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Abstract

Pricing has become one of the main challenges of the networking community and
is receiving a great deal of interest in the literature. In this paper, we analyze the
so-called Paris Metro Pricing scheme which separates the network into different
and independent subnetworks, each behaving equivalently, except that they charge
their customers at different rates. In our model, each subnetwork is represented by
a single bottleneck queue, and the “customers” (data packets) choose their subnet-
work taking into account not only the prices, but also the expected delay, which
is supposed to have an economic impact. We obtain some necessary and sufficient
conditions for the stability of the system; we analyze the problem of maximizing
the network revenue and compare it with the case of a single network, and present
several extensions of the model. Numerical results illustrating some key aspects of
the system are provided throughout the paper.
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1 Introduction

Pricing in IP networks is becoming a main concern of Internet Service Providers
(ISPs). Classical pricing schemes, based on a subscription fee and/or a (possi-
bly unlimited) number of hours of network access, depending on the country
and the type of usage, are becoming obsolete due to three major reasons:

∗ Corresponding author. Phone: +(33) 2 99 12 70 46; fax: +(33) 2 99 12 70 30
Email addresses: David.Ros@enst-bretagne.fr (David Ros),

Bruno.Tuffin@irisa.fr (Bruno Tuffin).

Preprint submitted to Elsevier Science 21 January 2004



(1) Such simple schemes were an incentive to stimulate utilization. Even if
they probably helped to develop the network and allowed ISPs to gain
market share, nowadays they may prove sub-optimal. Indeed, demand
in access networks may easily exceed the installed capacity, leading to
congestion.

(2) Some users might wish to pay more than others to avoid congestion and
get an improved service. Why not serve them first and (possibly) increase
the ISP revenue?

(3) Unlike the telephone network, the current Internet—and, more so, the
next-generation Internet—has to deal with different kinds of applications
with diverse quality of service (QoS) requirements:
• Interactive video needs very small delays and fairly low packet losses.

On the other hand, high-quality video-on-demand may tolerate a higher
delay and jitter (within some bounds) but lower packet losses than
interactive video.

• Voice over IP requires small delays but can afford some packet losses.
• Electronic mail can afford delay (within some bounds).
• File transfer needs a good average throughput, whereas web browsing

demands also a relatively low latency.
• Remote login requires small round-trip times.
Including these requirements in a pricing scheme may, in some way, im-
prove users’ satisfaction.

A wide range of charging methods for packet networks has been devised and
discussed in the literature; see for instance the survey papers [1–6]. The main
classes include resource reservation, priorities between packets, auctions for
bandwidth or pricing based on transfer rates.

In this paper, we study another method, called Paris Metro Pricing (PMP)
and introduced by A. Odlyzko in [7,8]. Under the PMP scheme, the network
is split into independent subnetworks; more precisely, a fixed fraction of the
capacity of each link is totally allocated to each subnetwork. The tariff will be
different for each subnetwork, so that (hopefully) congestion will be alleviated
in the most expensive ones. This method does not offer any QoS guarantees,
so that it is somehow weak with respect to the abovementioned techniques;
however, it is very attractive because of its implementation and management
simplicity. In this paper, we develop a mathematical model which may be
helpful in setting prices in a PMP-based network. Particularly, our model will
use the delay introduced by the network as a cost.

It has been argued by Gibbens et al. [9] that network segmentation might not
work under competition (i.e., no Nash equilibrium exists); nonetheless, their
result applies to a model quite different from ours. Moreover, note that even if
the optimization problem in [9] looks similar to that presented in this paper,
Gibbens et al. deal with an additional constraint representing the competition
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between two subsets of subnetworks.

Note also that in [10], PMP has been adapted in such a way that, instead of
logically separating the subnetworks, a round-robin service discipline is used
to share the bandwidth among them. This “improved” version of PMP, even
though it deserves attention, is not considered here.

The layout of the paper is as follows. The PMP scheme is introduced in Sec-
tion 2. In Section 3 the mathematical model is described. Necessary and suffi-
cient conditions for stability are then provided, and an optimization problem
(maximizing the ISP revenue) is introduced. Section 4 provides some numer-
ical illustrations of the results of Section 3. In Section 5, we compare the
revenues of a PMP network with those of an equivalent, non-PMP network.
Section 6 is devoted to some extensions of the model: the case of multiple
applications with different delay sensitivities, the case where the performance
measures of interest include the loss probabilities, and time-of-day pricing.
Finally, conclusions are given in Section 7.

2 PMP: a brief description

The original PMP proposal in [8] consists in partitioning a network into sev-
eral logically separate networks (or classes), each having a fixed fraction of
the capacity of the entire network. Every subnetwork would route and han-
dle packets according to the current Internet protocols. There is no formal
guarantee of QoS, but by charging different rates for different classes (served
in the same way), it is supposed that the most expensive classes will be less
congested by way of self-regulation, hence delivering a better QoS. The name
given to this model, Paris Metro Pricing, stems from the rules of the Paris
Metro about 20 years ago, where trains were composed of cars of two classes,
offering exactly the same quality of seats. As tickets prices were different,
the cars for the most expensive class were less congested, leading to a better
perceived QoS.

As pointed out by Odlyzko, the advantage of PMP is that, even if we do
not have any strict QoS guarantee using this scheme, but rather a statistical
guarantee, it would permit dispensing with complex, non-scalable mechanisms
(like, say, resource reservation protocols) and keep the simpler and cheaper
current model of the Internet, while improving the QoS experience. Indeed,
no signalling protocols would have to be used, and the tariff would be fixed,
which is preferred by most users [11].

