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Abstract

Monte Carlo �MC� method is probably the most widespread simulation technique due
to its ease of use� Quasi�Monte Carlo �QMC� methods have been designed in order to
speed up the convergence rate of MC but their implementation requires more stringent
assumptions� For instance� the direct QMC simulation of Markov chains is ine�cient due
to the correlation of the points used� We propose here to survey the QMC�based methods
that have been developed to tackle the QMC simulation of Markov chains� Most of those
methods were hybrid MC�QMC methods� We compare them with a recently developped
pure QMC method and illustrate the better convergence speed of the latter�
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� Introduction

Monte Carlo �MC� simulation technique ��� has been widely used from the �rst days
of computer science �and even before�� in all scienti�c �elds� for computing integrals
or solving di�erential equations for instance� It is based on the law of large numbers
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which states that by sampling and considering the mean over a sample of the set
of possibilities we get a good approximation of the quantity of interest that almost
surely converges when the sample size increases� Its simplicity of use and the very
few required assumptions are probably the main reasons of its success� Especially
when compared with traditional numerical analysis techniques� MC methods are
argued to be insensitive to the problem dimensionality�

Quasi
Monte Carlo �QMC� �	�� methods can be de�ned by analogy with MC�
by replacing the random sample by a sequence of �well distributed� points �called
a low discrepancy sequence� that is expected to produce a faster convergence to
the true value� Whereas very promising theoretically� QMC methods su�er from
several drawbacks� The two main problems are the following� First� except if applied
non
directly and using speci�c and complicated techniques� the dimensionality of
the problem has to be known �and relatively small in practice�� Second� the error
estimation� while possible in theory� is intractable in practice� For these reasons�
QMC has not been as applied as MC�

The goal of this paper is to review the QMC
based methods that have been
designed in order to circumvent the �rst of these two drawbacks� We survey how
hybrid techniques help in extending the range of application of QMC� for estimating
improper integrals and measures over stochastic processes such as Markov chains�
The contribution of the paper is a comparison of the hybrid methods of the literature
�	� 	�� 	�� 	�� with a new deterministic QMC method ��� that can be seen as a
deterministic scrambling version of the scrambled algorithm of �	���

The layout of the paper is as follows� In Section � we recall the basic de�nitions
of MC and QMC and highlight the main drawbacks of QMC� In Section � we present
how� with the help of pseudo
random number� the range of applications of QMC
can be extended to the estimation of measures over stochastic processes� We com

pare in Section  the convergence rate of hybrid methods with a new deterministic
technique that shows its superiority� Section � is devoted to the conclusions and
the perspectives of research�

� Monte Carlo and quasi�Monte Carlo methods

��� Monte Carlo

Assume that we wish to compute the integral

I �
Z
�����s

f�x�dx�

Let �X�n����n�N be a �nite sequence of N random and independent vectors uniform

ly distributed over ��� 	�s� By the law of large numbers� we know that an unbiased
estimator of I is

�fN �
	

N

N��X
n��

f�X�n���

�



The variance of �fN is then ���N � �� being the variance of the random variable f�X�
where X is uniformly distributed over ��� 	�s� From the central limit theorem we
know that the error p

N
�fN � I
�

converges to a Gaussian law with mean � and standard deviation 	� This allows us
to compute a con�dence interval for I�

I �
�
�fN � c��p

N
� �fN �

c��p
N

�

at con�dence level �� where c� � �������
�
� and � is the distribution function of the

Gaussian law with mean � and standard deviation 	� The convergence speed of this
method is then� on average� O�N������ independent of the dimension of the problem
s� In a practical implementation� the estimator I is computed by generating the
uniformly distributed variables X�i� using pseudo
random numbers ����

��� Quasi�Monte Carlo

In quasi
Monte Carlo methods ��� 	��� the pseudo
random sequence is replaced by
a deterministic equi
distributed one P � ���n��n so that the estimator is

	

N

N��X
n��

f���n��� �	�

A measure of equi
distribution is the following� Let B be a sub
interval of ��� 	�s

and AN�B�P� be the number of points in B among the N �rsts of the sequence
P � ���n��n�IN� i�e�

AN�B�P� �
N��X
n��

	B��
�n���

To measure the quality of the repartition� the discrepancy of the N �rst elements
of P is de�ned by

D�
N�P� � sup

x������s

�����AN�
Qs

i����� xi��P�

N
�

sY
i��

xi

����� �
The sequence P � ���n��n�IN is then said to be equi
distributed if and only if
lim

N���
D�

N �P� � �� Error bounds for the approximation �	� of I are obtained in

terms of the discrepancy� Let P be a partition of ��� 	�s in subintervals and ��f� J�
be the alterned sum of f values at the edges of sub
interval J � The variation in
sense of Vitali is de�ned by

