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Abstract

In problems of moderate dimensions, the quasi-Monte Carlo method usually pro-

vides better estimates than the Monte Carlo method. However, as the dimension

of the problem increases, the advantages of the quasi-Monte Carlo method dimin-

ish quickly. A remedy for this problem is to use hybrid sequences; sequences that

combine pseudorandom and low-discrepancy vectors. In this paper we discuss a

particular hybrid sequence called the mixed sequence. We will provide improved

discrepancy bounds for this sequence and prove a central limit theorem for the

corresponding estimator. We will also provide numerical results that compare the

mixed sequence with the Monte Carlo and randomized quasi-Monte Carlo methods.
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1 Introduction

In high dimensional problems, quasi-Monte Carlo methods (QMC) start los-

ing their effectiveness over Monte Carlo methods (MC). The dimension above

which QMC is no longer competitive depends on the problem at hand. Meth-

ods such as Anova decomposition of functions, and concepts such as effective

dimension (see, for instance, Moskowitz and Caflisch [1]) have been used in

the past to understand the relationship between the dimension of the function

and the accuracy of QMC.

In order to address the potential difficulties of QMC in high dimensions, sev-

eral authors introduced “hybrid” methods that make use of low-discrepancy

sequences in some elaborate way, often combining them with pseudorandom

numbers. Examples of such methods are the “mixed” and “scrambled” strate-

gies used by Spanier [2] , the mixed sequence used by Ökten [3,4], the “renum-

bering” and “continuation” methods used by Moskowitz [5], and similar num-

bering techniques used by Coulibaly and Lécot [6], Morokoff and Caflisch [7],

and Lécot and Tuffin [8]. The authors of these studies report favorable numer-

ical results when the errors obtained from these hybrid methods are compared

with the MC and QMC errors.

In this paper, we will discuss in detail methods that have been named as

the mixed method, padding with MC, and padding with randomized QMC

∗ Corresponding author

Email addresses: okten@math.fsu.edu, Bruno.Tuffin@irisa.fr,

burago@tinro.ru (Vadim Burago).

2



(RQMC) [9]. Consider the problem of estimating

I =
∫

[0,1]s
f(x)dx (1)

using sums of the form

Î =
1

N

N∑

k=1

f(x(k)) (2)

where x(k) are s-dimensional vectors chosen appropriately. If the dimension s is

large, and if it is possible to identify a smaller subset of d important variables

{i1, ..., id}, then one has the following options:

(1) Sample {i1, ..., id} using a d-dimensional QMC sequence, and for the rest

of the variables use an (s−d)-dimensional MC (pseudorandom) sequence

(called the mixed method, or padding QMC by MC);

(2) Sample {i1, ..., id} using a d-dimensional RQMC sequence, and for the rest

of the variables use an (s−d)-dimensional MC (pseudorandom) sequence

(called the randomized mixed method, or padding RQMC by MC).

Let x(k) = (q(k), X(k)) be an s-dimensional sequence obtained by concatenating

the vectors q(k) and X(k). Here (q(k))k≥1, is a d-dimensional QMC sequence, and

X(k), k ≥ 1, are independent random variables with the uniform distribution

on (0, 1)s−d. We will call x(k) a mixed sequence. The underlying sequences

used in both of the strategies mentioned above are mixed sequences. The

first strategy, in computing (2), uses a single mixed sequence to obtain the

estimate Î, whereas the second strategy uses independent replications of a

mixed sequence, where each replication involves an independent selection of

an RQMC sequence, and random vectors X(k), k ≥ 1. In our definition of

x(k) we took the first d dimensions to be “important” for convenience. The

results of the paper are still valid if the important d variables occurred at

arbitrary locations. In Section 4, we will discuss these strategies in more detail
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and present a computational framework that will enable us to compare their

effectiveness numerically.

In the next section, we will investigate the discrepancy of the mixed sequence,

which is the underlying sequence in the strategies mentioned above. The reason

we study the discrepancy is the Koksma-Hlawka inequality, which states that

the error, |I − Î|, is bounded by the variation of f (in the sense of Hardy

and Krause) multiplied by the discrepancy of the sequence, and thus smaller

discrepancy suggests smaller error. The results of this section generalize the

earlier results given in Ökten [3]. In Section 3, we will prove a central limit

theorem for the estimator used in the mixed method. And in Section 4 we will

present numerical results from computational finance.

2 An upper bound for the discrepancy

of the mixed sequence

In the following x(k) = (q(k), X(k)) is the kth element of the s-dimensional

mixed sequence, where q(k) and X(k) are the deterministic and stochastic com-

ponents of dimension d and s − d. We will write the components of a vector

α as (α1, ..., αs).

Observe that x(k) < α iff q(k) < α′ and X(k) < α′′, where α′ is the d-dimensional

vector that consists of the first d components of the s-dimensional vector α,

and α′′ is the (s − d)- dimensional vector that consists of the rest of the

components. Hence

P{x(k) < α} = 1[0,α′)(q
(k))P{X(k) < α′′}.
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The interval [0, α) is defined as
∏s

k=1[0, αk). Clearly, P{X(k) < α′′} =
∏s

k=d+1 αk

which we will simply denote by p.

Let Y ≡ Y (α) be sample frequencies, related to the set [0, α):

Y =
1

N

N∑

k=1

1[0,α)(x
(k)).

