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Summary. We describe a new method for the transient simulation of discrete time
Markov chains. It is a quasi-Monte Carlo method where different paths are sim-
ulated in parallel, but reordered at each step. We prove the convergence of the
method, when the number of simulated paths increases. Using some numerical ex-
periments, we illustrate that the error of the new algorithm is smaller than the error
of standard Monte Carlo algorithms. Finally, we propose to analyze continuous time
Markov chains by transforming them into a discrete time problem by using the
uniformization technique.
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1 Introduction

In this presentation, we deal with the transient simulation of discrete time
Markov chains which has applications in many fields such as queuing theory,
telecommunications, reliability analysis, etc (see [Tri02] for instance).

Let us first recall the basics about discrete time Markov chains. Let (2
be a sample space and IP a probability measure on it. A stochastic process
(Yn)new with discrete state space E is called a Markov chain if

]P[Yn—‘,-l = ]|Yby o 7Yn] = ]P[Yn+1 = ]|Yn]

for all j € £ and n € IN. We consider time homogeneous Markov chains, i.e.,
Markov chains such that
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P[Yni1 = jlYa] = P[Y1 = j|Yo]

for all j € E and n € IN. To characterize these chains, it is then sufficient to
have the initial distribution p = (u{i} : i € E) with p{i} = IP[Yp = 4] and
the transition matrix P = (p(i,j) : 4,j € E) with p(i,j) = IP[Y1 = j|Yo = 4]
In order to get the probability distribution at time n, p, (as a row vector),
defined by pn,{i} = IP[Y,, = i], we only need to compute p, by pn, = uP™.

Due to complexity reasons, because this computation requires matrix mul-
tiplications, the state space cannot be very large ; unfortunately many appli-
cations require a prohibitively large number of states. Then, Monte Carlo
(MC) methods [Fis96] are often the best solution to solve the problem.

Despite the versatility of MC methods, a drawback is their slow conver-
gence. An approach to accelerate them is to change the choice of the random
numbers that are used. Thus, quasi-Monte Carlo (QMC) methods use quasi-
random numbers instead of pseudo-random numbers and can achieve a better
convergence in certain cases [NS95, NHL98, NS00, FHN02].

The efficiency of a QMC method depends on the quality of the quasi-
random points that are used. These points should form a low-discrepancy
point set. We recall from [Nie92] some basic notations and concepts. Let s > 1
be a fixed dimension. For a point set X = {xq,...,xr—1}, with x, € [0,1)®
V0 < £ < L, and for a Lebesgue-measurable subset ) of [0,1)* we define the
local discrepancy by

D@X)=7 ¥ lobx) - [ 1oGdx,

0<t<L [0,1)

where 1¢ is the characteristic function of ). The discrepancy of the point set
X is then defined by
D(X) := Sup |D(Q; X)),

the supremum being taken over all subintervals of [0,1)%. Similarly, the star
discrepancy of X is
D*(X) := sup|D(Q*; X)),
Qk

where @Q* runs through all subintervals of [0, 1) with one vertex at the origin.
The idea of (t,q, s)-nets is to consider point sets X for which D(Q; X) = 0 for
a large family of intervals ). Such point sets should have a small discrepancy.
For an integer b > 2, an elementary interval in base b is an interval of the

form .

H |: ar ap+ 1)

b’ bar ’

r=1
with integers ¢, > 0 and 0 < a, < b¥ for 1 <r < s. If 0 <t < q are integers,
a (t,q,s)-net in base b is a point set X consisting of b? points in [0,1)* such
that D(Q; X) = 0 for every elementary interval @) in base b with measure
bt—9. The analogous concept for an infinite sequence is defined as follows. If
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b > 2 and t > 0 are integers, a sequence Xg,X1,... of points in [0,1)* is a
(t,s)-sequence in base b if, for all integers n > 0 and ¢ > ¢, the points x,
with nb? < p < (n+ 1)b? form a (¢, g, s)-net in base b. For the construction of
(t, s)-sequences, the reader can see, for instance, [Nie92]. The following result
is shown in [Lec96].