From the preceding discussion, it is intuitively clear that prices play in PMP
an important role in controlling congestion and, notably, in distributing the
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load among subnetworks: prices are the key to quality-of-service differentia-
tion. The problem of finding the “right” set of prices for a given bandwidth
partition may be informally stated as follows: for a PMP network to work
in an efficient manner 1 , the charge for using the most expensive subnetwork
should be high enough, so that this subnetwork is lightly loaded, but not “too
high”—otherwise, the subnetwork would remain empty, because the high qual-
ity offered would not compensate for the (very) high monetary cost incurred
by users.

In the next section, we present a mathematical model of PMP that allows us
to analyze its stability properties with respect to prices, as well as to solve the
revenue maximization problem.

3 Mathematical model

For the sake of clarity, we begin our study of PMP by presenting a simplified
model in which all packets are generated by the same kind of application
and all users have the same valuation of QoS (represented in our model by
the mean packet delay). Later, in Section 6, we will describe a more realistic
model corresponding to a multi-application scenario where each application
may have a different QoS valuation.

3.1 Model presentation

Assume that there are I classes (i.e., subnetworks) in a PMP network, and that
the class-i per-packet price at the entrance of the network is pi (1 ≤ i ≤ I). We
assume that there is a potential total arrival rate λ̃ of packets at the network,
corresponding to the arrival rate when prices are set to 0.

A utility measure is associated to each packet. It is assumed to be a random
variable U that follows the same distribution for every packet, and that it is
independent of other packets’ utility.

Also, a total cost function

pi + γdi

is associated to a class i, where di is the mean delay for a packet in the network
and γ is a constant converting delay in money.

1 Efficiency may be defined, for instance, in terms of optimizing the network oper-
ator’s revenue and providing an adequate usage of each subnetwork’s resources.
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A packet enters (i.e., chooses) network i if i = argminj(pj + γdj) and U ≥
pi +γdi, that is, it chooses the less expensive subnetwork in terms of total cost
(which is a linear combination of delay and price). If U < minj(pj + γdj), the
packet does not enter at all, meaning that the network is too expensive for it.
Traffic elasticity is then a central assumption of our model since a larger delay
can be accepted by a user, provided that the price is decreased proportionally.

The actual total arrival rate is then

λ = λ̃P (U ≥ min
j

pj + γdj).

We define by F̄ the complementary cumulative distribution function of U , i.e.,
F̄ (x) = P (U ≥ x). Finally, denote by λi (1 ≤ i ≤ I) the actual arrival rate at
subnetwork i, so that λ =

∑I
i=1 λi.

3.2 Stability: existence and uniqueness

Using this model, in equilibrium, the distribution of packets among classes has
to be stable, meaning that the total cost pj + γdj is the same for all classes
j. Indeed, if for a given class j the value pj + γdj were smaller than the total
cost of the other classes, then new packets entering the network would choose
class j until its total cost reaches that of other classes. This corresponds to
a Wardrop equilibrium [12]. Let us call ptot the value pj + γdj (identical for
all j). As we want all subnetworks to be used, we have the following set of
I + 1 equations with I + 1 unknown variables λi (1 ≤ i ≤ I) and ptot:











∑I
i=1 λi = λ̃P (U ≥ ptot)

pi + γdi = ptot, for 1 ≤ i ≤ I
(1)

where di is a function of λi.

The remaining of this section is separated into two parts. In the first part,
the di represent the mean waiting times (i.e., service excluded). In the second
part, results are obtained as a corollary when the di represent the response
times (i.e., service included). What users and applications care about is total
delay, so the latter case seems more realistic; nonetheless, we will begin by
treating the waiting time case for the sake of clarity.

In order to determine ptot and λi ∀i, we have the following theorem.

Theorem 1 Assume that di = fi(λi) ∈ R
+ is a strictly increasing and con-

tinuous function of the arrival rate, representing the mean waiting time of a
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class-i user. Without loss of generality, we suppose that p1 > p2 > · · · > pI .
Assume also that the distribution of U is absolutely continuous and strictly
increasing. Then the solution of Eq. (1) exists and is unique if and only if

p1 ≤ F̄−1

(

1

λ̃

I
∑

i=1

f−1
i

(

p1 − pi

γ

))

. (2)

Remark 1 Note that if condition (2) is not verified, then it means that the
highest price p1 is too high to obtain an equilibrium between classes. Conse-
quently, this class would be ignored (i.e., the subnetwork would remain empty)
and the computation would have to be carried out again with the I−1 remain-
ing classes.

Thus, condition (2) has to be taken as an assumption to get the equilibrium
for I classes.

Proof of the theorem: Denote by F̄ the complementary cumulative dis-
tribution function of random variable U . The system (1) can be re-written
as











ptot = F̄−1
(

1
λ̃

∑I
i=1 λi

)

λi = f−1
i

(

ptot−pi

γ

)

, for 1 ≤ i ≤ I.

In particular we can get

ptot = F̄−1

(

1

λ̃

I
∑

i=1

f−1
i

(

ptot − pi

γ

))

. (3)

If we are able to prove that there exists a unique ptot satisfying this equation,
then the existence and uniqueness of the λi will be straightforward to show.

It is important to note that, by definition, ptot ≥ pi ∀i (i.e., ptot ≥ p1) because
di ≥ 0.

Since f−1
i is strictly increasing ∀i and F̄−1 is strictly decreasing (and both are

continuous), F̄−1
(

1
λ̃

∑I
i=1 f−1

i

(

ptot−pi

γ

))

is a continuous and strictly decreasing

function of ptot. Thus the solution of (3), if it exists, is unique.