We have

E[Y ] =
p

N

N∑

k=1

1[0,α′)(q
(k)) =

pA

N
,

V ar(Y ) =
1

N2

N∑

k=1

1[0,α′)(q
(k))(p − p2) =

p(1 − p)

N2
A,

where we denote the sum
∑N

k=1 1[0,α′)(q
(k)) (a function of α′ and all q(k)) by

A (or by AN(α′) if we need to show explicitly dependence on N and α). We

assume that the sequence {q(k)} is dense in [0, 1)d, i.e., for any α′ ∈ (0, 1)d

lim
N→∞

AN(α′) = ∞.

This is obviously true when {q(k)} is a low-discrepancy sequence.

Consider the local discrepancy random variable

g(α) =
1

N

N∑

k=1

1[0,α)(x
(k)) −

s∏

k=1

αk = Y −
s∏

k=1

αk.

We want to study the star-discrepancies

D∗
N(x(k)) = sup

α∈(0,1]s

∣
∣
∣
∣
∣

1

N

N∑

k=1

1[0,α)(x
(k)) −

s∏

i=1

αi

∣
∣
∣
∣
∣
= sup

α∈(0,1]s
|g(α)| ,

D∗
N(q(k)) = sup

α′∈(0,1]d

∣
∣
∣
∣
∣

1

N

N∑

k=1

1[0,α′)(q
(k)) −

d∏

i=1

α′
i

∣
∣
∣
∣
∣

and in particular investigate the probability

P{D∗
N(x(k)) < ε + D∗

N(q(k))} (3)
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where ε is a positive real number. In the rest of this section, we will simply

write supα for supα∈(0,1]s and supα′ for supα′∈(0,1]d for convenience.

Lemma 1

D∗
N(x(k)) − D∗

N(q(k)) ≤ sup
α

|g(α) − E[g(α)]| . (4)

Proof.

D∗
N(x(k)) = sup

α

∣
∣
∣
∣
∣

1

N

N∑

k=1

1[0,α)(x
(k)) − p

d∏

k=1

αk

∣
∣
∣
∣
∣

= sup
α

∣
∣
∣
∣
∣

1

N

N∑

k=1

1[0,α)(x
(k)) − p

A

N
+ p

(

A

N
−

d∏

k=1

αk

)∣
∣
∣
∣
∣

≤ sup
α

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1

N

N∑

k=1

1[0,α)(x
(k)) − p

A

N
︸ ︷︷ ︸

g(α)−E[g(α)]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+ sup
α

p

∣
∣
∣
∣
∣

A

N
−

d∏

k=1

αk

∣
∣
∣
∣
∣

≤ sup
α

|g(α) − E[g(α)]| + sup
α′

∣
∣
∣
∣
∣

A

N
−

d∏

k=1

αk

∣
∣
∣
∣
∣

︸ ︷︷ ︸

D∗

N
(q(k))

≤ sup
α

|g(α) − E[g(α)]| + D∗
N(q(k)).

This lemma suggests that to study (3) we need to investigate the behavior of

the random variables

g(α) − E[g(α)] =
1

N

N∑

k=1

1[0,α)(x
(k)) − p

A

N

and

sup
α

|g(α) − E[g(α)]| .

From Kolmogorov’s strong law of large numbers, it can be shown that for any
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α

g(α) − Eg(α) =
1

N

N∑

k=1

1[0,α)(x
(k)) −

pA

N
→ 0 (a.s.)

as N → ∞. We will now prove a stronger result.

Lemma 2

lim
N→∞

sup
α

|g(α) − E[g(α)]| = lim
N→∞

sup
α′

GN(α′) = 0 (a.s.)

where

GN(α′) :=
1

N
sup
α′′

∣
∣
∣
∣
∣

N∑

k=1

1[0,α′)(q
(k))

(

1[0,α′′)(X
(k)) − p

)
∣
∣
∣
∣
∣
.

Proof. The first equality in Lemma 2 follows from

sup
α

|g(α) − E[g(α)]| = sup
α

∣
∣
∣
∣
∣

1

N

N∑

k=1

1[0,α)(x
(k)) − p

A

N

∣
∣
∣
∣
∣

= sup
α

1

N

∣
∣
∣
∣
∣

N∑

k=1

1[0,α′)(q
(k))1[0,α′′)(X

(k)) − Ap

∣
∣
∣
∣
∣

= sup
α

1

N

∣
∣
∣
∣
∣

N∑

k=1

1[0,α′)(q
(k))1[0,α′′)(X

(k)) −
N∑

k=1

1[0,α′)(q
(k))p

∣
∣
∣
∣
∣

= sup
α′

sup
α′′

1

N

∣
∣
∣
∣
∣

N∑

k=1

1[0,α′)(q
(k))

(

1[0,α′′)(X
(k)) − p

)
∣
∣
∣
∣
∣
.

