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Abstract

This paper investigates the robustness of rare event sim-
ulation estimators when rarity increases. The literature had
up to now focused on bounded relative error (BRErr) or
bounded normal approximation properties stating respec-
tively that the relative size and the coverage error of the
confidence interval are bounded whatever the rarity is. Us-
ing a reliability estimation problem, we show that there ex-
ists some efficient estimators for which BRErr is not veri-
fied. The efficiency is due to the fact that the number of es-
timations during a given simulation time increases with the
rarity. We thus define a property called bounded relative ef-
ficiency ecompassing the examples of estimators verifying
BRErr, and representing the actual property an analyst has
to look at.

1. Introduction

Stochastic models provide a powerful tool to capture the
dynamics and behavior of many real-life systems, and as
such they are widely and with increasing frequency be-
ing used to represent and evaluate different applications.
Among the most common, we can mention communication
networks and computing systems, but there are many other
examples, such as spacecraft and aircraft equipment, indus-
trial production systems, and even social network models,
wood-fire propagation models, etc. The use of Monte Carlo
simulation is a method of choice for evaluating stochastic
models, specially useful when the model size is large and
when there are no underlying symmetries that can lead to
efficient use of other analytical or numerical techniques.

In many situations, the properties of interest depend crit-
ically on the occurrence of a rare event, that is, on observing
a subset of system states which appear with very low prob-
ability. For instance, if we consider a communication net-
work, we can be interested in the probability of packet loss
due to buffer overfilling, or in the probability of not being

able to connect two terminal sites of the network, due to fail-
ures in the links; usually these events have very small prob-
abilities (maybe smaller than10−9 in actual practice).

When we find a rare event situation, standard simula-
tion techniques meet important difficulties, as the low prob-
ability of the interesting states makes it very improbable
to observe them in a random sample of the evolution of
the system. This leads to very poor precision in the esti-
mation of the target measures, and increases the probabil-
ity of non meaningful experiments (such as never observ-
ing the event of interest). There has been much research in
alternative techniques, which can improve the precision of
the estimation. Most of these methods are usually classi-
fied within the class of variance reduction techniques, as
they strive to give estimators for the target measure having
the same mean value but smaller variance than the standard
Monte Carlo estimator. This improved precision is in gen-
eral attained at the cost of employing a more complex al-
gorithm, which leads in many cases (but not necessarily) to
increasing the computational time. Other methods have the
same precision per replication as standard Monte Carlo, but
with lower computational costs.

As there are many methods, offering different tradeoffs,
the immediate question is how to choose the most appropri-
ate one. A purely empirical approach, used in some of the
first papers in the area, consists of observing the efficiency
of each method (defined as the product of the variance by
the computational time) in comparison with the standard
Monte Carlo technique, which serves as a base point, over
a test set. This idea has many problems, as it is difficult
to extrapolate the results for other systems not included in
the test set, and to obtain useful insights to design alterna-
tive methods. A better possibility is the analytical study of
the simulation methods. In particular, there has been a line
of research of the asymptotic behavior of rare event sim-
ulation estimators when the rarity of the events goes to 0,
which has led to define new concepts such as bounded rel-
ative error, asymptotic optimality, and bounded normal ap-
proximation, discussed in more detail in Section 2. These



concepts focus on the precision attained and the robustness
of the simulation estimators (both are important features,
see for example the discussion in [2]), but do not take into
account the computational times associated with them.

In this work, we combine some features of the two ap-
proaches: we focus on the overall efficiency of simulation
methods (combining in a single measure the precision at-
tained and the computational times employed), but we fol-
low the analytical approach. In particular, in Section 3 we
propose a desirable property for a simulation method, called
Bounded Relative Efficiency, which corresponds to the situ-
ation where a given relative error can be obtained with con-
stant computational effort even when the probability of the
event of interest goes to 0. In Section 4, we analyze a partic-
ular simulation method, and we observe that it fulfills a suf-
ficient condition for Bounded Relative Efficiency to hold,
implying its robust behavior.

