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Abstract. In this paper, we consider a system modelled as an M/M/1
queue. Several users send jobs to the queue and are characterized by a
delay cost per unit of time and a demand function. Our goal is to design
an optimal pricing scheme for the queue, where the total charge depends
on both the mean delay at the queue and arrival rate of each customer.
We also assume that those two values have to be (statistically) measured,
introducing errors on the total charge that might avert users from us-
ing the system, and then decrease demand. This model can be applied
in telecommunication networks, where pricing can be used to control
congestion, and the network can be characterized by a single bottleneck
queue; the throughput of each user would be determined through pas-
sive measurements while the delay would be determined through active
measurements.

1 Introduction

In many situations and systems, controlling quality of service is an important
task. Indeed, when resource is limited and demand is high, congestion occurs
and delay for completion of service might increase to an unacceptable level. By
using a suitable pricing scheme, the facility manager can control congestion, of-
fer satisfactory quality of service and properly allocate resource. An application
of special attention for the authors is telecommunication networks, where con-
gestion control and service differentiation have become a concern of increasing
interest; pricing has therefore been seen as a solution to tackle the problem [3].
See also [4] for recent surveys on pricing in telecommunication networks. Pricing
is a topic of argument in the telecommunication community, where some believe
that it will be difficult to leave the current flat-rate scheme adopted by service
providers, especially with the introduction of optical fiber for which congestion
is unlikely to occur. Though, switching to optical fiber is expensive in access net-
works, and the radio spectrum will remain limited in wireless networks. We thus
follow the line of argument that a controlling procedure will have to be applied
in these cases, especially with the increasing demand in terms of bandwidth and
quality of service.



We consider in this paper an M/M/1 queue (often used to represent the
bottleneck queue in a telecommunication network), see for instance [1] and users
which adapt their demand to the price charged by the system manager as well
as the mean delay at the queue.

This kind of problem has already been studied in [5, 14] where, in a multi-
class framework, social welfare optimal prices have been determined. This work
has been extended in [17] to non-linear waiting costs, in [12] to a queuing network
with dynamic pricing and in [7] to customer-chosen service requirements.

In all those models, users’ mean delays and throughputs are assumed per-
fectly known or observable. Though, in many contexts those values cannot be
known exactly and have to be statistically measured, introducing errors. This is
for instance the case in the Internet where, for scalability reasons, the throughput
of each user is often estimated by passive measurements, that is non-intrusive
tools, by counting statistically the number of sent packets [8, 10, 11], while end-
to-end delay is measured using active measurements, that is by sending probes
in the network at random times [2, 6, 16, 18].

The main contribution of this paper is the introduction of measurements to
determine delay and users’ throughput. We consider a single class M/M/1/FIFO
queue with heterogeneous customers. Each user is assumed to have his own
demand function and delay cost per unit of time. The goal of the facility manager
is to find out prices optimizing the social welfare. With respect to the literature,
the main difference is then that the standard deviation between the actual and
theoretical prices is taken into account in demand functions (averting customers
from using the facility, as errors in price computation introduce dissatisfaction),
as well as the cost of performing measurements. It also introduces an additional
problem that is the determination of sampling frequency parameters: counting
more frequently the number of jobs (or packets) at the queue improves the
precision but increases management costs, while sending too many probes would
increase the processing delay of jobs.

The paper is organized as follows. The basic model is defined in Section 2.
Section 3 expresses how throughput and delay can be measured. The optimiza-
tion problem is described in Section 4, and several algorithms are provided in
Section 5, depending on the importance we fix to the last measurements if we
wish to incorporate potential changes of parameter values during time. Finally,
our concluding remarks can be found in Section 6.

2 Basic framework

We consider an M/M/1/FIFO queue and a population of J users sending jobs (or
packets) to the queue. For sake of simplicity, we assume that all jobs (packets)
have the same size. Let d be the mean delay by job at this queue. Each user j
(1 ≤ j ≤ J) is characterized by his (aggregated) value function Vj(λj) which
specifies the gross value gained when sending jobs to the system at rate λj .
The value function Vj(·) is assumed to be monotone increasing, continuously
differentiable and strictly concave, for all j ∈ {1, . . . , J}. This function is highly



related to demand function in the following way [14]: let z represent the full
price, meaning the charge plus the felt cost. The corresponding demand is λj =
Dj(z) = (1−Hj(z))Λj where Λj is the maximum potential arrival rate of class-i
jobs and Hj(·) is the distribution function of the service valuation. Inverting this
function, we have V ′

j (λj) = D−1
j (λj).

