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Abstract able to connect two terminal sites of the network, due te fail

ures in the links; usually these events have very small prob-
This paper investigates the robustness of rare event sim-abilities (maybe smaller thar)—? in actual practice).
ulation estimators when rarity increases. The literatuaglh When we find a rare event situation. standard simula-

up to now focused on bounded relative error (BREIT) or o techniques meet important difficulties, as the low prob
bounded normal approximation properties stating respec- gpjlity of the interesting states makes it very improbable

tively that the relative size and the coverage error of the i, gpserve them in a random sample of the evolution of
confidence interval are bounded whatever the rarity is. Us- o system. This leads to very poor precision in the esti-
ing a reliability estimation problem, we show that there ex- ati0n of the target measures, and increases the probabil-
ists some efficient estimators for which BRErr is not veri- ity of non meaningful experiments (such as never observ-
fied. The efficiency is due to the fact that the number of es+nq the event of interest). There has been much research in
timations during a given simulation time increases with the giernative techniques, which can improve the precision of

rarity. We thus define a property called bounded relative ef- \he estimation. Most of these methods are usually classi-
ficiency ecompassing the examples of estimators verifyingieq within the class of variance reduction techniques, as

BRE, and representing the actual property an analyst has ey strive to give estimators for the target measure having

to look at. the same mean value but smaller variance than the standard
Monte Carlo estimator. This improved precision is in gen-
eral attained at the cost of employing a more complex al-
1. Introduction gorithm., which leads in many cases (but not necessarily) to
increasing the computational time. Other methods have the
Stochastic models provide a powerful tool to capture the S2M€ precision per r_eplication as standard Monte Carlo, but
dynamics and behavior of many real-life systems, and asWith lower computational costs.
such they are widely and with increasing frequency be- As there are many methods, offering different tradeoffs,
ing used to represent and evaluate different applications.the immediate question is how to choose the most appropri-
Among the most common, we can mention communication ate one. A purely empirical approach, used in some of the
networks and computing systems, but there are many othefirst papers in the area, consists of observing the efficiency
examples, such as spacecraft and aircraft equipment,-indusof each method (defined as the product of the variance by
trial production systems, and even social network models,the computational time) in comparison with the standard
wood-fire propagation models, etc. The use of Monte Carlo Monte Carlo technique, which serves as a base point, over
simulation is a method of choice for evaluating stochastic a test set. This idea has many problems, as it is difficult
models, specially useful when the model size is large andto extrapolate the results for other systems not included in
when there are no underlying symmetries that can lead tothe test set, and to obtain useful insights to design akerna
efficient use of other analytical or numerical techniques.  tive methods. A better possibility is the analytical study o
In many situations, the properties of interest depend crit- the simulation methods. In particular, there has been a line
ically on the occurrence of arare event, that is, on obsgrvin of research of the asymptotic behavior of rare event sim-
a subset of system states which appear with very low prob-ulation estimators when the rarity of the events goes to O,
ability. For instance, if we consider a communication net- which has led to define new concepts such as bounded rel-
work, we can be interested in the probability of packet loss ative error, asymptotic optimality, and bounded normal ap-
due to buffer overfilling, or in the probability of not being proximation, discussed in more detail in Section 2. These



concepts focus on the precision attained and the robustnes§ g(z) f(z)dz = [ g(x)L(z)f*(x)dz = Ey-[g(X)L(X)]
of the simulation estimators (both are important features, whereL(z) = f(z)/f*(z) is called the likelihood ratio (as-
see for example the discussion in [2]), but do not take into sumingf* > 0 if fg > 0). In other wordsyy is also the ex-
account the computational times associated with them. pectation ofy(X)L(X) under probability measurg*.

In this work, we combine some features of the two ap-
proaches: we focus on the overall efficiency of simulation
methods (combining in a single measure the precision at-
tained and the computational times employed), but we fol- _ InEp[g(X)2L(X)?
low the analytical approach. In particular, in Section 3 we glg% In~y
propose a desirable property for a simulation method,dalle
Bounded Relative Efficiency, which corresponds to the situ- Note that this quantity is always less than or equal to 2.
ation where a given relative error can be obtained with con-
stant computational effort even when the probability of the
event of interest goes to 0. In Section 4, we analyze a partic-
ular simulation method, and we observe that it fulfills a suf- ) )
ficient condition for Bounded Relative Efficiency to hold, 2-3- Bounded Normal Approximation
implying its robust behavior.