2. Properties of rare event estimators

We consider the estimation of a rare event with probabil-
ity γ. We characterize the rare event by a rarity parameter
ε so that asε → 0, γ → 0. In reliability models for in-
stance,ε may represent a maximum failure rate or the re-
liability of a component [8]. In queuing models, it may be
ε = 1/B whereB is the buffer size, so that the buffer over-
flow probabilityγ → 0 asε → 0 [2].

2.1. Bounded Relative Error

Let us consider an unbiased estimatorγ̂ of γ taken from a
sample having sizen. Bounded Relative Error (BRErr) has
been defined in [8], and further studied in [3, 4, 5], in or-
der to state if the half-width confidence interval divided by
γ is bounded asε tends to 0 (for a fixed sample sizen). This
asserts the robustness of the estimation. Formally:

Definition 1 Let σ2

n denote the variance of̂γ for a sample
sizen and bezδ the1−δ/2 quantile of the standard normal
distribution. Then the relative error RErr is defined by

RErr = zδ

√

σ2
n

γ
. (1)

We say that we have a bounded relative error (BRErr) if
RErr remains bounded asε → 0.

2.2. Asymptotic optimality

Asymptotic optimality has been widely used in queu-
ing applications, for a special class of simulation meth-
ods called importance sampling. Importance sampling con-
sists of modifying the probability measure of the system
under study: ifγ = Ef [g(X)] is the expectation of ran-
dom variableg(X) under probability measuref , thenγ =

∫

g(x)f(x)dx =
∫

g(x)L(x)f∗(x)dx = Ef∗ [g(X)L(X)]
whereL(x) = f(x)/f∗(x) is called the likelihood ratio (as-
sumingf∗ > 0 if fg > 0). In other words,γ is also the ex-
pectation ofg(X)L(X) under probability measuref∗.

Definition 2 An importance sampling estimator̂γIS is
called asymptotically optimal, if

lim
ε→0

lnEf∗ [g(X)2L(X)2]

ln γ
= 2.

Note that this quantity is always less than or equal to 2.

In [7], the relations between asymptotic optimality and
BRErr are investigated.

2.3. Bounded Normal Approximation

Whereas the two previous properties deal with the vari-
ance of the estimator to maintain as small as possible the rel-
ative size of the confidence interval, an important remaining
question is whether or nor the coverage of this confidence
interval remains bounded asε → 0.

Bounded Normal Approximation (BNA) [9] ensures that
the Gaussian approximation, and thus the confidence inter-
val coverage, remains valid asε tends to 0. It is based on the
Berry-Esseen Theorem which states that if% is the third ab-
solute moment of each of then i.i.d. random variablesXi,
(and σ its variance),N the standard normal distribution,
γ̂ = n−1

∑n
i=1

Xi, σ̂2

n = n−1
∑I

i=1
(Xi − γ̂)2 andFn the

distribution of the centered and normalized sum(γ̂−γ)/σ̂n,
then there exists an absolute constanta > 0 such that, for
eachx andI

|Fn(x) −N (x)| ≤ a%

σ3
√

n
. (2)

Definition 3 We say that̂γ verifies Bounded Normal Ap-
proximation if%/σ3 remains bounded asε → 0.

If the estimator enjoys this property, only a fixed number of
iterations is required to obtain a confidence interval having
a fixed error no matter how rarely failures occur.

In [10], it is shown that, for Markovian reliability mod-
els, BNA implies that the estimation of the variance is as-
ymptotically correct, implying BRErr, which implies theγ
is well-estimated, but that none of the converse implications
is verified in full generality. A refinement of the necessary
and sufficient condition for BNA is also provided in [10].