The total (per job) cost perceived by user j is made of pj , the per job price,
vjd, the linear delay cost (with vj delay cost per unit of time), and βjσj the
cost of aversion for the error in the total charge computation, with βj cost per

unit of error and σj =
√

V(p̂j), the standard deviation of the price computation,
due to measurements, where p̂j is the estimated price (depending on measured
throughput and delay; see below).

The demand relationship is thus given by

V ′

j (λj) = pj + vjd + βjσj . (1)

In this relation, the delay cost vjd depends on the perceived delay, i.e. the one
that is really experienced, and not the estimated one which is used for computing
the price. Note again that this delay cost is a felt cost, not a charged one.

Finally, define λ =
∑J

j=1 λj , the total arrival rate and λ = (λ1, · · · , λJ ) as
notations that will be helpful in the remaining of the paper.

3 Measurements

We assume here that delay and throughputs are unknown and have to be de-
termined in practice. Based on what is done in telecommunication networks [6],
we assume that delay is estimated by sending probes into the system. Probes
are special jobs served like standard jobs but designed to observe the response
time. Thus, the mean response time over the probes will be used to estimate
the average delay. Probes are assumed to be send according to a Poisson process
with rate γ. The larger γ, the better the estimation, but at the expense of an
increased delay (since those probes have to be served).

Based on similar telecommunication networks arguments, we assume that
each job passing through the system cannot be counted for scalability reason,
due to management and storage requirements. We thus assume that only a fixed
and small fraction ε of traffic is observed [11], each job being selected according to
a Bernoulli law of mean ε (independent between jobs). Nevertheless, we assume
that probes are automatically detected so that they are not sampled.

We separate time into slots of length T during which we assume that the
number J of users is fixed, as well as their sending rates λj . Measurements
are performed during each slot, and the total charge is computed from those
measurements.
Let N be the number of jobs arriving during a measurement slot. Let also Ns be
the number of jobs sampled during that period and Xij (1 ≤ j ≤ J , 1≤ i ≤ Ns)
be a Bernoulli random variable equal to 1 if the i-th sampled job is a job of user
j, and 0 otherwise. The estimation of λj is carried out as follows.



Proposition 1. An unbiased estimator of λj is

λ̂j =

∑Ns

i=1 Xij

εT
. (2)

Its variance is

V[λ̂j ] =
λj

εT
.

The proof of this proposition is provided in Appendix A.
The mean response time is estimated by sending probes/jobs in the system

according to a Poisson process with rate γ. The purpose is only to get an esti-
mation d̂ in each measurement slot of length T . The total arrival rate is then
λ + γ. Again, for notions on active (intrusive) measurements in communication
networks, the reader is referred to [15]. ¿From [9], the response time of each job
in such an M/M/1 queue is known to follow an exponential distribution with
rate µ − λ − γ. We assume here that γ << λ so that the measured response
times of probes can be considered independent. This assumption seems relevant
since, even if we wish to obtain a precise estimation, it cannot be at the cost of
a large increase of delay for actual jobs. Finally, let Na be the (random) number
of probes sent during a slot (of length T ) and dk be the measured response time
for the k-th probe. We then have the following estimator of mean response time.

Proposition 2. An unbiased estimator of mean response time is

d̂ =

Na∑

k=1

dk

γT
, (3)

and its variance (under the assumption of independence between delays of probes)
is given by

V(d̂) =
2

γT (µ − λ − γ)
.

The proposition is proved in Appendix B. Thanks to those estimations, optimal
prices are computed in the next section.

4 Optimal prices

The goal of this paper, like in [13, 14], is to design a pricing scheme optimizing

the total expected net value of the users
∑J

j=1(Vj(λj) − vjλjd), minus the cost
of processing measurements for the system αελ, where α is the cost per pas-
sive measurement, in terms of memory and management requirements. Sending
probes to measure delay is not supposed to have any direct cost for the system,
but only an indirect one by an increased delay. As well as prices, sampling para-
meters γ and ε can be properly chosen. The optimization problem can then be
formulated as finding out

(λ∗, γ∗, ε∗) = arg max
λ,γ,ε

{

J∑

j=1

(Vj(λj) − vjλjd) − αελ}, (4)



given that prices pi and rates λi depend one on each other by the demand
relationships (1). We recall here that delay y depends on λ.