VVit�f� � sup
P

X
J�P

j��f� J�j �

�



From VVit�f�� we de�ne V �f�� the variation of f in sense of Hardy and Krause by

V �f� �
sX

k��

X
��i������ik�s

V
�k�
Vit �f � i�� � � � � ik�

where V
�k�
Vit �f � i�� � � � � ik� is the variation in sense of Vitali applied to the restriction

of f to the space of dimension k f�u�� � � � � us� � ��� 	�s � uj � 	 for j �� i�� � � � � ikg�
We then have the Koksma
Hlawka inequality������ 	N

NX
n��

f���n���
Z
�����s

f�x�dx

����� � V �f�D�
N�P�� ���

A sequence P � ���n��n�IN is said to be a low discrepancy sequence if D�
N�P� �

O�N���lnN�s�� It has been proved that� for a �nite sequence� we cannot get better
than O�N���lnN���s�� where ��s� � s�	 for s � 	� � and ��s� � �s�	��� otherwise
�	��� There exist many low discrepancy sequences� we can quote for instance Halton
sequences ���� Kronecker sequences ���� Sobol� sequences �	� 	�� 	��� Niederreiter
sequences�	�� 		�� or Faure sequences ��� ��

The Sobol� Niederreiter and Faure sequences are in the class of so
called �u� s�

sequences that we describe now in more details since they will be used later on� For
an integer b � �� an elementary interval in base b is an interval of the form

sY
r��

�
ar
bqr

�
ar � 	

bqr

�
�

with integers qr � � and � � ar � bqr for 	 � r � s� If � � u � q are integers�
a �u� q� s��net in base b is a point set X consisting of bq points in ��� 	�s such that
D�Q�X� � � for every elementary interval Q in base b with measure bu�q� The
analogous concept for an in�nite sequence is de�ned as follows� If b � � and u � �
are integers� a sequence ����� ����� � � � of points in ��� 	�s is a �u� s��sequence in base b
if� for all integers n � � and q � u� the points ��p� with nbq � p � �n� 	�bq form a
�u� q� s�
net in base b�

��� A di�culty with quasi�Monte Carlo

One of the main advantages of Monte Carlo is that it can be easily applied to other
types of problems such as the simulation of stochastic processes� and that the models
under study require very few assumptions� On the other hand� quasi
Monte Carlo
methods� due to the correlation structure of low discrepancy sequences� cannot
be applied directly to such problems� by just replacing pseudo
random numbers
by quasi
random ones� and require further theoretical analysis ��� �� 	��� Indeed�
consider for instance the simulation of a Markov chain de�ned over state space f�� 	g
with initial state � and transition matrix

P �

�
�
�

�
�

�
�

�
�

�
�





Using Van der Corput sequence �one
dimensional Halton sequence� in base b � ��
such that ��n� �

P
k�� ak�n��

��k��� when n �
P

k�� ak�n��
k is the development of n

in base �� the simulation produces a path such that the process will never stay in
the same state two consecutive instants t and t�	 �which is an undesirable e�ect��
This is due to the fact that ��n� � 	�� for n odd and ��n� � 	�� if n is even�

In the next sections� we see how using hybrid QMC methods would circumvent
this drawback�

� Randomized quasi�Monte Carlo methods for the

simulation of Markov chains

Assume that we wish to estimate a measure over a Markov chain� As described in
Section �� a direct application of QMC would not work� We review in ��	 the ran

domization methods in the literature� and introduce a new deterministic scrambling
technique in ����

��� Hybrid quasi�Monte Carlo

Consider the simulation of a Markov chain �Xt�t�IN with probability matrix P and
initial distribution �� up to a �xed time T de�ned over a state space E� Here E is
�nite �E � f	� � � � �Mg� or countable �E � IN or ZZ��

Theoretically� the Markov process can be simulated using QMC methods by
considering a low discrepancy sequence ���n��n�IN in dimension T � 	 such that the
point ��n� is used to sample the n
th path of the estimation�

� the initial state of the n
th realization is sampled from probability measure ��
using ��n�� �like would be done using a pseudo
random number��

� the t
th step of the n
th realization� from X
�n�
t�� to X

�n�
t � is sampled from prob


ability measure Px�� if X
�n�
t�� � x� using �

�n�
t���

Nevertheless� for quite large values of T � QMC is known to be ine�cient� For this
reason� the following hybrid algorithms have been developed�

����� Mixed strategy

The mixed strategy has been developed in �	� 	�� 	��� It consists in using an s

dimensional low discrepancy sequence so that the s �rst steps of the Markov chains
are sampled using the s coordinates of the low discrepancy sequence� and the T�	�s
remaining steps using pseudo
random numbers�

Formally� the t
th step of the n
th path is sampled using �
�n�
t�� if t � s and

U
�n�
t otherwise� where the U

�n�
t �s � t � T � are independent and uniform random

variables over ��� 	��

�



It is expected that the good repartition of low discrepancy sequences will improve
the convergence rate�

