequence £ ¢ of points in [0,1)% is a (u, s)-sequence in base b
if, for all integers n > 0 and ¢ > u, the points ¢® with nb? < p < (n + 1)b? form a
(u, ¢, s)-net in base b.

2.3 A difficulty with quasi-Monte Carlo

One of the main advantages of Monte Carlo is that it can be easily applied to other
types of problems such as the simulation of stochastic processes, and that the models
under study require very few assumptions. On the other hand, quasi-Monte Carlo
methods, due to the correlation structure of low discrepancy sequences, cannot
be applied directly to such problems, by just replacing pseudo-random numbers
by quasi-random ones, and require further theoretical analysis [7, 9, 13]. Indeed,
consider for instance the simulation of a Markov chain defined over state space {0, 1}
with initial state 0 and transition matrix

-

N[N [
N[N [
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Using Van der Corput sequence (one-dimensional Halton sequence) in base b = 2,
such that €M™ = Y~ ar(n)2~*+D when n = Y~ ax(n)2* is the development of n
in base 2, the simulation produces a path such that the process will never stay in
the same state two consecutive instants ¢ and ¢ 41 (which is an undesirable effect).
This is due to the fact that £™ > 1/2 for n odd and £™ < 1/2 if n is even.

In the next sections, we see how using hybrid QMC methods would circumvent
this drawback.

3 Randomized quasi-Monte Carlo methods for the
simulation of Markov chains

Assume that we wish to estimate a measure over a Markov chain. As described in
Section 2, a direct application of QMC would not work. We review in 3.1 the ran-
domization methods in the literature, and introduce a new deterministic scrambling
technique in 3.2.

3.1 Hybrid quasi-Monte Carlo

Consider the simulation of a Markov chain (X}),en with probability matrix P and
initial distribution p, up to a fixed time 7" defined over a state space E. Here E is
finite (E = {1,..., M}) or countable (£ = IN or ZZ).

Theoretically, the Markov process can be simulated using QMC methods by
considering a low discrepancy sequence (£ (”))RE]N in dimension 7'+ 1 such that the
point €™ is used to sample the n-th path of the estimation:

e the initial state of the n-th realization is sampled from probability measure p,
using f%n) (like would be done using a pseudo-random number).

e the t-th step of the n-th realization, from Xt(f)l to Xt("), is sampled from prob-
ability measure P, . if X™ =z, using 5@1

Nevertheless, for quite large values of 7', QMC is known to be inefficient. For this
reason, the following hybrid algorithms have been developed.

3.1.1 Mixed strategy

The mixed strategy has been developed in [14, 18, 19]. It consists in using an s-
dimensional low discrepancy sequence so that the s first steps of the Markov chains
are sampled using the s coordinates of the low discrepancy sequence, and the T'+1—s
remaining steps using pseudo-random numbers.

Formally, the ¢-th step of the n-th path is sampled using ft(_n,r)l if t < s and

U™ otherwise, where the U™ (s < t < T) are independent and uniform random
variables over [0, 1).



It is expected that the good repartition of low discrepancy sequences will improve
the convergence rate.

3.1.2 Latin Hypercube Sampling (LHS)

The method consists in using a Latin hypercube sample for ”padding” the remaining
coordinates instead of just random numbers in the above mixed strategy [15]. LHS
is a form of simultaneous stratification on all the remaining dimensions. Here it is
applied in the following way: the ¢-th step of the n-th path is (still) sampled using

€M if t < s, and using

if s <t < T, where 7; are independent uniform random permutations of the integers
0,...,N—1and the Ut(n) (s <t < T)areindependent and uniform random variables
over [0,1).

3.1.3 Scrambled strategy

This strategy scrambles the ”direct” QMC method that was proved to be inefficient.
Consider a one-dimensional low discrepancy sequence (£ (”))RE]N. For 0 <t < T let
m; be independent random permutations of integers 0,..., N — 1. The /N sampled
paths are simulated in parallel.

e The initial state of the n-th realization (0 < n < N) is sampled from proba-
bility measure s, using &™),

e The ¢-th step of the n-th realization is sampled from probability measure P,
if X" =, using (E-DN+me(n),

To reduce the complexity of the method, 7 is often taken as the identity.
To the best of our knowledge, no proof of convergence has been provided for this
strategy, but numerical results illustrate that it actually converges.

