
Optimal Static Pricing of Reverse-Link DS-CDMA
Multiclass Traffic

Yezekael Hayel
IRISA/INRIA Rennes

Campus Universitaire de Beaulieu
35042 Rennes, France

Yezekael.Hayel@irisa.fr

Victor M. Ramos R.
UAM-Iztapalapa

09340 Iztapalapa, Mexico
vicman@xanum.uam.mx

Bruno Tuffin
IRISA/INRIA Rennes

Campus Universitaire de Beaulieu
35042 Rennes, France
Bruno.Tuffin@irisa.fr

Abstract— Third Generation (3G) wireless systems are
becoming very popular thanks to a better quality than
in the current 2G. Direct-sequence code-division multiple-
access (DS-CDMA) is a solution implemented in these
systems but, due to a limited radio spectrum and the
growing number of demanding applications, it seems likely
that congestion will still be a problem. Pricing appears as
a simple way to tackle this problem. This paper studies
the impact of a per-packet static pricing scheme on the
use of the reverse-link in a cell, where demand (defined
through the so-called utility functions) decreases when
prices increase or quality of service decreases. We also deal
with pricing of multiple classes since DS-CDMA supports
integrated services. In a first step, we determine as a Nash
equilibrium the number of customers that will actually
apply for service, depending on demand. In a second step,
assuming perfect power control, we find the prices and
received powers optimizing the service provider’srevenue.
We find that in the case where potential demand always
exceeds capacity, the base station’s best interest is to favor
only one class, but that is not the case in a realistic situation
when considering potential demand as a random variable
over time.

Keywords: Pricing, Wireless CDMA Networks, Opti-
mization.

I. INTRODUCTION

With the widespread use of the Internet, telecommu-
nications are nowadays of common use in our daily
life. Moreover, the Internet is expected to converge
into a single network with heterogeneous networks, like
wireless and cable networks. Due to this convergence
and new emerging applications such as multimedia, the
network will deal with services with a large range of
quality of service (QoS) requirements. This is combined
with an increasing number of subscribers, each of them
demanding a particular bandwidth. If the user demand
is below network capacity, like in the Internet backbone,

then congestion would not occur and there would be no
special need for applying service differentiation since
all QoS requirements would be likely satisfied. On the
other hand, in access networks in general (where the
problem is often called the last mile problem[1]), and
in wireless communications in particular, capacity (the
radio spectrum for wireless communications) will be
hardly increased, and the growing demand needs to be
managed in a way that “most” of demands are satis-
factorily served. In this situation, it seems important to
apply control and/or service differentiation procedures.
In this paper, we focus on direct-sequence code-division
multiple-access (DS-CDMA) networks that will form the
next generation of wireless networks. DS-CDMA ([2],
[3]) is indeed a way to control QoS, by appropriately
selecting the transmission (meaning received) powers,
which can be increased when the interference increases
in order to satisfy the requested signal qualities. We
consider the case of integrated services, that are support-
ed in DS-CDMA, where multiple classes of service are
provided (through different prices and received powers
at the base station). We assume perfect power control at
the base station, which is known to be crucial especially
for the reverse-link [4], [5]: all signal powers of mobile
users received at the base station are thus forced to be
equal within a given class, avoiding near-far effects for
instance.

Many papers have been devoted to power allocation
and QoS management [6]–[10]. In these works, resource
allocation schemes are proposed to provide the best
possible QoS levels to clients, but they do not look at
practical ways of controlling demand. To tackle out this
problem, pricing is a simple and convenient approach.
Pricing has been extensively studied in wired networks
such as the Internet (see [11]–[14] and the references
therein) for controlling congestion and for differentiating



services. It has also been used in CDMA networks ([15]–
[22]) by using their specificities: the price charged to a
user is computed in terms of the QoS degradation the
presence of this user imposes to others the so-called
externality. This can be shown to directly depend on
the transmission powers through the interferences. This
generally leads to a game-theoretical analysis and price
optimization.