Existence depends on border values. Let E(Si) denote the mean service time
for class i. The delay goes to infinity when the mean arrival rate approaches
the mean service rate 1/E(Si), hence: limdi→∞ f−1

i (di) = 1/E(Si). Therefore,
since the left-hand side of (3) tends to infinity and the right-hand side tends

to F̄−1
(

1
λ̃

∑I
i=1

1
E(Si)

)

when ptot tends to infinity, the existence depends on

whether, at the minimal value of ptot (i.e., p1), the right hand side of (3) is
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greater than or equal to p1. Both situations are represented in Fig. 1. The
condition is expressed by (2). In this case, Eq. (3) has a unique solution. 2

p1

y = 
x

p1

y = 
x

(i) (ii)

Fig. 1. Two situations for the border value. The solution (intersection of

y = F̄−1
(

1
λ̃

∑I
i=1 f−1

i

(

x−pi

γ

))

with the y = x line) exists in case (i) only.

Corollary 1 Assume now that di = f
(R)
i (λi) represents the system’s response

time. Then di ∈ [E(Si),∞), with E(Si) denoting the mean service time.

In this case, and without loss of generality, the classes are supposed to be
ordered by their minimum total cost p1 + γE(S1) ≥ p2 + γE(S2) ≥ · · · ≥
pI + γE(SI).

Then the solution of (1) exists and is unique if and only if

p1 + γE(S1) ≤ F̄−1

(

1

λ̃

I
∑

i=1

(f
(R)
i )−1

(

p1 − pi

γ
+ E(S1)

))

, (4)

or equivalently, using the waiting times,

p1 + γE(S1) ≤ F̄−1

(

1

λ̃

I
∑

i=1

f−1
i

(

p1 − pi

γ
+ E(S1) − E(Si)

))

,

Proof: Since the mean waiting time cannot be negative, we have to use the
fact that ptot ≥ maxi(pi + γE(Si)) = p1 + γE(S1). By replacing p1 in Eq. (2)

using f
(R)
i instead of fi, we get Eq. (4).

Besides, using the fact that f
(R)
i is given by f

(R)
i = fi + E(Si), we can easily

obtain the equation with the waiting times. 2
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Remark 2 (Special case: upper-bounded utility) In the case where the
users’ utility is bounded by a maximum utility Umax (that is, F̄ (x) = 0 ∀x ≥
Umax), we can derive a simpler, necessary condition for stability as follows.

The inequality can be satisfied (meaning that some customers will enter the
network) if and only if F̄ (p1 + γE(S1)) > 0, but this can only be true if
p1 + γE(S1) < Umax. Hence, in order for the system to be stable, prices must
satisfy the following condition:

Umax > pi + γE(Si), ∀i (5)

Notice that Umax ≤ γE(Si) means the cost due to fixed delay only is so high
that class i would never be chosen by users, regardless of the price pi.

Remark 3 It is easy to show that, for any I-tuple of prices (p1, . . . , pI) such
that pi + γE(Si) = pj + γE(Sj) ∀i 6= j, a unique solution of (1) exists as long
as the utility is not upper-bounded by a finite Umax. We will call E0 the set of
such prices.

Remark 4 Finally, note that (4) can be written as:

p1 + γE(S1) ≤ F̄−1

(

1

λ̃

I
∑

i=2

(f
(R)
i )−1

(

p1 − pi

γ
+ E(S1)

))

,

because (f
(R)
1 )−1(E(S1)) = 0.

3.3 Optimization problem

The idea, from a network provider’s perspective, is to find the pi maximizing
the revenue of the network, i.e.,

R = max
pi,∀i

I
∑

i=1

λipi

subject to pi ≥ 0 ∀i.

Based on the existence and uniqueness condition of the arrival rates and total
cost (defined in terms of pi), and using the previous notations, the problem
can be reformulated as:

max
pi,∀i

I
∑

i=1

f−1
i

(

ptot − pi

γ

)

pi
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subject to

ptot ≥ pi ∀i

ptot = F̄−1

(

1

λ̃

I
∑

i=1

f−1
i

(

ptot − pi

γ

))

pi ≥ 0 ∀i

or its equivalent form, if we rather talk about the response time instead of the
waiting time.

As this problem looks analytically intractable in the general case, in the next
section we are going to present numerical results illustrating the stability do-
main, as well as the impact of prices and bandwidth partition on delay, total
cost and revenue.

Remark that, in some sense, our approach can be related to that of Honig and
Stieglitz [13] (albeit applied to a different model), where revenue, prices and
performance were studied.

4 Numerical results

In this section we will present some numerical results obtained with the above
model 2 . In what follows we will use the response time of the system as a
measure of delay, that is, di = f (R)(λi). We will also relax the restriction
p1 + γE(S1) ≥ p2 + γE(S2) imposed in the previous section.

For the sake of simplicity, let us consider the case in which the ISP partitions
its network in I = 2 subnetworks. Indeed, even if the case I > 2 is, in principle,
not harder to solve numerically than the I = 2 case, we will only consider the
latter in order to being able of graphically presenting the results.

Each subnetwork i is viewed as a single bottleneck, modeled as a M/G/1 FIFO
queue with service rate µi = 1/E(Si), so:

f
(R)
i (λi) =

1

µi

+

(

1 + CV2
)

ρi

2 µi (1 − ρi)

where ρi = λi/µi and CV2 is the squared coefficient of variation of the service
law.