Definition 2 An importance sampling estimatoy;s is
called asymptotically optimal, if

=2.

In [7], the relations between asymptotic optimality and
BRErr are investigated.

Whereas the two previous properties deal with the vari-
ance of the estimator to maintain as small as possible the rel
ative size of the confidence interval, an important remajinin

We consider the estimation of a rare event with probabil- guestion is whether or nor the coverage of this confidence

ity v. We characterize the rare event by a rarity parameterNtérval remains bounded as- 0.
¢ so that as — 0, v — 0. In reliability models for in- Bounded Normal Approximation (BNA) [9] ensures that

stanceg may represent a maximum failure rate or the re- the Gaussian apprc_;ximat_ion, and thus the_ confidence inter-
liability of a component [8]. In queuing models, it may be val coverage, remains valid asends to O. Itis based on the

¢ = 1/B whereB is the buffer size, so that the buffer over- Berry-Esseen Theorem which states thatig the third ab-

flow probabilityy — 0 ase — 0 [2]. solute moment of each of thei.i.d. random variables(;,

(and ¢ its variance), N the star}dard normal distribution,
o —1 n ~2 —1 2)2

2.1. Bounded Relative Error Yo=n Yoy Xiy O =1 3 (Xi —5)° andFy, the

distribution of the centered and normalized sggm-~) /5.,

Let us consider an unbiased estimataf ~ taken froma  then there exists an absolute constant 0 such that, for
sample having size. Bounded Relative Error (BRErr) has ©achz and/
been defined in [8], and further studied in [3, 4, 5], in or- ag
der to state if the half-width confidence interval divided by [Fn(@) = N(@)] = 500 @
~ is bounded as tends to O (for a fixed sample sizg. This

asserts the robustness of the estimation. Formally: Definition 3 We say thaty verifies Bounded Normal Ap-
proximation ifo/o remains bounded as— 0.

2. Properties of rare event estimators

Definition 1 Leto?2 denote the variance df for a sample
sizen and bez;s thel —§/2 quantile of the standard normal  If the estimator enjoys this property, only a fixed number of

distribution. Then the relative error RErr is defined by iterations is required to obtain a confidence interval hgwvin
. a fixed error no matter how rarely failures occur.
RErT = 25@, 1) In [10], it is shown that, for Markovian reliability mod-
g els, BNA implies that the estimation of the variance is as-

We say that we have a bounded relative error (BREr) if YMPptotically correct, implying BREr, which implies the
RE'T remains bounded as— 0. is well-estimated, but that none of the converse implicetio

is verified in full generality. A refinement of the necessary

2.2. Asymptotic optimality and sulfficient condition for BNA is also provided in [10].

Asymptotic optimality has been widely used in queu- 3. Definition of Bounded Relative Efficiency
ing applications, for a special class of simulation meth-
ods called importance sampling. Importance sampling con-3.1. Need for extending the current properties
sists of modifying the probability measure of the system
under study: ify = E¢[g(X)] is the expectation of ran- Consider the problem of evaluating the reliability of a
dom variableg(X) under probability measurg, theny = “static” (time is not an explicit variable) stochastic méde



of a complex system by Monte Carlo. To be specific, con-

are connected in thfth or not. Then we must build thgth

sider a standard network reliability problem: we are given copy, sampling the states of the lines in the netwadg-

an undirected grapty representing a communication net-

ditioned to the fact that each of the paths @hcontains

work where nodes are perfect but links (edges) can fail (theyat leasta failed component. The problem reduces to sam-
can be either operational or completely down), two fixed pling the states of the edges in a path, knowing that at least

nodes,s andt, and we want to quantify the capacity of the

one of them is down; once this is done for tHepaths, the

network to support the communications between these se+est of the links in the network are sampled using their orig-
lected nodes. Edges are supposed to fail independently, anihal reliabilities.

we know the (elementary) reliability; of each edge (r;
is the probability that edgéis working). The random set
of operational edges defines a subgraghof G. The tar-
get is the network reliability?, the probability that nodes
andt belong to the same connected componertof

The computation o is NP-hard, and it is out of scope

today for even moderate graph sizes (having, say, several

dozens of nodes and links [6]). Estimatifusing a stan-
dard Monte Carlo method consists of buildimgcopies
of G’, simply counting in how many of those the selected
nodes can communicate and dividing this numbernby
This ratio is an unbiased estimator & its variance is
R(1 — R)/n. The cost of building a copy ofy’ follow-
ing the standard approach@ M) if M is the number of
links in G, and the average cost in time of checking &nd
t are connected in a subgraph@has also cosd(M). The
usual situation is that the reliabilities of the lines arghi
leading to a rare event situatioh{ R ~ 0).