Now we will prove that the limit is zero. Note that for any α′ ∈ (0, 1]d we have

lim
N→∞

sup
α′′

1

N

∣
∣
∣
∣
∣

N∑

k=1

1[0,α′)(q
(k))

(

1[0,α′′)(X
(k)) − p

)
∣
∣
∣
∣
∣

= lim
N→∞



sup
α′′

1

N

∣
∣
∣
∣
∣
∣

∑

k∈χ(α′)

(

1[0,α′′)(X
(k)) − p

)

∣
∣
∣
∣
∣
∣





≤ lim
A→∞



sup
α′′

1

A

∣
∣
∣
∣
∣
∣

∑

k∈χ(α′)

(

1[0,α′′)(X
(k)) − p

)

∣
∣
∣
∣
∣
∣



 = 0 (a.s.) (5)

from Glivenko-Cantelli’s theorem. Here χ(α′) is the subset of the index set

{1, ..., N} that consists of k for which 1[0,α′)(q
(k)) = 1, and A is the cardinality

of χ(α′). Also note that for any α′ ∈ (0, 1]d, A goes to infinity together with

N , provided the sequence {q(k)} is dense in [0, 1)d.
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Let

Rε = {α′|α′ ∈ (0, 1]d, min
i

α′
i < ε/2},

where ε is an arbitrary small positive real number. Notice that

d∏

i=1

α′
i <

ε

2
, ∀α′ ∈ Rε.

By definition of the star-discrepancy D∗
N(q(k)), for any α′

AN(α′)

N
≤ D∗

N(q(k)) +
d∏

i=1

α′
i,

therefore

sup
α′∈Rε

AN(α′)

N
< D∗

N(q(k)) +
ε

2
. (6)

Also notice that

inf
α′∈Rc

ε

AN(α′) = AN(α′
ε) (7)

where Rc
ε = (0, 1]d\Rε is the complement of the set Rε, and α′

ε = 1
2
(ε, ε, . . . , ε)

(this is a d-dimensional vector). The denseness of the sequence {q(k)} implies

that AN(α′
ε) → ∞ as N → ∞.

From the definition of the GN(α′) it follows that

sup
α′∈Rε

GN(α′) ≤
1

N
sup

α′∈Rε

N∑

k=1

1[0,α′)(q
(k)) = sup

α′∈Rε

AN(α′)

N
< D∗

N(q(k)) +
ε

2
,

last inequality following from (6).

Now, to prove the statement of the lemma, we need to connect the supremum

over α′ with the supremum over α′ ∈ Rε. To this end, we note

sup
α′

GN(α′) = max

{

sup
α′∈Rε

GN(α′), sup
α′∈Rc

ε

GN(α′)

}

≤ max

{

D∗
N(q(k)) +

ε

2
, sup
α′∈Rc

ε

GN(α′)

}

. (8)
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For a uniformly distributed sequence {q(k)}, D∗
N(q(k)) tends to zero as N → ∞,

and we may choose nε large enough so that for any N > nε

D∗
N(q(k)) <

ε

2
,

so

sup
N>nε

sup
α′

GN(α′) ≥ ε ⇔ sup
N>nε

sup
α′∈Rc

ε

GN(α′) ≥ ε

and consequently

P

{

sup
N>nε

sup
α′

GN(α′) ≥ ε

}

= P

{

sup
N>nε

sup
α′∈Rc

ε

GN(α′) ≥ ε

}

.

Now we investigate the probability in the right-hand side of the above equation

in more detail:

P

{

sup
N>nε

sup
α′∈Rc

ε

GN(α′) ≥ ε

}

= P






sup

N>nε

sup
α′∈Rc

ε

sup
α′′

1

N

∣
∣
∣
∣
∣
∣

∑

k∈χ(α′)

(

1[0,α′′)(X
(k)) − p

)

∣
∣
∣
∣
∣
∣

≥ ε







= P






sup

N>nε

sup
α′∈Rc

ε

sup
α′′

1

N

∣
∣
∣
∣
∣
∣

AN (α′)
∑

j=1

(

1[0,α′′)(Z
(j)) − p

)

∣
∣
∣
∣
∣
∣

≥ ε






(9)

where Z(j) are independent random vectors uniformly distributed on [0, 1)s−d.

Note that the only term in the above summation that depends on α′ is the

number of summands. Recall that χ(α′) is the subset of the index set {1, ..., N}

that consists of k for which 1[0,α′)(q
(k)) = 1, and AN(α′) is the cardinality of

χ(α′). The random variables X(k) are from an i.i.d. sequence, so it does not

matter which ones are selected by k ∈ χ(α′). To emphasize this point we

introduced a new index j and replaced X(k) by Z(j) in the last expression.
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Since AN(α′) ≤ N , the above probability is less than or equal to

≤ P






sup

N>nε

sup
α′∈Rc

ε

sup
α′′

1

AN(α′)

∣
∣
∣
∣
∣
∣

AN (α′)
∑

j=1

(

1[0,α′′)(Z
(j)) − p

)

∣
∣
∣
∣
∣
∣

≥ ε







≤ P






sup

α′∈Rc
ε

sup
k≥Anε (α′)

sup
α′′

1

k

∣
∣
∣
∣
∣
∣

k∑

j=1

(

1[0,α′′)(Z
(j)) − p

)

∣
∣
∣
∣
∣
∣

≥ ε






; (10)

the last inequality follows since if N > nε then k = AN(α′) ≥ Anε
(α′). The

supremum over α′ ∈ Rc
ε and k ≥ Anε

(α′) is equivalent to the supremum

over k ≥ infα′∈Rc
ε
Anε

(α′), and from (7) infα′∈Rc
ε
Anε

(α′) = Anε
(α′

ε), where

α′
ε = 1

2
(ε, ε, . . . , ε). Therefore the probability simplifies to

= P






sup

k≥Anε (α′

ε)

sup
α′′

1

k

∣
∣
∣
∣
∣
∣

k∑

j=1

(

1[0,α′′)(Z
(j)) − p

)

∣
∣
∣
∣
∣
∣

≥ ε






.