2 The standard numerical and optimization packages included in, say, Matlab or
Mathematica can be used to solve this problem.
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Unless stated otherwise, the following parameters will be used throughout this
section:

• Total capacity of the network: c = 2.
• Potential total arrival rate: λ̃ = 3.
• Utility distribution function F̄ : exponential 3 with mean Ū = 1.
• Cost per unit of delay: γ = 1.
• Service time distribution: exponential (i.e., each queue is a M/M/1 queue

and so CV2 = 1). Note that the M/D/1 queue gives similar results.

Note that, in the case of TCP flows, bandwidth sharing among flows has
been successfully modeled as a M/G/1 processor sharing (PS) queue—see
for instance [14]—, so a M/M/1 PS queueing model would seem more fit.
However, since the response time of a M/M/1 FIFO queue is identical to that
of a M/G/1 PS queue (as long as the mean service time is the same for both
queues), results obtained with both models should be qualitatively similar.

We assume, without loss of generality, that the total bandwidth c of the net-
work is shared among subnetworks according to:

µ1 = αc, µ2 = (1 − α)c with 0.5 ≤ α < 1. (6)

4.1 Equilibrium region

It is interesting to look at the shape of the equilibrium region, defined as the
set E of all pairs (p1, p2) such that the system of equations (1) has a unique
solution, that is:

E = E0 ∪ E1 ∪ E2 (7)

with E0 defined by the set of prices such that p1 + γ/µ1 = p2 + γ/µ2 that also
verify the stability condition and, for i ∈ {1, 2}:

Ei =

{

(p1, p2) : p−i +
γ

µ−i

< pi +
γ

µi

≤ F̄−1

(

1

λ̃
(f

(R)
−i )−1

(

pi − p−i

γ
+

1

µi

))}

where −i denotes the element of {1, 2} which is not i. Ei, for i ∈ {1, 2}, can be

3 Qualitatively similar results (not shown for space reasons) were obtained by taking
F̄ uniformly distributed.
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regarded as the price area such that the charge plus the cost of service, i.e.,
the total cost minus the waiting cost, is more expensive for class i (and such
that the stability condition is verified).

In what follows we will present the equilibrium region corresponding to an
exponentially-distributed utility. For comparison purposes, we will also show
the equilibrium region when the utility is uniformly distributed in [0, Umax],
where Umax = 2 Ū .

4.1.1 Exponentially-distributed utility

Figure 2 shows the equilibrium region for four distinct bandwidth allocations,
in the case where the utility is exponentially distributed. The equilibrium
region is shown in gray; the straight line pointed to by an arrow corresponds
to the “frontier” E0 where the total costs (minus the waiting cost) are the
same for both classes.
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Fig. 2. Equilibrium region, F̄ exponential.
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Note how the equilibrium region above the frontier gets narrower as the pa-
rameter α increases. This may be intuitively interpreted as follows: for a given
p1, as the service rate µ2 of subnetwork 2 gets lower (and so µ1 gets higher),
subnetwork 1 would tend to attract more traffic than subnetwork 2; hence, to-
tal delay d1 would eventually tend to increase so, for a fixed p1, the maximum
value p2 can take must get lower in order to attain an equilibrium.

Remark also that, as prices get higher and higher, the equilibrium region
degenerates into the straight line given by the frontier condition, no matter
the value of α. Since there is no upper bound to the utility (meaning that
some users are willing to tolerate a very high cost), and the fixed cost pi+γ/µi

increases for both subnetworks, queueing delay tends to zero (together with
the arrival rate), so equilibrium can only be reached if the fixed cost is about
the same in each subnetwork; otherwise, traffic would switch entirely to the
less-expensive one.

4.1.2 Uniformly-distributed utility

Figure 3 shows the equilibrium region for bandwidth allocations α = 0.5 and
α = 0.7, as in Figs. 2(a) and 2(c), but with a uniformly-distributed utility
(with Umax = 2).

0.2 0.4 0.6 0.8 1 1.2
p1

0.2

0.4

0.6

0.8

1

1.2

p2

p2 = p1 +
Γ

���������
Μ1

-
Γ

���������
Μ2

0.2 0.4 0.6 0.8 1 1.2
p1

0.2

0.4

0.6

0.8

1

1.2

p2

(a) α = 0.5

0.2 0.4 0.6 0.8 1 1.2
p1

0.2

0.4

0.6

0.8

1

1.2

p2

p2 = p1 +
Γ

���������
Μ1

-
Γ

���������
Μ2

0.2 0.4 0.6 0.8 1 1.2
p1

0.2

0.4

0.6

0.8

1

1.2

p2

(b) α = 0.7

Fig. 3. Equilibrium region, F̄ uniform.

First, note that values of pi cannot be arbitrarily high because of the equilib-
rium condition (5). For instance, for α = 0.6 we have that p1 < Umax−γ/µ1 ≈
1.167 and p2 < Umax − γ/µ2 = 0.75 in order to have stability.

Moreover, remark that if α ≥ 0.75 equilibrium cannot be attained, irrespective
of the prices. This is so because, in this case, Umax ≤ γ/µ2; in other words, the
fixed delay of subnetwork 2 is higher than the highest delay users can tolerate.
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4.2 Total delay

Delay in each subnetwork is shown in Figure 4. Observe that, for subnetwork
i, delay is always minimal along the frontier of the equilibrium region Ei.

The tradeoff between prices and delay is fairly evident in these figures. When
one of the prices (say, p1) is kept fixed, delay in the corresponding subnetwork
(i.e., d1) decreases as the other subnetwork’s price (p2, in this case) decreases,
while delay d2 increases. This is due to the fact that a lower p2 will tend to
attract more customers to subnetwork 2, increasing queueing delay in it—and
so decreasing queueing delay in subnetwork 1.