In [1], a different and simple estimator &fis proposed,

Let path P, be P, = (ip1,in2, - ,ink,) and let
Chk = Tip,Tino " Tiy,, D€ the probability that the first
k edges inP, (in some arbitrary and fixed order) are all up,
for 1 < k < Kj,. Then, define a random variadl§, on the
set of integerdq1,2,- - -, K, } with distribution

k) = Ch,k—1 — Ch.k
1 —cnk,

PF(VVﬁ-—
wherec;, o = 1. It can be then shown th&k’, has the distri-
bution of the index of the random variable “first failed edge
of P, knowing that there is at least one failed edge”. To
sample the state of linkig 1, .2, - - -, in, Kk, We just sample
Wi, if the obtained value s, linkSiy, 1, ih.2, -, ihw,—1
are up, linkiy,_,, is down, and the states of the remaining
links i in the path (from positiom;, + 1 to positionK}) are
sampled from the original Bernoulli distribution with para
meterr;.

Consider the average cost in buildingopies ofG’ us-
ing the previously described approach. We will need, on the

having some interesting properties. To use it, we need toayerageng samples from the geometric distribution. For

build a set of elementary paths connecting noslesdt,

such that any pair of paths share only noglesdt. Let this
set beP = {P, P,---, Py}, and callr, the event “all
links of path P, work”. Denote byp;, the probability ofr,,

that is,

= I

i€ Py,
Consider an infinite sequence of independent copigs’ of
and letF' be the random variable “first element in the se-
quence where every pathhas at least one link that does
not work”. See that

pr = Pr( 7rh

"
Pr(F (1= pn),
h=1

and in general, for any > 1,
Pr(F=n)=(1-q" 'q.

Then, on average, we have to wait fof/§ = 1/¢ sam-
ples of G’ to generate one such that no pattPArtonnects
andt. If the links are highly reliable, thepwill be small and

E(F) large. The idea is then to sample first from the geomet-

ric distribution of F'. Call f the obtained value. The estima-
tor of R is then built assuming that in the first— 1 copies
of G’ nodess andt are connected (saving a lot of computa-
tions as the reliability increases). It remains to know éth

each of theseig cases where we must sample the condi-
tional state of the links in the network, we need to sam-
ple fromWy, --- Wy, then to sample the states of a sub-
set of the whole graph, which has average cosb{@d/).
This leads to an average global cost in time of the form
O(ng(M + K)), whereK = K; + --- + Kp. Observe
that the variance of the estimatori¥1 — R)/n, because

as stated in [1], we are in fact building the standard estima-
tor in a more efficient way.

Introduce the rarity parameterby assuming thaty,
there exist two reals;, b; > 0 such that; = 1 —a,;e". Itis
straightforward to verify that the unreliability=1—- R —

0 ase — 0. Let# be the above estimator of the unreliabil-
ity.

The Relative Error of this method is

(VA= 7)) = O(1/y7) = 00

asec — 0. Nevertheless, as the per-replication computa-
tional time decreases with this should be also considered
in the asymptotic efficiency of the estimator.

3.2. Definition

For a fixed sample size, we thus define the Bounded (Rel-
ative) Efficiency. It basically gives the (relative) vargnof



an estimator obtained during a given simulation time. In- H H b

deed, an estimator A yielding a smaller variance than an es- H (ane™ H =)
timator B for the same number of replications may re- h=1 h=1
quire a larger computational time in order to obtain one

= = T_Zle bh = -
replication. The efficiency looks at the variance obtained Then REff= O(y/q) = O(e ) = 0O(1) (mean

for a given simulation time since a quicker estimator will N9 that BREf is verified) ify_;,_, by = 7. m

run more replications. The method is thus robust as— 0 whereas BREtr is

Definition 4 Let4 be an estimator of, ando? be its vari- never satisfied. Numerical examples are not provided due to
’ n

ance when using replications (possibly dependent). tgt  [ack of room.
be the average simulation time to get theseeplications.
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