From Glivenko-Cantelli’s theorem, the above probability converges to zero as

Anε
(α′

ε) → ∞ or nε → ∞.

We have shown

lim
nε→∞

P

{

sup
N>nε

sup
α′

GN(α′) ≥ ε

}

= lim
nε→∞

P

{

sup
N>nε

sup
α′∈Rc

ε

GN(α′) ≥ ε

}

= 0

for any ε > 0, which is equivalent to the statement

lim
N→∞

sup
α′

GN(α′) = 0 (a.s.)

that we wanted to prove.

The following lemma is from McDiarmid [10].

Lemma 3 (McDiarmid) Let X1, ..., XN be independent random variables,

with Xi taking values in a set Si for each i. Suppose that the measurable

function f :
∏

Si → R satisfies |f(x)− f(x′)| ≤ ci whenever the vectors x and

x′ differ only in the ith coordinate. Let X be the random variable f(X1, ..., XN ).
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Then for any ε > 0,

P (|X − E(X)| ≥ ε) ≤ 2e−2ε2/
∑

N

i=1
c2
i .

We need this lemma to find a bound for supα |g(α) − E[g(α)]| .

Lemma 4

P (| sup
α

|g(α) − E[g(α)]| −E(sup
α

|g(α) − E[g(α)]|)| < ε) ≥ 1− 2e−2Nε2

. (11)

Proof. Let

hN(x) := hN(1[0,α)(x
(1)), ..., 1[0,α)(x

(N))) = sup
α

|hN(α,x)|

where

hN(α,x) = g(α) − E[g(α)] =
1

N

N∑

k=1

1[0,α)(x
(k)) −

pα

N
Ax

and x(k) = (q(k), X(k)), k = 1, ..., N is a mixed sequence. In the above ex-

pression, we modified our previous notation as pα := p =
∏s

k=d+1 αk and

Ax = A =
∑N

k=1 1[0,α′)(q
(k)), to emphasize the dependencies on their subscripts,

which will be essential in this proof. Now consider another mixed sequence

z(k) = (r(k), Z(k)) and associated random variables 1[0,α)(z
(1)), ..., 1[0,α)(z

(N))

where 1[0,α)(z
(k)) = 1[0,α)(x

(k)) for all k except for k = i. We want to find a

bound on |hN(x)− hN(z)|, which will help us apply the McDiarmid’s Lemma

to hN . Note that in applying this lemma, we will take x(k) = (q(k), X(k)) as

the random variable denoted by Xk in the statement of Lemma 3.

Keeping in view the elementary property of the sup function

sup
α

|hN(α,x)| ≤ sup
α

|hN(α,x) − hN(α, z)| + sup
α

|hN(α, z)| ,

11



we have

|hN(x) − hN(z)| =
∣
∣
∣
∣sup

α
|hN(α,x)| − sup

α
|hN(α, z)|

∣
∣
∣
∣

≤ sup
α

∣
∣
∣
∣
∣

1

N

N∑

k=1

1[0,α)(x
(k)) −

pα

N
Ax −

1

N

N∑

k=1

1[0,α)(z
(k)) +

pα

N
Az

∣
∣
∣
∣
∣

= sup
α

∣
∣
∣
∣
∣

1[0,α)(x
(i)) − 1[0,α)(z

(i))

N
+

pα

N

(

1[0,α′)(r
(i)) − 1[0,α′)(q

(i))
)
∣
∣
∣
∣
∣

≤
1

N
,

where we took into account that the differences 1[0,α)(x
(i)) − 1[0,α)(z

(i)) and

1[0,α′)(r
(i))− 1[0,α′)(q

(i)) either have opposite signs or are zeros. Then, the con-

stants in McDiarmid’s Lemma are

ci = 1/N and
N∑

i=1

c2
i =

N∑

i=1

1/N2 = 1/N

and thus from the same Lemma

P (|hN − EhN | ≥ ε) ≤ 2e−2ε2N

or

P (| sup
α

|g(α) − E[g(α)]| − E(sup
α

|g(α) − E[g(α)]|)| < ε) ≥ 1 − 2e−2ε2N

for any ε > 0.

We can now state and prove our main theorem.

Theorem 5 Let x(k) = (q(k), X(k)) be an s-dimensional mixed sequence, where

q(k) is a d-dimensional low-discrepancy sequence, and X(k) is a random vari-

able with the uniform distribution on (0, 1)s−d. Then for any ε > 0

P (D∗
N(x(k)) − D∗

N(q(k)) < ε) ≥ 1 − 2e−2ε2N ,

for sufficiently large N.
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Proof. Let ε > 0. From Lemma 2 and the dominated convergence theorem,

E[hN ] = E[supα |g(α) − E[g(α)]|] → 0 as N → ∞. Choose N sufficiently large

so that E[hN ] < ε/2. Then

|hN − E[hN ]| < ε/2 ⇒ hN < ε

and from Lemma 1

hN < ε ⇒ D∗
N(x(k)) − D∗

N(q(k)) < ε.