4.3 Equilibrium cost

Figure 5 shows that the total price ptot is strictly increasing with pi. This,
indeed, can easily be proved analytically.

4.4 Revenue and optimality

Figure 6 shows the revenue of the network, R, as a function of prices, for three
different bandwidth allocations. It is interesting to remark that there appears
to be a single maximum (i.e., there is a single pair of prices which is optimal,
in the sense that revenue is maximized). As α increases, the position of the
maximum value of R moves closer to the rear “edge” of the surface, which
corresponds to the upper edge of the equilibrium region E2 in Figure 2.

4.5 Sensitivity of the optimal revenue

4.5.1 Sensitivity to the bandwidth partition

Let us now examine how the optimal revenue, as well as the corresponding
prices, delay and total cost, depend on the bandwidth allocation parameter
α; see Fig. 7.

First, remark that the optimal revenue Ropt = maxp1,p2≥0 R is highly sensitive
to the value of the bandwidth allocation parameter α. Figure 7(a) suggests
that the ISP may find interesting, from an economic point of view, to operate
at the maximum-revenue allocation αopt. However, since Ropt (and, hence, the
revenue for any non-optimal set of prices) rapidly decreases for values of α
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Fig. 4. Delay in each subnetwork, F̄ exponential.

above αopt, a too-unequal bandwidth allocation policy may result in lower
income. On the other hand, a “safe” bandwidth allocation (say, α = 0.5) may
result in a maximum revenue as low as ≈ 70% of the highest Ropt.

Note that, interestingly enough, the optimal revenue is maximized when the
price p2 of the lowest-capacity subnetwork drops to zero. For higher values of
α, since p2 is at its lowest-possible value, the ISP cannot compensate for the
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Fig. 5. Equilibrium cost, F̄ exponential.

poorer performance of subnetwork 2 by lowering its price, so more and more
traffic tends to flow through subnetwork 1 and the price p1 must be raised
in order to have a stable network. For α < αopt, a falling p2 tends to attract
more traffic to subnetwork 2 in spite of the degradation in delay d2 when α
increases, resulting in an increasing revenue.

4.5.2 Sensitivity to the users’ valuation of delay

The γ parameter, which expresses the cost per unit of delay, can be regarded
as how much users value having a good quality of service (in terms of delay):
the higher the value of γ, the higher the impact of delay on the total cost
pi +γdi, and the lower the probability that a given packet enters the network.

Figure 8 illustrates the sensitivity of the optimal revenue to the value of γ, for
α in the [0.5, 0.95] range. For γ = 0.25, Ropt is fairly stable for a wide range
of bandwidth allocations: Ropt(0.5)/Ropt(αopt) ≈ 0.87, with αopt ≈ 0.91.

On the other hand, when γ = 2 (meaning that users’ valuation of delay is eight
times higher than in the previous case) we have that Ropt(0.5)/Ropt(αopt) ≈
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0.66, i.e., the “loss” incurred by operating the network at a safe bandwidth
allocation is higher than in the γ = 0.25 case. In other words, the model
predicts that revenues are higher and fairly insensitive to bandwidth allocation
when users are more tolerant of delay (which is an intuitively appealing result).

Notice also how the optimal allocation αopt is dependent on γ, going from
αopt ≈ 0.91 to αopt ≈ 0.67. In practical terms, this means that an ISP would
have to operate its network on the “safe” side (i.e., with α close to 0.5) if the
value of γ cannot be accurately estimated.

5 Comparison with the case of a single network

An interesting question is how well a PMP network performs with respect
to a one-tiered, non-PMP network. We will begin by presenting a numerical
example, followed by a mathematical demonstration of the results that were
observed.
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Fig. 7. Optimal revenue and prices (and corresponding total cost and delay) as a
function of α, with an exponentially-distributed utility.

5.1 Numerical comparison

We are interested in comparing the performance of the two-tiered (I = 2) case
to that of the one-tiered (I = 1) case, under the same set of conditions, both
in terms of revenue and network performance measures like delay and input
rate. We will revisit here the numerical example studied in Section 4, under
the assumption of an exponentially-distributed utility.

We will suppose that both the one-tiered network and the two-tiered PMP
network have the same link capacity c; in the latter case, this capacity is
shared among subnetworks according to Eq. (6). This would correspond to the
scenario in which an ISP wants to evaluate the consequences of introducing
PMP in its network by deploying the appropriate mechanisms in routers (e.g.,
packet classification and scheduling mechanisms), but without increasing the
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Fig. 8. Effect of the γ parameter on the optimal revenue, with an exponen-
tially-distributed utility.

installed capacity.

Let us recall the parameters used in this example:

• Total capacity of the network: c = 2.
• Potential total arrival rate: λ̃ = 3.
• Utility: exponentially distributed, with mean Ū = 1.
• Cost per unit of delay: γ = 1.
• Service time distribution: exponential.

For the I = 2 case, Figs. 2, 4 5 and 6 illustrate the equilibrium region, delay
in subnetworks 1 and 2, total cost and revenue, respectively, as a function of
the prices p1 and p2.

We will only present here the results for a bandwidth partition α = 0.7,
because similar results were obtained when using other values of α.
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Figure 9 plots the revenue R, the total cost ptot, per-queue delays and input
rates, for both the I = 1 case and the I = 2 case. In the latter, for the sake
of clarity we show the values of these as a function of p1, for a single value
of p2 such that the curve of R contains the maximum revenue Ropt. Hence,
the curve for I = 2 corresponds to a “slice” of the surface depicted in Fig. 6,
taken at p2 ≈ 0.4.
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Fig. 9. Performance as a function of the price p1, for I = 1 (single network) and
I = 2 (PMP).