For given values of ε and γ, the optimal pricing scheme is given by the
following theorem.

Theorem 1 The optimal job price for user j, for j ∈ {1, . . . , J}, is

p∗j = d2
J∑

k=1

vkλ∗

k − βjσj + αε,

where λ = λ∗ is the arrival-rate vector maximizing (4), and with

σ2
j =

d4

T




(
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+
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The proof of this theorem is given in Appendix C. Prices p∗ = (p∗1, · · · , p∗J )
induce the optimal arrival rate λ∗

j for each user j and consequently constitutes
an optimal price schedule (since, thanks to the demand relationships, with theses
prices, users will choose the arrival rates maximizing (4)).
Optimal values of sampling parameters ε and γ depend on λ∗, that is functions
Vj . Also, the optimal values λ∗ depend on ε and γ from Theorem 1. In the
next section, we propose to dynamically adapt ε and γ measurement slot per
measurement slot.

5 Numerical algorithms

We describe here how parameters γ, ε and the λi can adapt themselves dynami-
cally over time (discretized in measurement slots), depending on the importance
we assign to the last measurement slot in the overall estimations. We thus use
index or superscript t to indicate the t-th slot.

5.1 Algorithms

Consider that we are at the end of the t-th slot, with given value of εt, γt and
λt

i, so that the values for the (t + 1)-th slot are to be determined.

– From (2) and (3), we get estimations λ̂t
j , ∀j = 1, . . . , J , and d̂t of real con-

sumption/throughputs and delay at t-th slot.
– Estimations from previous slots are combined with the current one by, ∀j ∈

{1, . . . , I},

λ̃t
j = rt

λ

∑t−1
k=1 λ̂k

j

t − 1
+ (1 − rt

λ)λ̂t
j ,

and,

d̃t = rt
d

∑t−1
k=1 d̂k

t − 1
+ (1 − rt

d)d̂
t,



where rt
λ and rt

d are positive real numbers less than or equal to one cor-
responding to the proportion we assign to the estimations from previous
slots.

– Prices for the next slot are computed based on Theorem 1:

p̂t+1
j = (d̃t)2

J∑

j=1

vj λ̃j

t
− βjσj(λ̃

t, d̃t, γt, εt) + αεt,

with

σ
2

j (λ, d, γ, ε) =
d4

T

���1 +
12

γT
+

36

γ2T 2
+

24

γ3T 3 � J�
j=1

v
2

j

λj

ε
+

8

γ
�1 +

4

γT
+

3

γ2T 2 � (

J�
j=1

vjλj)
2�� .

– The system manager sets parameters γt+1 and εt+1 in order to maximize the
social welfare of the system for the (t + 1)-th slot:

(γt+1, εt+1) = arg max
γ,ε

J∑

j=1

(
Vj(λ

t+1
j ) −

vjλ
t+1
j

µ −
∑J

j=1 λt+1
j − γ

− αελt+1
j

)
,

extrapolating future demand (depending on those parameters) by:

λt+1
j (γ, ε) = ΛjΦj

(
p̂t+1

j + vj d̃
t + βjσj(λ̃

t, d̃t, γ, ε)
)

.

Then estimations then are computed at the (t + 1)-th slot, and so on.
We consider in this paper three different policies for the proportions rt

λ and rt
d

assigned to previous measurement slots in the estimations:

– last: only the last slot is taken into account in the estimations so that rt
d =

rt
λ = 0 ∀t. This choice is valid in the case where demand varies extremely

between slots, meaning that previous estimations are useless for the current
one.

– int: intermediate scheme where a fixed proportion is assigned to the last slot,
i.e., rt

d = rd and rt
λ = rλ ∀t. Thus with respect to last policy, estimations

are smoothed but the algorithm still reacts to changing conditions in the
system.