Therefore

P (|hN − E[hN ]| < ε/2) ≤ P (D∗
N(x(k)) − D∗

N(q(k)) < ε)

and using the bound of Lemma 4 we conclude

P (D∗
N(x(k)) − D∗

N(q(k)) < ε) ≥ 1 − 2e−2ε2N .

Corollary 6 Put ε := (εN) = (N−a/2), 0 < a < 1, in the above theorem,

and let {q(k)}∞k=1 be a low-discrepancy sequence with D∗
N(q(k)) ≤ cd

(log N)d

N
+

O
(

(log N)d−1

N

)

. Then, for sufficiently large N , the discrepancy of the mixed se-

quence satisfies

D∗
N(x(k)) <

1

Na/2
+ cd

(log N)d

N
+ O

(

(log N)d−1

N

)

, (12)

with probability greater than or equal to

1 − 2e−2N1−a

. (13)

The best values for cd, 2 ≤ d ≤ 20, are calculated by Kritzer (see Table

3 of [11]), for Niederreiter-Xing sequences. These values improve the ones

13



published earlier by Niederreiter in [12]. Omitting the lower order terms,

let A1 = csN
−1(log N)s be the upper bound for the discrepancy of the s-

dimensional Niederreiter-Xing sequence, and A2 = N−a/2 + cdN
−1(log N)d

be the probabilistic upper bound (12) for the corresponding mixed (s, d) se-

quence. In Table 1, we compute A1 and A2 using two-digit rounding arithmetic

when N = 107, a = 0.8, d = s/2, and s = 4, 6, ..., 20. The lower bound (13)

for the probability is equal to one for these parameters. We see factors of im-

provement as high as 104. Please note that the bound A2 and its corresponding

probability is valid when N is sufficiently large. In this paper, we do not inves-

tigate how large N should be for these bounds to be valid, and present these

numerical results only for a rough understanding of the magnitudes involved.

Table 1

Bounds for the discrepancy

s A1 A2

4 2.9 × 10−4 1.6 × 10−3

6 2.1 × 10−3 1.8 × 10−3

8 7.2 × 10−2 1.9 × 10−3

10 5.2 × 10−1 2.4 × 10−3

12 2.5 3.7 × 10−3

14 2.7 × 10 1.5 × 10−2

16 7.2 × 10 7.4 × 10−2

18 1.5 × 102 1.2 × 10−1

20 2.3 × 103 5.2 × 10−1

14



3 A central limit theorem for the mixed method

The problem we are interested in is the estimation of the integral of a bounded

function over the s-dimensional hypercube

I =
∫

[0,1]s
f(x)dx,

using the estimator

θm =
1

N

N∑

k=1

f(x(k))

where {x(k)}∞k=1 is the s−dimensional mixed sequence

x(k) = (q
(k)
1 , · · · , q

(k)
d , X

(k)
d+1, · · · , , X(k)

s ).

Define the random variables

Yk = f
(

q
(k)
1 , · · · , q

(k)
d , X

(k)
d+1, · · · , , X(k)

s

)

,

let µk = E[Yk] and σ2
k = V ar(Yk) and

s2
N = V ar(θm)N2 = σ2

1 + ... + σ2
N .

We will next prove a central limit theorem stating that, (1) The estimator θm

is asymptotically normally distributed; (2) Its asymptotic variance is theoret-

ically known; (3) The estimator has a smaller variance than the MC method

asymptotically.

Theorem 7 Assume that f is bounded over [0, 1]s and the functions

g(x1, ..., xd) =
∫

[0,1]s−d

(f(x1, ..., xd, Xd+1, ..., Xs))
2 dXd+1...dXs

h(x1, ..., xd) =

(
∫

[0,1]s−d

f(x1, ..., xd, Xd+1, ..., Xs)dXd+1...dXs

)2

15



are Riemann integrable. Then

(1) The distribution of the normalized sum

∑N
k=1 Yk −

∑N
k=1 µk

sN

tends to the standard normal distribution.

(2) We have

s2
N/N → L =

∫

[0,1]s
f(x)2dx −

∫

[0,1]d

(
∫

[0,1]s−d

f(y, x)dx

)2

dy;

(3) The mixed strategy always yields a reduction in the standard MC variance,

with the reduction given by

∫

[0,1]s f(x)2dx −
∫

[0,1]d

(∫

[0,1]s−d f(y, x)dx
)2

dy
∫

[0,1]s f(x)2dx −
(∫

[0,1]s f(x)dx
)2 ≤ 1.

Proof. The variance of Yk is

σ2
k =

∫

[0,1]s−d

(f(q
(k)
1 , · · · , q

(k)
d , Xd+1, · · · , Xs))