Remark 5 Note that, in Fig. 9, the range of values for which the revenue
and other performance measures are shown is larger in the I = 1 case than
in the I = 2 case. This is due to the fact that an equilibrium condition (in
the sense of Eqs. (2) and (4)) must be satisfied in the PMP network, which
restricts the allowed values for the pi, while the single network does not face
such equilibrium problems.

Observe that the maximum revenue Ropt is lower (Fig. 9(a)) and the total
cost ptot (Fig. 9(b)) is higher when I = 2. Total delays, shown in Fig. 9(c),
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are higher in both PMP subnetworks. Both per-queue (λi) and total (λ) input
rates are lower when I = 2 (Fig. 9(d)), which accounts for the lower revenues.

Note also that, even if we choose the partition parameter α maximizing the
revenue for I = 2 in Fig. 8(c), the revenue is still lower than the optimal one
obtained for I = 1 (Fig. 9(a)).

5.2 Formal comparison

We observed in our preliminary numerical experiments that the revenue gen-
erated by a single network (I = 1) is greater than the revenue generated by
two subnetworks (I = 2) when the total network capacity—i.e., the service
rate—is unchanged, regardless of the partition parameter α. Let us formally
prove this result for the M/M/1 queue in the following theorem.

Theorem 2 Consider a M/M/1 queue (representing the network) with service
rate µ and the response time as the delay cost. The revenue generated by this
single queue is greater than the revenue generated by two separate queues with
service rates αµ and (1 − α)µ, respectively.

Proof: Consider first the case I = 1 with a price p per packet. Since the
response time d = 1/(µ − λ) is also given by (ptot − p)/γ, we can write λ =
µ − γ

ptot−p
, which yields the stability equation

F̄−1(ptot) =
1

λ̃

(

µ −
γ

ptot − p

)

.

In the case I = 2 with prices p1 and p2, we have

F̄−1(ptot) =
1

λ̃

(

αµ −
γ

ptot − p1
+ (1 − α)µ −

γ

ptot − p2

)

=
1

λ̃

(

µ −
γ

ptot − p1

−
γ

ptot − p2

)

.

The proof of the theorem is in two steps: we first show that, for a given ptot,
the revenue generated is greater in the case I = 1; next, we show that, for all
ptot obtained in the case I = 2, there exists a p in the case I = 1 giving the
same ptot.

Hence, for a given ptot, from the above equations in ptot we have that, neces-
sarily,
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1

ptot − p
=

1

ptot − p1
+

1

ptot − p2
,

that is,

p2 = ptot −
(ptot − p1)(ptot − p)

p − p1
.

As p2 ≥ 0 and p, p1, p2 ≤ ptot, we necessarily have that p ≥ p1. By symmetry,
we also get that p ≥ p2. Since, for a given ptot, the total arrival rate is the same
in both the I = 1 and the I = 2 cases, we obtain that the revenue (λ1 + λ2)p
in the case I = 1 is greater than λ1p1 + λ2p2 in the case I = 2.

Consider now a ptot obtained in the case I = 2. Then a price

p = ptot −
1

1
ptot−p1

+ 1
ptot−p2

gives the same value of ptot in the case I = 1. The only thing that remains to
be proven is that such a p is non negative. Since 1/(ptot − p1)+1/(ptot − p2) >
1/ptot, this is always the case. 2

Remark 6 This result can be related to the well-known problem of “splitting”
a server in two. Such separation introduces a supplementary mean waiting
time as one of the two servers may by idle while the other has some customers
waiting for service, something that does not occur in the single-server case
(see, for instance, [15]).

Remark 7 The same result applies if we consider the waiting time instead of
the response time. Moreover, in the former, the revenue generated in the case
I = 2 tends to the revenue in the case I = 1 if α tends to 1. The reason why
this does not happen when considering the response time is that the first class
(which gets almost all the service rate when α gets close to 1) has to match
the total cost of the second class, which tends to infinity with its mean service
time 1/((1 − α)µ).

6 Extensions

6.1 A multi-application extension

Let us now consider different kinds of applications/customers, each having
different requirements, i.e., utility variables. Let K be the number of such
classes. Note that we will use the superscript k for denoting application classes,
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which are different from the PMP classes—i.e., subnetworks—noted by the
subscript i.

Instead of a total potential arrival rate λ̃ and a utility random variable U , we
now have a collection of such inputs (λ̃(k), U (k)) for 1 ≤ k ≤ K.

Denote by λ(k) the total arrival rate of packets for application k, λ
(k)
i the

arrival of such packets in subnetwork i and, as before, λi the total arrival rate
in subnetwork i. We have λi =

∑K
k=1 λ

(k)
i and λ(k) =

∑I
i=1 λ

(k)
i .

The set of Wardrop equilibrium equations (1) (i.e., stability conditions) is now











λ(k) =
∑I

i=1 λ
(k)
i = λ̃(k)P (U (k) ≥ ptot) for 1 ≤ k ≤ K,

pi + γdi = ptot for 1 ≤ i ≤ I
(8)

with di = fi(λi).

Remark 8 Uniqueness, in a strict sense, will not be valid anymore since two
different application classes can exchange their (or some of their) traffic with-
out modifying Eqs. (8).