3. Definition of Bounded Relative Efficiency

3.1. Need for extending the current properties

Consider the problem of evaluating the reliability of a
“static” (time is not an explicit variable) stochastic model



of a complex system by Monte Carlo. To be specific, con-
sider a standard network reliability problem: we are given
an undirected graphG representing a communication net-
work where nodes are perfect but links (edges) can fail (they
can be either operational or completely down), two fixed
nodes,s andt, and we want to quantify the capacity of the
network to support the communications between these se-
lected nodes. Edges are supposed to fail independently, and
we know the (elementary) reliabilityri of each edgei (ri

is the probability that edgei is working). The random set
of operational edges defines a subgraphG′ of G. The tar-
get is the network reliabilityR, the probability that nodess
andt belong to the same connected component ofG′.

The computation ofR is NP-hard, and it is out of scope
today for even moderate graph sizes (having, say, several
dozens of nodes and links [6]). EstimatingR using a stan-
dard Monte Carlo method consists of buildingn copies
of G′, simply counting in how many of those the selected
nodes can communicate and dividing this number byn.
This ratio is an unbiased estimator ofR; its variance is
R(1 − R)/n. The cost of building a copy ofG′ follow-
ing the standard approach isΘ(M) if M is the number of
links in G, and the average cost in time of checking ifs and
t are connected in a subgraph ofG has also costΘ(M). The
usual situation is that the reliabilities of the lines are high,
leading to a rare event situation (1 − R ≈ 0).

In [1], a different and simple estimator ofR is proposed,
having some interesting properties. To use it, we need to
build a set of elementary paths connecting nodess and t,
such that any pair of paths share only nodess andt. Let this
set beP = {P1, P2, · · · , PH}, and callπh the event “all
links of pathPh work”. Denote byph the probability ofπh,
that is,

ph = Pr(πh) =
∏

i∈Ph

ri.

Consider an infinite sequence of independent copies ofG′

and letF be the random variable “first element in the se-
quence where every path inP has at least one link that does
not work”. See that

Pr(F = 1) = q =

H
∏

h=1

(1 − ph),

and in general, for anyn ≥ 1,

Pr(F = n) = (1 − q)n−1q.

Then, on average, we have to wait for E(F ) = 1/q sam-
ples ofG′ to generate one such that no path inP connectss
andt. If the links are highly reliable, thenq will be small and
E(F ) large. The idea is then to sample first from the geomet-
ric distribution ofF . Call f the obtained value. The estima-
tor of R is then built assuming that in the firstf − 1 copies
of G′ nodess andt are connected (saving a lot of computa-
tions as the reliability increases). It remains to know if they

are connected in thef th or not. Then we must build thatf th
copy, sampling the states of the lines in the network,con-
ditioned to the fact that each of the paths onP contains
at leasta failed component. The problem reduces to sam-
pling the states of the edges in a path, knowing that at least
one of them is down; once this is done for theH paths, the
rest of the links in the network are sampled using their orig-
inal reliabilities.

Let path Ph be Ph = (ih,1, ih,2, · · · , ih,Kh
) and let

ch,k = rih,1
rih,2

· · · rih,k
be the probability that the first

k edges inPh (in some arbitrary and fixed order) are all up,
for 1 ≤ k ≤ Kh. Then, define a random variableWh on the
set of integers{1, 2, · · · ,Kh} with distribution

Pr(Wh = k) =
ch,k−1 − ch,k

1 − ch,Kh

,

wherech,0 = 1. It can be then shown thatWh has the distri-
bution of the index of the random variable “first failed edge
of Ph knowing that there is at least one failed edge”. To
sample the state of linksih,1, ih,2, · · · , ih,Kh

we just sample
Wh; if the obtained value iswh, links ih,1, ih,2, · · · , ih,wh−1

are up, linkih,wh
is down, and the states of the remaining

links i in the path (from positionwh +1 to positionKh) are
sampled from the original Bernoulli distribution with para-
meterri.

Consider the average cost in buildingn copies ofG′ us-
ing the previously described approach. We will need, on the
average,nq samples from the geometric distribution. For
each of thesenq cases where we must sample the condi-
tional state of the links in the network, we need to sam-
ple fromW1, · · · ,WH , then to sample the states of a sub-
set of the whole graph, which has average cost inO(M).
This leads to an average global cost in time of the form
O(nq(M + K)), whereK = K1 + · · · + KH . Observe
that the variance of the estimator isR(1 − R)/n, because
as stated in [1], we are in fact building the standard estima-
tor in a more efficient way.