2dXd+1 · · · dXs−

(
∫

[0,1]s−d

f(q
(k)
1 , · · · , q

(k)
d , Xd+1, · · · , Xs)dXd+1 · · · dXs

)2

Since f is bounded, Yn are also bounded and, from a standard result (see

Feller [13]), it suffices to show that sN → ∞ when N → ∞ to verify the

Lindeberg condition that ensures a central limit theorem for independent but

non-identical random variables. But, from the theory of uniform distribution

of sequences (see e.g. Corollary 1.1 and Exercise 6.3 in Chapter 1 of [14]),

since g and h are Riemann integrable, we have

1

N

N∑

k=1

g(q
(k)
1 , · · · , q

(k)
d ) →

∫

[0,1]d
f(x)2dx

and

1

N

N∑

k=1

h(q
(k)
1 , · · · , q

(k)
d ) →

∫

[0,1]d
h(y)dy =

∫

[0,1]d

(
∫

[0,1]s−d

f(y, x)dx

)2

dy,
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proving Claim 2. The Lindeberg condition is satisfied and we get the cen-

tral limit theorem of Claim 1. For the last claim, we note that s2
N/N →

∫

[0,1]s f(x)2dx−
∫

[0,1]d

(∫

[0,1]s−d f(y, x)dx
)2

dy as N → ∞ whereas σ2 =
∫

[0,1]s f(x)2dx−
(∫

[0,1]s f(x)dx
)2

is the variance of f(X) for X uniformly distributed over

(0, 1)s. The fact that we always get a variance reduction comes from

∫

[0,1]d

(
∫

[0,1]s−d

f(y, x)dx

)2

dy ≥

(
∫

[0,1]d

∫

[0,1]s−d

f(y, x)dxdy

)2

(special case of the Cauchy-Schwarz inequality).

Remark 8 It is important to note that the theorem is valid as long as the

deterministic sequence used in the definition of the estimator θm is uniformly

distributed modulo one. In particular, if we choose the sequence to be a low-

discrepancy sequence, its faster convergence rate if f and g are of bounded

variation (see [12]) will help reduce the bias of the estimator, and increase

the convergence rate of the variance to its asymptotic value. Both of these

observations follow from the Koksma-Hlawka inequality [12].

Currently we do not know a practical and efficient way of estimating sN . An

upper bound for sN , however, can be found using the variance of the MC

estimator. Indeed, let us assume that the d-dimensional functions f, f2 are

Riemann integrable. Using this fact, and the fact that the discrepancy of the

first N points of the sequence (q
(k)
1 , ..., q

(k)
d , X

(k)
d+1, ..., X

(k)
s )k tends almost surely

to zero when N → ∞ (from Lemmas 1 and 2), we obtain

1

N

N∑

k=1

f 2(q
(k)
1 , · · · , q

(k)
d , X

(k)
d+1, · · · , , X(k)

s ) →
∫

[0,1]s
f 2(x)dx

1

N

N∑

k=1

f(q
(k)
1 , · · · , q

(k)
d , X

(k)
d+1, · · · , , X(k)

s ) →
∫

[0,1]s
f(x)dx
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and thus

1

N

N∑

k=1

f 2(q
(k)
1 , ..., q

(k)
d , X

(k)
d+1, ..., X

(k)
s ) −

(

1

N

N∑

k=1

f(q
(k)
1 , ..., q

(k)
d , X

(k)
d+1, ..., X

(k)
s )

)2

→ σ2

almost surely as N → ∞.

4 Randomization and numerical results

4.1 Randomization, estimators and efficiency

In this section we will compare the mixed method with MC and randomized

mixed (Rmixed) methods numerically, when they are applied to problems

from security pricing. For simplicity, we define our estimators in the context

of numerical quadrature; they are extended easily to the more complicated

problem from finance. To this end, consider the problem of computing

I =
∫

[0,1]s
f(x)dx.

Let X(k), k = 1, ... be a sequence of i.i.d random variables with distribution

U(0, 1)s, X
(k)
i , i = d + 1, ..., s ; k = 1, ..., be a sequence of i.i.d random vari-

ables with distribution U(0, 1), x(k) = (q
(k)
1 , · · · , q

(k)
d , X

(k)
d+1, · · · , X(k)

s ) be the

kth element of an s-dimensional mixed sequence with a d-dimensional deter-

ministic component, and let u(k,i) be the kth element of the ith realization

of a mixed sequence whose deterministic component is the ith realization of

a d-dimensional RQMC sequence, and the remaining (s − d) components are

sampled from U(0, 1)s−d. We then define estimators (earlier discussed in In-
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troduction):

θ =
1

NM

NM∑

k=1

f(X(k)) - MC

θmixed =
1

NM

NM∑

k=1

f(x(k)) - Mixed (padding QMC by MC)

θRmixed =
1

M

M∑

i=1

(

1

N

N∑

k=1

f(u(k,i))

)

- Randomized mixed (padding RQMC by MC)

Note that θmixed is a biased estimator. We want to know how the bias and

standard deviation of θmixed compare with the standard deviations of the un-

biased estimators θ and θRmixed. Here is one interpretation of the estimators

θmixed and θRmixed: θmixed goes NM “deep” in one realization of the underlying

sequence, whereas θRmixed goes N “deep” and averages over M realizations of

the sequence. Also note that if we take d = s in θRmixed (no padding) we ob-

tain the RQMC estimator. In our numerical results we will also compare the

methods based on padding with the RQMC estimator.

In the numerical examples, we will consider two implementations of θRmixed.