Formally, consider a solution of (8) such that λ
(k1)
i1

, λ
(k1)
i2

, λ
(k2)
i1

, λ
(k2)
i2

> 0, with

k1, k2 ∈ {1, · · · , K} and i1, i2 ∈ {1, · · · , I}. Then replacing λ
(k1)
i1

by λ
′(k1)
i1

, λ
(k1)
i2

by λ
′(k1)
i2

= λ
(k1)
i1

+λ
(k1)
i2

−λ
′(k1)
i1

, λ
(k2)
i1

by λ
′(k2)
i1

= λ
(k1)
i1

+λ
(k2)
i1

−λ
′(k1)
i1

and λ
(k2)
i2

by

λ
′(k2)
i2

= λ
(k2)
i1

+λ
(k2)
i2

−λ
′(k2)
i1

, still provides a solution of (8) because this system
depends only on λ(k) and λi ∀k, i and those total rates are kept unchanged.

Nonetheless, we have the following result on the existence and uniqueness of
equilibrium, in terms of ptot, λ(k) and λi ∀k, i:

Proposition 1 Assume that p1 > · · · > pI . Existence and uniqueness of
equilibrium is verified, i.e., the λ(k) and λi ∀k, i exist and are unique provided
that

K
∑

k=1

λ̃(k)F̄ (k)(p1) ≥
I
∑

i=1

f−1
i

(

p1 − pi

γ

)

. (9)

Proof: We have ∀1 ≤ k ≤ K,

ptot = (F̄ (k))−1(λ(k)/λ̃(k)) (10)

and ∀1 ≤ i ≤ I,
ptot = pi + γdi. (11)
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Note that, according to (10), λ(k) decreases continuously when ptot increases,
so that λ =

∑K
k=1 λ(k) decreases continuously when ptot increases.

Also, according to (11), λi increases continuously when ptot increases, so that
λ =

∑I
i=1 λi increases continuously with ptot. Thus, there exists a unique ptot

such that both λ (obtained from Eq. (10) and (11)) are equal, as long as the
value of

∑K
k=1 λ(k) (from Eq. (10)) is greater that the value of

∑I
i=1 λi (from

Eq. (11)) when ptot = p1 = max{pi}. This gives condition (9).

λi and λ(k) ∀k, i immediately follow. 2

Note that the strict non-uniqueness result is not a problem for computing
the revenue since the objective function depends only on λi and pi, and not
directly on λ

(k)
i .

Remark 9 The multi-application case can be seen as a single-application case
if, instead of considering the set {(λ̃(k), F (k))|1 ≤ k ≤ K} with F (k) the cumu-
lative distribution of random variable U (k), we consider the “mixture”

(

K
∑

k=1

λ̃(k),

∑K
k=1 λ̃(k)F (k)

∑K
k=1 λ̃(k)

)

.

6.2 A multi-application extension with per-application delay valuations

6.2.1 Model description and analysis

Now let us suppose that, as in the previous subsection, there are K types of
applications/customers, but with a delay valuation γ(k) for the class-k appli-
cation. In this case, the set of stability equations (1) becomes











λ(k) =
∑I

i=1 λ
(k)
i = λ̃(k)P (U (k) ≥ p

(k)
tot) for 1 ≤ k ≤ K,

pi + γ(k)di = p
(k)
tot for 1 ≤ i ≤ I and 1 ≤ k ≤ K

(12)

with di = fi(λi).

This means that the set (12) has to be verified for all k, but with a different ptot

for each k. Note however that the equations cannot be solved independently
∀k since they are related through the queueing delays di (1 ≤ i ≤ I).

Remark 10 In this case, the system behaves like a game where each player k
(i.e., each application) tries to stabilize its traffic, that is, it tries to equalize
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pi + γ(k)di for all i, meaning that p
(k)
tot exists. In this sense, a solution of (12),

if it exists, is a Nash equilibrium between all the classes.

Proving the existence and uniqueness of the solution is more complicate in
this case, since we do not have a single ptot, so that the proof in Section 6.1
does not stand anymore. Therefore, finding out conditions for existence and
uniqueness is still an open question.

Nevertheless, based on the results in previous sections we can still find a
necessary, but not sufficient, condition for equilibrium.

Proposition 2 Assume that p1 ≥ p2 ≥ · · · ≥ pI. A necessary condition for
solving (12) is that

K
∑

k=1

λ̃(k)F̄ (k)(p1) ≥
I
∑

i=1

f−1
i

(

p1 − pi

γ(k)

)

. (13)

Proof: We have, ∀k,

p
(k)
tot = (F̄ (k))−1

(

λ(k)

λ̃(k)

)

. (14)

If (1) is verified, then we also have that, ∀i,

p
(k)
tot = pi + γ(k)di. (15)

From (14), we can see that λ(k) decreases when p
(k)
tot increases, so λ =

∑K
k=1 λ(k)

decreases when p
(k)
tot increases. From (15), we see that λi increases when p

(k)
tot

increases, so λ =
∑I

i=1 λi increases as well. In order to ensure that both
quantities be equal, the inequality given in the proposition must hold when
p

(k)
tot = maxi pi = p1, meaning that

∑K
k=1 λ(k) =

∑I
i=1 λi at the minimum p

(k)
tot

value. 2

The reason why this proof does not provide a sufficient condition for the
existence and uniqueness of equilibrium is that, in the proof, we look at the
existence of p

(k)
tot for a given k, and not at the existence of the p

(k)
tot all together.