– id: each past slot is assigned the same weight so that rt
d = rt

λ = (t− 1)/t ∀t.
This policy is valid when the system conditions (number J of users, demand
functions) are constant over time. We then have

λ̃t
j = rt

λ

∑t−1
k=1 λ̂k

j

t − 1
+ (1 − rt

λ)λ̂t
j =

∑t
k=1 λ̂k

j

t
.

Applying the strong law of large numbers, as λ̂k
j are independent random

variables, we obtain

λ̃t
j =

∑t
k=1 λ̂k

j

t
−−−−→
t→+∞

IE(λ̂j) = λj .

The same convergence result stands for the delay estimation.



5.2 Illustrations

As an illustration, consider a system with µ = 10, T = 1000, and a number of
users J = 3.

Case of fixed demand We consider that users have fixed demand, expressed
by:

V1(λ1) = 15λ1 − 3λ2
1,

V2(λ2) = 17λ2 − 4λ2
2,

V3(λ3) = 16λ3 − 5λ2
3.

Other parameters are arbitrarily taken as v = [1; 1.5; 2], β = [2; 1; 0.5] and
α = 0.005. At the first time slot, γ0 is set to 10% of the smallest demand among
users while ε0 is taken from a uniform distribution over [0, 0.1].

We first look at the evolution of throughputs λi (i = 1, 2, 3) and active
sampling rate γ. Figure 1 displays the results for the last policy, Figure 2 for
the int policy with rd = rλ = 0.9 and Figure 3 for the id policy. As expected,
when the results from previous slots are not used (last policy), the estimations
experience a large variability since only the last slot is used. On the other hand,
int policy smoothes the estimations, even if a small variability is kept, while
convergence is illustrated for id policy.
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Fig. 1. Evolution of λ1,λ2,λ3 and γ for last policy when the number of slots increases
(fixed demand). The dashed lines are for the estimations while the plain lines are for
actual values of λi.

Figure 4 presents the error for the delay estimation in the case of each policy.
Again, last policy shows a larger variability in the estimation, while id policy
converges. Note also that for all three cases, γ << λ so that the independent
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Fig. 2. Evolution of λ1,λ2,λ3 and γ for int policy when the number of slots increases
(fixed demand). The dashed lines are for the estimations while the plain lines are for
actual values of λi.
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Fig. 3. Evolution of λ1,λ2,λ3 and γ for id policy when the number of slots increases
(fixed demand). The dashed lines are for the estimations while the plain lines are for
actual values of λi.
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Fig. 4. Evolution of the error between real mean delay and the estimator using the
three policies (fixed demand).

approximation between probes is valid. Exactly the same kind of remarks apply
for the evolution of the passive measurements parameter ε displayed on Figure 5
for each policy.
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Fig. 5. Evolution of the passive measurement parameter ε for each policy (fixed de-
mand).

Case of variable demand Look now at the case where demand varies for two
users, and is kept constant for the third one. Demand variations are expressed



by varying value functions Vj with time slot t. We use:

V1(λ1, t) = 15λ1 − 3λ2
1,

V2(λ2, t) = 17λ2 − 4λ2
2,

V3(λ3, t) = (16λ3 − 5λ2
3)

t

200
.

Figures 6, 7 and 8 display the evolution of actual throughputs, their estima-
tion, and the active measurement rate γ for respectively last, int and id policies.
We can still observe that variability is the highest for last and the lowest for id.
For the int policy, we use rλ = rd = 0.35 in order to reduce the variability in the
estimation of parameters with respect to last. id policy is shown not to stick to
changes of demand as well as last or int. Therefore, a small variability, by using
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Fig. 6. Evolution of λ1,λ2,λ3 and γ for last policy when the number of slots increases
(variable demand). The dashed lines are for the estimations while the plain lines are
for actual values of λi.

past measurements with different parameters, is at the cost of a larger bias in
the estimation, like for id policy. int policy might then be seen here as a good
trade-off between variance and bias.

Figure 9 displays errors in the average delay estimation for the three policies.
Due to its bias in case of variable demand, the estimation provided by id policy
degrades as time increases. Here also int policy appears a good trade-off.

Figure 10 presents the evolution of passive measurement parameter ε. A
slightly increasing behavior is observed, due to the increase in total demand.