One will use the scrambled (t, d) sequences of Owen [15], and the other will use

the linear scrambling approach of Matous̆ek [16,17]. Both scrambling methods

are applied to a (0, d)-sequence in base p with p smallest prime number larger

than or equal to d. Our main concern is the behavior of the error for moderate

sample sizes and how expensive it is to generate the estimates, and thus the

existing asymptotical results on the variance of RQMC methods (see [18] and

the references mentioned) are not useful to us. Instead we will compare the

efficiency of these methods numerically. We define the efficiency ε(θ) of an

estimator θ as

ε(θ) =
((

V ar(θ) + (E[θ − I])2
)

t
)−1

where t is the complexity of the computation. We will estimate ε(θ) as follows:
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t will be taken as the computation time, E[θ−I] will be taken as the computed

bias for the θmixed estimator (in our examples we will know the true answer

so that bias can be computed), and V ar(θ) will be the sample variance. For

the MC and Rmixed methods, the variance is estimated like in usual MC

methods from the respectively NM and M independent random variables.

The variance of the mixed sequence cannot be computed directly (we can only

find an upper bound as discussed in the previous section). Instead, we estimate

the variance by computing the sample variance of 100 independent replications

(i.e., independent uniform random coordinates between the (d + 1)st and the

sth coordinates, the first d determined by the low-discrepancy sequence).

4.2 Pricing of financial securities

Here we consider a problem from computational finance: pricing of geometric

Asian options. The price of these options can be computed exactly, however,

a close relative, arithmetic Asian options, do not have exact pricing formulas.

In simulation, we generate a sequence of asset prices S0, S1, ..., SK that are

subject to an Ito process dS = µSdt+σSdX, where t is time, µ and σ are the

drift and volatility of the underlying respectively, and X = (X(t))t is a stan-

dard Brownian motion. The payoff function is defined as h(S0, S1, ..., SK) =

max (G(S0, S1, ..., SK) − F, 0), where G(S0, S1, ..., SK) =
(
∏K

i=0 Si

)1/(K+1)
is

the geometric average of the asset prices, and F is the strike price. The price

of the option is the expected value E
[

e−rT h(S0, S1, ..., SK)
]

, which is esti-

mated by simulation. In this expression r is the risk-free interest rate and T is

the expiration time, i.e., the time when we observe the final price SK . Details

on geometric options, including the exact pricing formula can be found in [19].
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We estimated the option price using MC, mixed, and Rmixed methods. In this

problem K corresponds to the dimension of the problem (which was denoted

by s in the previous sections), and in the first numerical examples K is taken

to be 256. The dimension of the deterministic part of the mixed sequence is

taken to be d = 32. The other constants are: r = µ = 0.1, σ = 0.1, T = 128,

F = 5 and S0 = 500, leading to an exact price of 0.76561. The Brownian

bridge construction [20] is first used to solve the model, so that most of the

variance is concentrated in the first coordinates (even if it is not always the

case, see [21]). Recall that the Brownian bridge formula assumes in its simplest

implementation that K is a power of 2. From S0, SK is first computed, then

SK/2, SK/4, S3K/4, SK/8, S3K/8, S5K/8, S7K/8 and so on (see [20] for details).

Figure 1 displays the results when the number of points NM increases (M is

fixed at 100, we only increase N).

We plot confidence interval width (CI width), computation time, bias for the

mixed method, and the efficiency in Figure 1. The first three plots give us

specific information about each method, and the last plot for efficiency shows

the overall effectiveness of the methods. Among other things we notice the

high execution time for the Rmixed-Owen, which is expected, and the way

the error for the mixed method is broken into two components as bias and

CI width. Overall, Rmixed-Matous̆ek has the best efficiency (d = 32) with an

average improvement factor of 4.5 in efficiency over MC. The efficiency of the

mixed method is between MC and Rmixed-Owen for the first three samples,

and then it gets better, giving the best efficiency for the last sample size.

We next try different values for d, using the Matous̆ek implementation. Fig-

ure 2 compares the results for the case of Rmixed-Matous̆ek with the above

inputs but for d = 32, d = 64 and, d = 256 (which corresponds to the tradi-
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Fig. 1. Pricing an Asian option in dimension 256 using a 32-dimensional low dis-

crepancy sequence and the Brownian bridge implementation

tional RQMC method - no padding).Note that d = 32 gives better efficiency

than d = 256 (RQMC) for all except one sample size. When N = 100, 000,

the improvement is about a factor of 8.5.

How do these results change if Brownian bridge is not used? Figure 3 solves the

same problem and uses the same methods as Figure 1 (except that we ignore

the mixed method) without the Brownian bridge implementation. As before,

Rmixed-Matous̆ek has the best efficiency (d = 32), but the improvement over

MC is approximately a factor of 1.3, which is a smaller improvement than the

case when Brownian bridge was employed.
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Fig. 2. Pricing an Asian option in dimension 256 using Rmixed-Matous̆ek scrambling

and different values for d with the Brownian bridge implementation

Figure 4 compares different values for d like Figure 2, but without the Brown-

ian bridge implementation. Comparing these two figures we make an interest-

ing observation: When there is no Brownian bridge, the efficiency of RQMC-

Matous̆ek is pretty bad compared to Rmixed methods for smaller sample sizes.

However, for larger sample sizes, the efficiencies get closer. If Brownian bridge

is used, than exactly the opposite seems to be true; efficiencies are closer for

smaller samples, and farther apart for larger samples.

Comparing the plots for CI width in Figure 3 & Figure 1, and Figure 4 & Fig-

ure 2 also show that the Brownian bridge implementation lowers the variance
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Fig. 3. Pricing an Asian option in dimension K = 256 and d = 32, without the

Brownian bridge implementation

for Rmixed and RQMC methods, but not for the MC method.