Lemma 1 Let X be a (t,q,s)-net in base b and f : [0,1]*7 — [0,1] be of
bounded variation in the sense of Hardy and Krause. Denote Qf = {x =
(x',m5) €10,1)% 1 zs < f(X)}. IfF 679 < V(f), we have

log V(f)J

ID(Qy: X)| < sV ()b L5 +5ms0

The efficiency of QMC methods has limitations. They are valid for inte-
gration problems, and the induced correlation structure, necessary to improve
MC simulation, makes them irrelevant when applied directly in a dynamic
context. To our knowledge, the only attempt in the context of Markov chains
is in [NG95], where QMC is used for regenerative simulation, but where the
induced mathematical dimension is a number of steps of the paths, which ren-
der it inefficient, and where truncation has to be used in the path, introducing
further approximations. This can be related to the so-called mixed sequences
first introduced in [Spa95] and further studied in [0kt96, Spa98], with applica-
tions in particle transport. In a mixed strategy, the initial decisions are made
using quasi-random vector sequences while subsequent ones are made using
a pseudo-random sequence (note also that Owen has suggested in [Owe00] to
replace the pseudo-random vectors by a latin hypercube sample).

In this paper, we deal with the transient simulation of discrete time Markov
chains. We propose to use a QMC method (in dimension 2) where different
paths are simulated in parallel, but reordered at each step. The method may be
viewed as an extension of a QMC simulation of random walk [CL98]. The same
idea has been considered by several authors and applied to a number of other
problems [MC93, Mor98, Mos95]. It can be related to the so-called scrambled
strategy developed in [Spa95, Spa98] for particle transport problems. The
aim there is pseudo-randomly to reorder at each time step a low dimensional
quasi-random vector and use it, in place of a pseudo-random sequence, to
make all the decisions according to the dynamics of the physical system. Our
method could be formulated in a similar way by interpreting the reordering
of paths after each step as a permutation applied to the quasi-random points
(without reordering the paths). But our algorithm is purely deterministic and
the motivation is to obtain an error bound (although this bound may be of
little practical use). A systematic comparison between the scrambled strategy
and our reordering technique certainly deserves attention but is left to future
work.

The paper is organized as follows. In Section 2 we present the method
in the context of Markov chains. In Section 3 we prove the convergence of
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the method, as the number of simulated paths increases. Next, in Section 4
we illustrate the validity of the scheme on some simple discrete time models.
In all our numerical illustrations, the low discrepancy sequences that will be
used are (0,2)-Niederreiter sequences in base b = 2 [Nie92]. It means that,
remarkably, the mathematical dimension of the sequence is 2, whatever the
size of the simulated paths is. Section 5 deals with the analysis of continuous
time Markov chains that are tranformed into discrete-time problems by using
the uniformization technique. Finally, we conclude and give some directions
for future research in Section 6.

2 The Method

Let E be a finite (E := {1,...,N}) or countable (E := N or E := 7Z) state-
space. Consider a discrete-time Markov chain (Y3,),, .py With initial distribution
p = (u{i} : ¢ € E) and transition matrix P = (p(,7) : 4,5 € E). We want to
approximate the probability that after n steps the Markov chain is in a given
state. Let §; be the row vector of unit mass at .

. 1if j =i,
&{a}:{ j=i

0 otherwise.