Introduce the rarity parameterε by assuming that,∀i,
there exist two realsai, bi > 0 such thatri = 1−aiε

bi . It is
straightforward to verify that the unreliabilityγ = 1−R →
0 asε → 0. Let γ̂ be the above estimator of the unreliabil-
ity.

The Relative Error of this method is

Θ(
√

γ(1 − γ)/γ) = Θ(1/
√

γ) → ∞

as ε → 0. Nevertheless, as the per-replication computa-
tional time decreases withε, this should be also considered
in the asymptotic efficiency of the estimator.

3.2. Definition

For a fixed sample size, we thus define the Bounded (Rel-
ative) Efficiency. It basically gives the (relative) variance of



an estimator obtained during a given simulation time. In-
deed, an estimator A yielding a smaller variance than an es-
timator B for the same numbern of replications may re-
quire a larger computational time in order to obtain one
replication. The efficiency looks at the variance obtained
for a given simulation time since a quicker estimator will
run more replications.

Definition 4 Let γ̂ be an estimator ofγ, andσ2

n be its vari-
ance when usingn replications (possibly dependent). Lettn
be the average simulation time to get thosen replications.
The relative efficiency of̂γ is given by

REff=
γ2

σ2
ntn

.

We will say that̂γ has bounded relative efficiency (BREff) if
there exists a constantd > 0 such that REff is minored byd
for all ε.

In the case of independent replications,tn = nt andσ2

n =
σ2/n with t andσ2 respectively the average time and vari-
ance for a single replication. Therefore the efficiency is
REff = γ2/(σ2t), independent of the sample sizen.

Note again that the average per-replication simulation
time may vary withε (as well asσ2 andγ).

4. Sufficient condition for BREff on our static
reliability estimator

Returning to our unreliability estimation problem, us-
ing n virtual replications,σ2

n = γ(1 − γ)/n and tn =
O(nq(M + K)) = O(nqM), sinceK ≤ M . We can
thus write tn = O(nq). The efficiency of this approach
is thenO(γ2n/(γ(1 − γ)nq)) = O(γ/q) where a func-
tion f(ε) = O(g(ε)) if there existd1 > 0 such that
f(ε)/g(ε) ≥ d1 for all ε sufficiently small.

Let r > 0 be the real such thatγ = Θ(εr) and letC de-
note the set of mincuts with probabilityΘ(εr) (the proba-
bility of a mincut is the probability that all its components
are down). We also say that mincuts inC have “order”r.
Every other mincut not inC has probabilityΘ(εr′

) (or or-
derr′) with r′ > r (see [6] for general discussions on paths
and cuts).

A sufficient condition for Bounded Relative Efficiency is
then the following.

Theorem 1 ∀Ph ∈ P, let Ph = (ih,1, · · · , ih,Kh
) and

bh = min1≤k≤Kh
bih,k

the order of the most reliable edge
of Ph. The estimator̂γ of the static unreliability described
in previous section verifies Bounded Relative Efficiency if
∑H

h=1
bh ≥ r.

Proof: Let ah =
∑

k:bih,k
=bh

aih,k
. We have

q =
H
∏

h=1

(1 − ph) =
H
∏

h=1

(

1 −
Kh
∏

k=1

(

1 − aih,k
εbih,k

)

)

=

H
∏

h=1

Θ(ahεbh) = (

H
∏

h=1

ah)Θ(ε
∑

H

h=1
bh).

Then REff = O(γ/q) = O(εr−
∑

H

h=1
bh) = O(1) (mean-

ing that BREff is verified) if
∑H

h=1
bh ≥ r.

The method is thus robust asε → 0 whereas BRErr is
never satisfied. Numerical examples are not provided due to
lack of room.
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