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1 Introduction

The Stochastic Petri Net Package (SPNP) [2] is a versatile modeling tool for solution of Stochastic Petri
Net (SPN) models. The SPN models are described in the input language for SPNP called CSPL (C-based
SPN Language) which is an extension of the C programming language [8] with additional constructs which
facilitate easy description of SPN models. Moreover, if the user does not want to describe his model in CSPL,
a Graphical User Interface (GUI) is available to specify all the characteristics as well as the parameters of
the solution method chosen to solve the model.

Earlier versions of SPNP provided the capabilities of automatically generating and solving Markov reward
models starting with the Stochastic Reward Nets (SRNs) [2], an extension of Petri Nets. The new version of
SPNP provides major extensions in three directions:

1. Non-Markovian SPNs as well as Fluid stochastic Petri Nets (FSPNs) [3] can be described and solved.
2. Besides the analytic numeric solution of Markovian models discrete-event simulation is now available.
3. A user-friendly GUI interface is now available.

A number of important Petri net constructs such as marking dependency of �ring times, variable cardi-
nality arc and enabling functions (or guards) [2] facilitate the construction of models for complex systems.
Also available are priorities as well as di�erent resampling policies (preemptive resume, preemtive repeat
identical and preemptive repeat di�erent) when the (enabled) transition is disabled by the �ring of a com-
petitive transition and later becomes enabled again or when the �ring time of a still enabled transition is
a�ected by the �ring of another transition. The package also allows logical analysis on the Petri net whereby
any general assertions de�ned on the Petri net are checked for each marking of the net. Hooks are available
to solve a set of interconnected models via �xed-point iteration.

The distributions for the �ring times of transitions currently implemented in SPNP are the following:
exponential, immediate, constant, uniform, geometric, Weibull, truncated normal, lognormal, Erlang, hyper-
exponential, hypoexponential, Pareto, truncated Cauchy, Poisson, binomial, gamma and beta. This list is
going to be suplemented by the negative binomial, Cox2, triangular, loglogistic, and defective Exponential
with mass at origin. Another extension being considered is the use of samples given in a �le by the user.

2 Solution methods

The solution methods can be divided in two main categories, the numeric-analytic methods and the simula-
tion methods. A high level view of methods can be seen in Figure 1.

2.1 Analytic-numeric methods

For steady-state evaluation (of a CTMC or a DTMC), the user can choose among Steady-State SOR (Succes-
sive Overrelaxation)[13], Steady-State Gauss-Seidel[13], and Steady-State Power method [15]. Even if SOR
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is usually the fastest method, its convergence is not always guaranteed. In such cases Gauss-Seidel may be
found to converge. The Power method is guaranteed to converge but the rate of convergence is generally
slower than SOR.

For transient-state solution for the CTMC, the possible methods are standard uniformization and uni-
formization using the Fox and Glynn method for computing the Poisson probabilities. A steady-state detec-
tion in transient analysis is also possible and is very useful for sti� models [11].

Parametric sensitivity analysis allows the user to evaluate the e�ect of changes in an input parameter on
the output measures. This is useful in system optimization and bottleneck analysis.

2.2 Simulation

Simulation is used to solve the model when analytic-numeric methods fail because the state space is too large
or because the restrictions on the model are too strong. It is used in particular for non-Markovian SRNs or
on (Markovian or non-Markovian) FSPNs.

Di�erent simulation methods available are the following:

{ Simulation using independent replications [4] to compute cumulative or average instantaneous values up
to a �xed simulation time.

{ Simulation using batches [4] to compute steady state measures. A single run is then considered and cut
in several blocks (assumed to be independent) to obtain the con�dence interval.

{ Importance splitting techniques (Restart and splitting) which are speed-up methods to estimate the
probablities of rare events [14]. The basic idea is to split the simulation path when given thresholds are
reached to make the rare event occur more often.

{ Importance sampling [5, 6, 12] to speed-up the simulation using independent replications. The idea here
is to modify the distributions (or probabilities) of transitions to make it more suitable for the analysis.
Of course, the (new) system is then biased, but this bias (also called likelihood ratio) can be computed.



{ Regenerative simulation [5, 7] to estimate steady-state measures. In this case the expectation of a reward
function is estimated by considering di�erent regenerative cycles between two returns in one given state
and dividing the estimated accumulated reward during the state by the expectation of the length of a
cycle. Markov regenerative Petri nets have been introduced in [1].

We are currently implementing the following simulation methods:

{ Regenerative simulation with importance sampling [7, 12], which puts together the advantages of regen-
erative simulation and the ones of importance sampling.

{ Thinning with independent replications [10], to compute cumulative or average instantaneous values up
to a �xed simulation time. Thinning is a very suitable method to simulate certain stochastic processes
including non-homogeneous Poisson processes.

{ Thinning with importance sampling [9].
{ Thinning with batches.

3 iSPN 6.0

We have developed an integrated environment for modeling using Stochastic Petri Nets, named iSPN. Careful
consideration was given to the design and implementation of iSPN to facilitate the creation of SPN models.
iSPN increases the power of SPNP by providing a means of rapidly developing stochastic reward nets. Input
to SPNP is speci�ed using CSPL C based SPN Language, but iSPN removes this burden from the user by
providing an interface for graphical representation of the model.

The major components of the iSPN interface are a Petri net editor which allows graphical input of the
stochastic Petri nets and an extensive collection of visualization routines to analyze output results of SPNP
and aid for debugging. Each module corresponds to a page in the software. iSPN provides a high level input
format to CSPL which provides great 
exibility to users.

The previous development used the scripting language Tcl Tool Command Language, developed by Prof.
John Ousterhout of U.C. Berkeley, and extension Tk, a toolkit for X windows. All the modi�cations made
on the current version of SPNP and the development of the SHARPE gui using Java at Duke by the same
team were good reasons to consider a new evolution for iSPN. The current version is also designed with
Java, integrated in a commun gui with the SHARPE gui.Thus the output of a SPNP model can be used as
an input of a SHARPE model. The hierarchy feature from SHARPE is reinforced by this commun design.
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