����� Latin Hypercube Sampling �LHS�

The method consists in using a Latin hypercube sample for �padding� the remaining
coordinates instead of just random numbers in the above mixed strategy �	��� LHS
is a form of simultaneous strati�cation on all the remaining dimensions� Here it is
applied in the following way� the t
th step of the n
th path is �still� sampled using

�
�n�
t�� if t � s� and using

V
�n�
t �

	t�n�� U
�n�
t

N
if s � t � T � where 	t are independent uniform random permutations of the integers
�� � � � � N�	 and the U

�n�
t �s � t � T � are independent and uniform random variables

over ��� 	��

����� Scrambled strategy

This strategy scrambles the �direct� QMC method that was proved to be ine�cient�
Consider a one
dimensional low discrepancy sequence ���n��n�IN� For � � t � T let
	t be independent random permutations of integers �� � � � � N � 	� The N sampled
paths are simulated in parallel�

� The initial state of the n
th realization �� � n � N� is sampled from proba

bility measure �� using �����n���

� The t
th step of the n
th realization is sampled from probability measure Px��

if X
�n�
t�� � x� using ��t���N��t�n��

To reduce the complexity of the method� 	� is often taken as the identity�
To the best of our knowledge� no proof of convergence has been provided for this

strategy� but numerical results illustrate that it actually converges�

��� A deterministic scrambling

This method� developed in ���� can be seen as a deterministic version of the previous
scrambled strategy� Consider a �u� ��
sequence in base b ���n��n�IN �then a sequence

in dimension �� and let ��n� be the point set f��p� � ��
�p�
� � �

�p�
� � � nN � p �

�n � 	�Ng where N � bq� with q � u� If proj� and proj� denote the projections
de�ned by proji�x�� x�� � xi� for i � 	� �� we assume that �n � �

proj��
�n� is a ��� q� 	�
net in base b� ���

and that� if E � ZZ�
� �� proj��

�n�� ��

Consider N distinct chains X��� � fX���
n g��n�T � � � 
 � N �

�



	� Using the point set ����� sample the initial state �i�e�� at time t � �� of each

chain according to �� the initial state i
bN�

���
� c

� of the chain bN�
���
� c is sampled

using ����� �as would be done using a pseudo
random number�� Note that from
���� each chain will be sampled exactly once�

�� Re
order the chains according to their states� i�n � i�n � � � � � iN��n �

�� n � n � 	� Consider the point set ��n�� Sample the new state for each chain
according to matrix P � the new state of chain bN�

���nN�
� c is chosen using

�
���nN�
� from the distribution P

i
bN�

���nN�
�

c

n ��

�

� if n � T stop else goto ���

It is proven in ��� that the method converges if the transition matrix P satis�es

�k � E
X
i�E�

���X
j�k

p�i � 	� j��X
j�k

p�i� j�
��� � 	�

where
E � �� fi � E � i� 	 � Eg�

� Numerical comparisons

To compare the e�ciency of the above methods� consider a small example� consisting
in a discrete
time queue such that a new customer arrives at each time t with
probability ��� and there is no arrival with probability ��� Each customer in the
queue is served at time t with probability ���� This is a so
called Geo�Geo queue�
We wish to compute the mean number of customers at time t � 	� given that the
queue is empty at time t � �� For the LHS �LHS�� and mixed �M�� methods� we
have arbitrarily considered a low discrepancy sequence in dimension s � �� so that
the last � transition steps are sampled using pseudo
random numbers� The results
are displayed in Figure 	� Regression analysis yields the following convergence
speeds�

ErrMC � ��	�N���	�

ErrM
 � ���N���	�

ErrLHS
 � ����N���
�

ErrScr � ����N���
�

ErrQMC � ����N����
�

It illustrates that the deterministic scrambling outperforms the other methods�
Consider now a larger example� consisting in a �continuous
time� M�M�	��

queue with arrival rate ���� and service rate 	�� � we want to compute the loss
probability at time T � 	��� The model is discretized using the uniformization
technique� resulting in a discrete
time process in dimension 		 �i�e�� 		 transition

�
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Figure 	� Discrete queue

steps� at a given pre
de�ned error of � � 	������ For more details on the model and
the uniformization technique� we refer to ���� The results are displayed in Figure �
�using a low discrepancy sequence in dimension s � �� for the mixed and LHS
methods�� Regression analysis yields the following convergence speeds�

ErrMC � �����N�����

ErrM�� � �����N���	

ErrScr � �����N����

ErrQMC � ���	�N����	�

Again� the deterministic scrambling provides much better results than the other
techniques�

� Conclusions and Perspectives

We have shown that quasi
Monte Carlo methods� when applied directly� may be
ine�cient when simulating Markov chains� Hybrid methods have been designed in
the literature to cope with this problem� We have compared those methods with
a pure QMC method recently developped by the authors and have illustrated the
superiority of this last one� Nevetheless� several issues remains to be investigated�

� Could this superiority be mathematically proved�

�
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� Could the pure QMC method be extended to the case of continuous time
Markov chains� to regenerative simulation� or to multi
dimensional state s

paces�
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