An approximation of pP™ is

0<{<L

for some integer L and judiciously chosen 4g,...,i7_; € E. Let b > 2 and ¢
be integers and put L := b?. We shall use a low-discrepancy sequence X =
{x0,%1,...} C[0,1)? for QMC approximation. We assume that X is a (t,2)-
sequence in base b for some ¢t > 0. In addition, if X™ is the point set {x,
nL <p < (n+1)L} and if proj; and proj, denote the projections defined by
proj;(z1,x2) = x;, for i = 1,2, we assume that

proj; X" is a (0, ¢, 1)-net in base b, (1)

and, if E = 7,
0 ¢ proj, X. (2)
Condition (1) ensures that each state i} changes at most once from step n to
step n + 1 and condition (2) allows to determine the new states i7" when
E = 7Z (see below).
A sample I° of L states 4,...,i% _, is chosen such that

1
po:zz E 8i0 & p.
0<{<L
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That means that the point set I° has a small star u-discrepancy (see below).

If we assume that we have calculated a set I™ of L states i(,...,77_; such
that 1
p"t = I Z din = pP",
0<¢<L
we compute ,u"‘H in two steps.
o Relabeling the states.
Qg <--- <dpg. 3)

This ensures convergence of the scheme.
e QMC integration for a transition. Let "' := u™P, and so

~n 1 o
Arttu= 2 7wl ul), (4)
0<(<L jeE
for any nonnegative and bounded sequence u. Let 1; be the characteristic
function of
7= L+
L= .’ L >
and 1; ; denote the characteristic function of
Ly =Y ph), 3 pli.h).
h<j h<j+1

For any nonnegative and bounded sequence u, define

CMu(x) =D D La(wr)lip,j(@2)u(f), x€[0,1)% (5)

0<{<L jeE
Then we have

iy = / C"u(x)dx, (6)
[0,1)*

and the estimator pu™t! of uP"*! is defined by
1
=l Y o),
nL<p<(n+1)L
for any nonnegative and bounded sequence u.

The last step of the algorithm may be summarized as follows. Denote
l(z) = |Lz], =z€]0,1).
According to (1) the function

pe{nL,nL+1,---,(n+1)L -1} - l(zp1) € {0,1,---,L — 1}
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is one-to-one. For (i,z) € E x [0,1) (or (i,z) € E x (0,1), if E = 7ZZ since it
may happen that Vj € E 3°, . p(i, h) > 0) define j(i,z) € E by

T € I j(ie)-
Then the L states igt',...,i71] are computed according to:
i?&';l) = j(ifs, 1)>Tp2), fornL <p<(n+1)L. (7)

That means that the projection of the quasi-random sequence on the first
coordinate is used to select the state at step n while the projection on the
second coordinate is used to determine the state at step n + 1.

3 Convergence

We now establish a convergence result for the QMC algorithm. First we need
to adapt the basic concepts of QMC methods to the present study. Let A be
a distribution on E and I := {ig,...,4—1} C E. For an arbitrary subset F'
of E we define the local \-discrepancy by

DF;LN) =1 3 1elie) — Y M),

0<t<L ieF

where 1z denotes the sequence

Loy = {LIEiER,
FAY'= 1 0 otherwise.

The star A-discrepancy of the point set I is defined by

D*(1, ) := sup |D(Fy; I, N)|,
kEE

where
F,:={ieE:i<k}.

The variation of a sequence u is defined by
V(u) := Z lu(i 4+ 1) — u(d)],
icE'

where E' :={i€ E:i+1¢€ E}.

The next Lemma is a version of the classical Koksma-Hlawka inequality.
The proof follows the general outline of the proof of the Koksma-Hlawka
inequality given in [Zar68].
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Lemma 2 Let A be a distribution on E. If u is a sequence of bounded varia-
tion and if I is a point set consisting of ig,...,i,—1 € E, then

% 3 ulie) = > MiYu(i)| < V(w)D*(I,N).

0<t<L i€E

We shall also use the following notations. If u is a nonnegative and bounded
sequence, then

D(u;I,\) == % > ulie) = Y Mitul),

0<4<L i€E

so that D(F;I,\) = D(1p;1I, ). Similarly, if X = {xo,...,xr_1} C [0,1)*
and if f is a nonnegative and bounded function defined on [0, 1), we put

DXy =7 ¥ o) - [ s

0<t<L [0,1)*

so that D(Q; X) = D(1g; X) for any @ C [0,1)%.
We now go back to the convergence analysis of the QMC algorithm.