6.2.2 Numerical example

We will present a numerical example that illustrates the problems described in
Section 6.2.1. Let us consider a two-tiered PMP network (I = 2) with K = 2
application classes having different delay valuations γ(k); we will suppose that
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application 1 is more delay-sensitive than application 2. The parameters take
the following values:

• Total capacity of the network: c = 10.
• Bandwidth partition: α = 2/3.
• Potential total arrival rate, per application: λ̃(1) = λ̃(2) = 10.
• Utility: exponentially distributed, with mean Ū (1) = 1 and Ū (2) = 2.
• Cost per unit of delay: γ(1) = 2, γ(2) = 1.
• Service time distribution: exponential.

The results below were obtained by trying to solve Eq. (12) for λ(k), λi and

p
(k)
tot , with k = 1, 2 and i = 1, 2, while taking into account the necessary

condition (13). A solution of (12) was searched for every price pair (p1, p2)
such that pi = 0.05 · n with n = 1, . . . , 40 and i = 1, 2.

Figure 10(a) shows, for every pair of prices, whether the necessary condi-
tion (13) is satisfied or not, whereas Fig. 10(b) indicates whether the set (12)

could be solved or not—that is, whether p
(k)
tot , k = 1, 2 could be found. Each

square on the grid corresponds to a given (p1, p2). A gray square denotes that

the condition is satisfied and that the p
(k)
tot are found, respectively, while white

squares denote the opposite situation.
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Fig. 10. Per-application delay valuations: an example.

The gray region in Fig. 10(a) is equivalent to the equilibrium region in the
single-application case. Note however that, for some prices (p1, p2) satisfy-
ing (13), a solution to (12) could not be found: these are the white “holes” in
the gray region of Fig. 10(b).
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The sparsity of the set of solutions illustrates the difficulty of finding a nec-
essary and sufficient condition over the set of prices, corresponding to the
general difficulty of finding out conditions for Nash equilibrium.

6.3 A model including losses and delays as QoS requirements

Another interesting extension of our model would be to consider other QoS
metrics than delay only. We consider here that quality, as perceived by a user,
is a mixture of delay and loss probability.

For class i, the actual total cost function is

pi + γdi + ζBi

where Bi is the loss probability (for class i) and ζ is a constant converting
loss in money. A packet enters network i if i = argminjpj + γdj + ζBj and
U ≥ pi + γdi + ζBi.

In equilibrium, ptot = pi + γdi + ζBi, ∀i. The actual total arrival rate is still

λ = λ̃P (U ≥ ptot).

The system of equations (1) becomes











∑I
i=1 λi = λ̃P (U ≥ ptot)

pi + γdi + ζBi = ptot, for 1 ≤ i ≤ I
(16)

where di = fi(λi) and Bi = gi(λi) depend both on λi. Define the function hi

as hi = γfi + ζgi.

For simplicity, we consider here only the waiting time; extending this model
to take into account the response time is straightforward.

ptot is then given by the equation:

ptot = F̄−1

(

∑I
i=1 h−1

i (ptot − pi)

λ̃

)

(17)

and, ∀1 ≤ i ≤ I,

λi = h−1
i (ptot − pi).
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Proposition 3 Assume that p1 > · · · > pI . The system of equations (16) has
a unique solution if and only if

p1 ≤ F̄−1

(

1

λ̃

I
∑

i=1

h−1
i (p1 − pi))

)

. (18)

This corresponds to the stability condition described in Section 3.

Proof: The proof follows closely that of Theorem 1. Functions fi and gi are
strictly increasing functions of λi. Then, hi and h−1

i are also strictly increasing.
Following the arguments of Theorem 1, the left-hand side of Eq. 17 is strictly
increasing whereas the right-hand side is decreasing which means that, if a
solution exists, it is unique. By the same kind of arguments than in Theorem 1,
a necessary and sufficient condition for existence is Eq. (18). 2

Thus, including losses in the model does not add any theoretical complexity.
Even if inverting hi analytically is harder than inverting fi (when considering
the case of delay only), it is still numerically simple due to the monotonicity
of hi.

6.4 Time-of-day Pricing

In practice, demand is varying over time. Time-of-day pricing, as practiced
for instance in electrical power pricing, is an interesting way to manage the
traffic flow.

Time-of-day pricing is modeled as follows. We assume that a day is decom-
posed in different periods of time during which the demand (meaning the
utility) follows a relatively constant distribution. In each period j of time, the
random variable representing user’s utility is Uj, with cumulative distribution
function Fj. For every j, the prices are independently determined like done for
problem (1).

7 Conclusions

In this paper, we have introduced a mathematical model of the Paris Metro
Pricing (PMP) scheme for charging packet networks. This pricing method
looks convenient for Internet Service Providers since it is fairly easy to imple-
ment and deploy in an ISP network using current, off-the-shelf technologies.
Even if PMP does not provide strict QoS guarantees, users would probably
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appreciate it since the total charge is linear in the volume of data, hence
predictable.

Our model has allowed us to find some necessary and sufficient conditions on
the prices required to obtain an equilibrium. Extensions to the model, allowing
to take into account the multi-application case and multiple QoS requirements,
as well as time-of-day pricing, are also included. Many numerical illustrations
are provided.

The model has pointed out a possible drawback of the PMP scheme, namely,
that for a given network capacity revenues may be lower in a network imple-
menting PMP. This limitation, coming from the adopted bandwidth-sharing
policy among subnetworks, could be alleviated by means of more efficient
scheduling mechanisms.

As directions for future research, we are interested in trying to carry out the
same kind of analysis for the round-robin scheme of [10] (to tackle the problem
of revenue maximization). Also, the case of strict QoS requirements could be
investigated.
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