We now increase the dimension of the problem to K = 1024, and compare

the efficiency of Rmixed-Matous̆ek (d = 32) with full scrambling, RQMC-

Matous̆ek (d = 1024). Figure 5 shows that when Brownian bridge is used the

Rmixed-Matous̆ek (d = 32) method has a much better efficiency than the full

RQMC-Matous̆ek, by an average factor of 10, although there is quite a bit of

variation. When Brownian bridge is not used, Rmixed-Matous̆ek has better

efficiency for all except one sample size. We also considered large samples and

simulated this problem upto N = 107. The efficiency of Rmixed-Matous̆ek
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Fig. 4. Pricing of an Asian option in dimension 256 using Rmixed-Matous̆ek and

different values for d without the Brownian bridge implementation

(d = 32) gets even better with a wider margin than RQMC-Matous̆ek as

sample size grows, in the case of Brownian bridge implementation. However,

if Brownian bridge is not used, RQMC-Matous̆ek efficiency gets slightly better.

Our second example is pricing of digital options. We assume the stock price

follows the geometric Brownian motion model as in the Asian option example.

The payoff function is

h(S1, ..., SK) =
1

K

K∑

i=1

(Si − Si−1)
0
+ Si,
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Fig. 5. Pricing of an Asian option in dimension 1024 using Rmixed-Matous̆ek with

d = 32 and RQMC, d = 1024. The figure on the left is with the Brownian bridge

implementation, and the figure on the right is without the Brownian bridge imple-

mentation

where (x)0
+ is equal to 1 if x > 0; otherwise it is 0. These options were consid-

ered by Papageorgiou [21] who showed that the Brownian bridge implemen-

tation consistently performed worse than the standard implementation. We

therefore do not consider the Brownian bridge implementation in this exam-

ple.

We start with a 256 dimensional problem and compare Rmixed-Matous̆ek

methods (d = 32 and d = 64) with the full RQMC-Matous̆ek implementation.

Examining Figure 6, we make a similar observation we had earlier: The effi-

ciency of RQMC-Matous̆ek is worse initially than the Rmixed methods, but

as the sample size gets larger the efficiencies get closer.

We now investigate how the biased mixed estimator compares with the others.

In Figure 7, we plot the CI width, time, bias, and efficiency when the methods

MC, Mixed-Matous̆ek (d = 32), Rmixed-Matous̆ek (d = 32), and RQMC are

used. Perhaps surprisingly, the mixed method gives the best efficiency for all
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Fig. 6. Pricing of a digital option in dimension 256 using Rmixed-Matous̆ek with

d = 32, d = 64 and RQMC-Matous̆ek, with d = 256.

except two sample sizes. Rmixed-Matous̆ek (d = 32) comes second in overall

efficiency. Both methods outperform MC consistently, and RQMC efficiency

gets close to the mixed and Rmixed methods for large samples.

How do these results change if the dimension of the deterministic part of the

mixed sequence is increased to 64? In Figure 8, we see that the efficiency of the

mixed method gets even better: Now the mixed-Matous̆ek (d = 64) efficiency

is better than the other methods for all sample sizes but one. The efficiency

of mixed-Matous̆ek (d = 64) is about a factor of 1.3 (meaning 30%) better

than MC. An approximate figure of merit is harder to come up with due to
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Fig. 7. Pricing of a digital option in dimension 256 using MC, Rmixed-Matous̆ek

with d = 32, and RQMC-Matous̆ek, with d = 256.

high oscillations in the efficiency of RQMC-Matous̆ek and Rmixed-Matous̆ek

(d = 64), however, especially for smaller sample sizes, the improvement is

pretty noteworthy.

Finally, we look at the efficiency when the dimension is increased to K = 1024,

and d = 128. The mixed-Matous̆ek has better efficiency than all of the other

methods for all except two sample sizes. These results are consistent with the

previous ones.
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Fig. 8. Pricing of a digital option in dimension 256 using MC, Rmixed-Matous̆ek

with d = 64, and RQMC-Matous̆ek, with d = 256.

5 Conclusions

In this paper, we studied the mixed method for high-dimensional integra-

tion, where the first coordinates are sampled using a QMC sequence and the

remaining ones are sampled by MC. The method was known to give good

experimental results, but little was known theoretically about the approxi-

mation error. We proved an upper bound for the discrepancy of the mixed

sequence improving the earlier results of Ökten [3]. Next, we obtained a cen-

tral limit theorem that enables the use of confidence intervals for the integral.
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Fig. 9. Pricing of a digital option in dimension 1024 using MC, Rmixed-Matous̆ek

with d = 128, and RQMC-Matous̆ek, with d = 1024.

We then discussed numerical results when the mixed method and its random-

ized versions were applied to problems from option pricing. Our numerical

investigations suggest that the mixed method (padding QMC with MC) and

its randomized version, the Rmixed method (padding RQMC with MC), can

significantly improve efficiency in high dimensional problems for especially

moderate sample sizes. Although we see improvements with and without the

Brownian bridge implementation, the use of Brownian bridge magnified the

factors of improvement in the Asian option example. We also observed that

the biased mixed method has the potential of outperforming its randomized
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version as well as the full RQMC strategy in terms of efficiency. This happens

when the bias is small compared to the variance, and there is significant gain

in computation time.
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