Proposition 1 If the transition matriz P satisfies

vkeE YIS pG+10) - Yopii)| <1,

i€E" j<k i<k
then, for ¢ > t,
D*(I", uP™) < D*(I°, p) + 2nb= 171, (8)
Proof. For any nonnegative and bounded sequence u, we have
D(u; I uP™YY = D(Pu; I, uP™) + D(C™u; X™).
In particular, if we write s; for 15, , we obtain
D(Fp; I" uP™Y) = D(Psy; I™, uP™) + D(C™sp; X™).
By Lemma 2, we have
ID(Psy; I™, uP™)| < V(Psi) D* (I, uP™),
and since V(Psg) <1,
|D(Psy; I, uP™)| < D*(I", uP™).

On the other hand, according to (2),
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D(C"sp; X™) = D(QZ; X",

where
Qr= U Iex [0.3pG.9)-
0< <L j<k

Let f7} denote the function

@)= > > i, Hl(x), = €0,1).
0<t<L j<k
Then
Qr ={x€[0,1)” : 25 < f{}(z1)}.

In view of (3) we have

V) < 3| Xop6+1.0) = Yo pi.d)|

i€E" j<k i<k

and so V(f7) < 1. Since X™ is a (t,¢,2)-net in base b, an application of
Lemma 1 yields

ID(Qp; x™)| < 2v- L=
The desired result follows by induction. O

Corollary 1 If we wish to estimate the mean IE(u(Y,,)) of a sequence u such
that V (u) < 0o at the nt" step of a discrete-time Markov chain (Yy,)nen, the
above estimation converges while the number L of paths tends to infinity.

Similarly, if we wish to estimate the cumulative reward Y _ IE(u(Yy,))/n
up to time n instead of just at time n, the method converges under the same
assumptions.

Proof. The first part is a direct consequence of Lemma, 2 and Proposition 1.
The second part follows by averaging over the first n steps. 0O

4 Numerical Results

In all our numerical illustrations, the low discrepancy sequences that will be
used are (0,2)-Niederreiter sequences in base b = 2.

4.1 A simple discrete time queue : the Geo/Geo/15 queue

We consider a small example, so that we can compute the exact solution, in
order to show the kind of improvement that QMC can bring with respect to
MC. Consider a (discrete) Geo/Geo/15 queue (see [Tak93] for a better under-
standing of these queues) where the queue is empty at the initial time, where
each customer completes its service during a slot with probability 0.5, and
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" Monte Carlo
Quasi-Monte Carlo

01rp

0.01

0.001

Error

0.0001
1e-05 | 1

1e-06 | b

1e_07 L L L L L L L
1 10 100 10001000a0000Qe+06le+07

L

Fig. 1. Convergence with respect to L for the Geo/Geo/15 queue

where one customer can arrive with probability 0.6 in each slot. We are look-
ing for the mean number of customers in the queue at time n = 10. Figure 1
shows the errors obtained for MC and QMC methods with respect to the num-
ber of chains that are used. QMC is showing a faster convergence. Formally,
using regression analysis, we obtain the following convergence speeds :

Errpe(L) = 0.22L7042,
Errqme(L) = 0.50L7%9%

showing a strong improvement when using quasi-Monte Carlo.

Considering the average number of customers in the queue up to time
n = 10, Fig. 2 shows the errors obtained for MC and QMC methods with
respect to the number of chains used. The following convergence speeds are
observed :

Errye(L) = 0.11L7051
EI‘I‘QMc(L) = 0.18L_0'85,
showing here too the effectiveness of QMC methods.
Another interesting subject is to check whether the error increases with

time (meaning n) as bound (8) could suggest. Fig. 3 shows that this is not
the case.
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Fig. 2. Convergence with respect to L for the Geo/Geo/15 queue, in the average
case