3.2 A deterministic scrambling

This method, developed in [8], can be seen as a deterministic version of the previous
scrambled strategy. Consider a (u, 2)-sequence in base b (£™),cn (then a sequence
in dimension 2) and let =™ be the point set {¢®) = (g}”),gg”)) o nN < p<
(n +1)N} where N = b7, with ¢ > w. If proj; and proj, denote the projections
defined by proj; (1, x9) = x;, for i = 1,2, we assume that Vn >0

proj, 2™ is a (0, ¢, 1)-net in base b, (3)

and that, if £ =72,
0¢ proj,=™. (4)
Consider N distinct chains X = {X®} o, 0 < ¢ < N,
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1. Using the point set Z(*), sample the initial state (i.e., at time ¢ = 0) of each

©
chain according to p: the initial state i(ENfl I of the chain | N gff)J is sampled

using fy) (as would be done using a pseudo-random number). Note that from
(3), each chain will be sampled exactly once.
2. Re-order the chains according to their states: 0 <l < ... <N=1

3. n = n+ 1. Consider the point set =™ . Sample the new state for each chain
according to matrix P: the new state of chain LN&%ZJF"N)J is chosen using

fé”"N) from the distribution PLNg(l+nN)J )
in ! )"

4. if n =T stop else goto 2).

It is proven in [8] that the method converges if the transition matrix P satisfies

Ve E Y |Spli+1,0) - D plig)| <1,

i€E" j<k j<k

where
E':={ieE:i+1€FE}

4 Numerical comparisons

To compare the efficiency of the above methods, consider a small example, consisting
in a discrete-time queue such that a new customer arrives at each time ¢ with
probability 0.6 and there is no arrival with probability 0.4. Each customer in the
queue is served at time ¢ with probability 0.5. This is a so-called Geo/Geo queue.
We wish to compute the mean number of customers at time £ = 10 given that the
queue is empty at time t = 0. For the LHS (LHS5) and mixed (M5) methods, we
have arbitrarily considered a low discrepancy sequence in dimension s = 5, so that
the last 5 transition steps are sampled using pseudo-random numbers. The results
are displayed in Figure 1. Regression analysis yields the following convergence
speeds:

Errye = 0.18N70%0
Errys = 043N %%
Errppss = 0.20N %50
Errg, = 0.25N7053
Errgye = 0.66N 0%

It illustrates that the deterministic scrambling outperforms the other methods.
Consider now a larger example, consisting in a (continuous-time) M/M/1/40
queue with arrival rate 0.97 and service rate 1.0 : we want to compute the loss
probability at time 7" = 150. The model is discretized using the uniformization
technique, resulting in a discrete-time process in dimension 411 (i.e., 411 transition
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Figure 1: Discrete queue

steps, at a given pre-defined error of £ = 1071%). For more details on the model and
the uniformization technique, we refer to [8]. The results are displayed in Figure 2
(using a low discrepancy sequence in dimension s = 30 for the mixed and LHS
methods). Regression analysis yields the following convergence speeds:

Errye = 0.005N 939
Erryge = 0.062N 706
Errgee = 0.075N %
Errque = 0.012N %8,

Again, the deterministic scrambling provides much better results than the other
techniques.

5 Conclusions and Perspectives

We have shown that quasi-Monte Carlo methods, when applied directly, may be
inefficient when simulating Markov chains. Hybrid methods have been designed in
the literature to cope with this problem. We have compared those methods with
a pure QMC method recently developped by the authors and have illustrated the
superiority of this last one. Nevetheless, several issues remains to be investigated:

e Could this superiority be mathematically proved?
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Figure 2: M/M/1/40 queue

e Could the pure QMC method be extended to the case of continuous time

Markov chains, to regenerative simulation, or to multi-dimensional state s-
paces?
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