6 Conclusions

In this paper, we have studied an optimal pricing scheme for a system with
heterogeneous users, meaning users with different demand patterns and delay
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Fig. 7. Evolution of λ1,λ2,λ3 and γ for int policy when the number of slots increases
(variable demand). The dashed lines are for the estimations while the plain lines are
for actual values of λi. We consider rλ = rd = 0.35.
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Fig. 8. Evolution of λ1,λ2,λ3 and γ for id policy when the number of slots increases
(variable demand). The dashed lines are for the estimations while the plain lines are
for actual values of λi.
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Fig. 9. Evolution of the error between real mean delay and the estimator using the
three policies (variable demand).

cost. In our model, the system performance (delay) and users throughput have
to be estimated by respectively active and passive measurements. This problem
has implications in telecommunication networks for instance. We also have in-
troduced several algorithms to adapt the system to potential modifications in
parameter values. The algorithm that uses the last policy, where a fixed propor-
tion of past estimations is assigned to overall estimations seems to be a good
choice for systems experiencing variations over time in their parameters. Never-
theless, the algorithm based on the id policy is well adapted to the case where
users’ consumption is stable over time.
As an extension, we currently work on a multi-class model where users have to
choose between several priority classes. We also plan to study the effect of the
granularity parameter T on the measurements parameters. Another extension of
our model is to consider heterogeneous traffic, with different packet sizes.
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A Proof of Proposition 1

The number N of jobs arriving during a measurement slot of length T follows a
Poisson distribution with rate λT . Given N , Ns follows a binomial distribution
with N trials and probability of success ε.

The generating function of random variable εT λ̂j is

G
εT λ̂j

(s) = IE[IE[s�Np

k=1
Xjk |Np]] = IE[((1 − ρj) + sρj)

Np ]

= IE[IE[((1 − ρj) + sρj)
Np |N ]]

= IE[((1 − ε) + ((1 − ρj) + sρj)ε)
N ]

= exp(−λT ((1 − ε) + ((1 − ρj) + sρj)ε − 1))

= exp(λjTε(s − 1)).

The random variable εT λ̂j thus follows a Poisson distribution with parameter

λjTε. Taking the expectation, it can be easily seen that λ̂j is a unbiased estimator
of λj . Also, we get

V[λ̂j ] =
1

ε2T 2
V[εT λ̂j ] =

λjTε

ε2T 2
=

λj

εT
.

B Proof of Proposition 2

The number Na of probes sent during a slot of length T follows a Poisson distri-
bution with parameter γT . Since we have assumed that response times of probes
are statistically independent, the moments of d̂ are

E((d̂)m) =
1

γmTm(µ − λ − γ)m
IE

(
(Na + m − 1)!

(Na − 1)!

)
. (5)

For m = 1, we obtain E(d̂) = (µ − λ − γ)−1 = d. The result for the variance
follows similarly.

C Proof of Theorem 1

The first order condition over λj for maximizing (4) is

V ′

j (λ∗

k) = vjd +

J∑

k=1

vkλk

∂d

∂λj

(λ) + αε.

Furthermore, the demand relationship for user j is

V ′

j (λj) = pj + vjd + βjσj .



Combining the above equations, we obtain at λ = λ∗

p∗j =

J∑

k=1

vkλ∗

k

∂d

∂λj

(λ∗) − βjσj + αε. (6)

Since we consider an M/M/1/FIFO queue, d = 1/(µ − λ − γ), so that ∂d
∂λj

= d2

giving the first part of the theorem.
Also,

σ2
j = V ar(p̂j) = V ar(d̂2

J∑

k=1

vkλ̂k) = E(d̂4)V(

J∑

k=1

vkλ̂k) + E(

J∑

k=1

vkλ̂k)2V(d̂2).

From (5) and the independence between estimations, we get

E(d̂4) =
1

γ3T 3(µ − λ − γ)4
(
γ3T 3 + 12γ2T 2 + 36γT + 24

)
,

V(
J∑

k=1

vkλ̂k) =
J∑

k=1

v2
k

λk

εT
,

E(

J∑

k=1

vkλ̂k) =

J∑

k=1

vkλk,

V(d̂2) =
8

γT (µ − λ − γ)4

(
1 +

4

γT
+

3

γ2T 2

)
,

providing the last part of the theorem.