4.2 A larger example

We consider a gambler going to a casino for four hours. He plans to play to
the same game every ten seconds, meaning that he will play 1440 times. In
this game, for each dollar that you bid, you get 0 with probability 0.9 and &
from 1 to 10 with probability 0.01 each. The gambler policy is the following :
if he has more than 100 dollars, he plays 2 dollars, but if he has 100 dollars
or less, he plays only 1. To make sure that he can play during the four hours,
he brings 2780 dollars with him. The model is a discrete Markov chain on
state space E = {0,1,...,28700}. We wish to compute the mean amount of
money the gambler is supposed to keep at the end of the day. Figure 4 shows
the errors for both MC and QMC methods. The improvement is obvious, and
QMC often gives the exact value.

5 Continuous Time Markov Chains

In this section, we explain how some continuous time Markov problems can
be transformed into discrete time ones, and then solved by our method.
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0.01

) Monte Carlo

0.001 +

Error

0.0001 |

1e-05 | 1

1e-06 L L L L L

Fig. 3. Convergence with respect to n for the Geo/Geo/15 queue, with L = 65536

5.1 Uniformization

Assume that we have a continuous time Markov chain with initial distri-
bution g and infinitesimal generator A. The transient probability vector
p(t) = (pi(t))ick at time t is given by

A
p(t) = pe.
Assume that the Markov chain can be uniformized, i.e., that A = sup; a; ; <
00. Then, as P = I + A/A is a stochastic matrix, the uniformization method
transforms p(t) into

oo k
p(t) = e g

where
q(k) = pP*
is the probability distribution at the k* step of a discrete time Markov chain
with initial vector distribution g and probability matrix P.
An approximation of p;(t) with error € is

K

k
pt)~ Y e Uy ek

k!
k=0
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Fig. 4. Convergence with respect to L for the gambler game

where N
o . e (AB)F
K—mln{N.;e T>1_6 .
An estimator is then .
1
1y
L =1

where each Z; is a random variable on a path of the discrete time Markov
chain (Y3 )o<k<k defined by

_ e (A1)
Zi_Ze t k! 1{Yk:i}-

Each path is then of length n = K.

5.2 A M/M/1/40 queue

Consider the M/M/1/40 queue with arrival rate 0.97 and service rate 1.0
where we wish to compute the loss probability at horizon time ¢ = 150. Using
uniformization (which gives K = 411 for a precision £ = 10~!%), we obtain in
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Fig. 5 the errors for MC and QMC methods with respect to the number of
chains used. The following convergence speeds are observed:
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Monte Carlo
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1000 10000 100000 1e+06
L

Fig. 5. Convergence with respect to L for the M/M/1/40 queue

Errye(L) = 0.020L 7058
Errqumc(L) = 0.012L7%83,

showing an accelerated convergence for QMC.

5.3 A BMAP/M/1/40 queue

Consider now the same queue but where each arrival (with arrival rate still
0.97) is a batch between 1 and 8 with uniform probability 0.125. Using uni-
formization again (we also have K = 411 for a precision e = 1071%), we obtain
in Fig. 6 the errors for MC and QMC methods with respect to the number of
chains used, while computing the loss probability with the same parameters
than in the previous case. The following convergence speeds are observed:

Errye (L) = 0.0080L %37
Errquc(L) = 0.019L7%-92

Here also, the convergence is strongly sped up with QMC.
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Fig. 6. Convergence with respect to L for the BMAP/M/1/40 queue

6 Conclusions

In this paper, we have devised a QMC method for the transient simulation
of discrete time Markov chains. Indeed, when applied directly, QMC does
not converge. But by relabelling the paths, we have been able to prove the
convergence. We have also illustrated the degree of improvement that can be
obtained.

As a direction for future research, we can try to extend the method to
continuous time Markov chains (not using uniformization as a transformation)
or to steady-state simulation. The pitfall we have to cope with is that the
number of steps of each sample path is not a constant, which complicates the
application of the method.
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