We consider in this paper a different view of CDMA
network control where prices do not depend on power
or interference levels, but simply on the volume of
transmitted data. Since in the scheme we propose prices
do not integrate the real externality, it might be seen
mathematically less efficient in terms of fairness or social
welfware. However, we believe that such a volume-
based pricing scheme will be more likely accepted by
subscribers since it is more predictable. Also, we look
for a staticpricing scheme, where prices are fixed and do
not vary with the network conditions. This is assumed
for the same reasons, since again, we argue as in [23]
that users would prefer to have an a-priori knowledge
of the applied charge rather than a dynamic and random
one, even if this is larger in average.

We thus consider a pricing mechanism to optimize
the network revenue in reverse-link DS-CDMA trans-
missions. The model we propose is inspired by the one
in [7], where an optimal resource allocation scheme was
obtained among different classes of users, but for fixed
and pre-determined numbers of users in each class. In
that paper, power is controlled to reach the given thresh-
olds of signal-to-interference plus noise ratio (SINR) for
which QoS requirements are met. A processing gain
exhibiting good performance is computed. We consider
here that the processing gain is fixed for each class of
service, but on the other hand we compute the received
powers allowing to optimize the network revenue. Our
goal, with respect to [7], is to study how pricing can
be used to control the number of users in the network
and how, by means of pricing and received powers, the
provider’s revenue can be optimized. The introduction of
demand with respect to prices and perceived QoS levels
is obtained by introducing the so-called utility functions.
These functions depend on both the QoS parameters
and prices. QoS parameters vary with the type of traffic
considered, for instance data is sensitive to delay, while
voice is rather sensitive to losses and throughput, if delay
is bounded. The better the quality, the more users will
access the network, but the higher the prices, the less
users will likely enter the network. We thus look at
this trade-off as well as the trade with received power.

With respect to [7], for dynamic range limitation on
the multi-access receiver, we also introduce a capacity
constraint representing the fact that only a finite number
of customers can be received at the base station, this
number depends on the reception power level [3]. The
pricing problem is investigated when one or two different
classes of traffic are involved. We consider situations
where demand always exceeds capacity, but also cases
where demand is random. The random case catches,
for instance, the demand behavior over a full day since
demand could be under capacity at some point of time.
At a given time, we look for an equilibrium situation
where demand adapts itself to prices and to received
power requirements. Then, we look at prices and powers
optimizing the provider’s revenue.

This paper is organized as follows. In Section II,
we describe the basic model taken from [7], and then
describe how demand varies with QoS and prices by
using utility functions. Section III describes the case of
a single class of users and Section IV does the same
analysis but in the case of two classes. Special attention
is devoted to the equilibrium situation, especially for two
classes, where users of both classes of traffic compete for
resources. We consider the case where demand exceeds
capacity, but also the case where potential demand may
be under capacity. Finally, we conclude and give our
directions for future research in Section V. Proofs are
left to appendices to ease the understandig of results.

II. MODEL

A. CDMA Model

The model we propose is based on the one in [7]. We
focus on the reverse link of a single cell. We consider a
DS-CDMA network (see [2], [3] for details), where the
chip rate �� is assumed equal for all users. We assume
that we have a multiclass system, with � classes, where a
user is characterized by a class �. When packets are sent,
they enter a buffer after error control coding through
forward error correction (FEC), and are converted to a
DS-CDMA signal at symbol rate �����, with �� being
the processing gain (which should not be larger than
���������. �� is the length in terms of symbols of packet
of class �. The signal transmission power is controlled
such that it is received at level �� at the base station. The
choice of �� and received power �� at the base station
affects packet delay and transmission rate. This has been
extensively discussed in [7]. Note that this also affects
the performance of other classes of users. So, we fix the
values of �� to the ones giving good performance in [7].
We consider that a new packet is generated as soon as the
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preceding one is successfully delivered. This is referred
as continuously active users, which might represent the
transmission of long files for instance.

In DS-CDMA, a key parameter is the received signal-
to-interference plus noise-ratio (SINR). QoS metrics
such as delay and bit error probability depend directly
on it. For class � users, the SINR is
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 (1)

where � is a constant which depends on the shape of DS-
CDMA chips, �� is the number of class � connections
and �� is the background noise power.

For all classes of traffic, we assume that channel cod-
ing includes forward error correction (FEC). We assume
that the bit error probability (BEP) is an exponentially
decaying function of the SINR. Specifically, we assume
that for a user in class �, the BEP is

��� � ��	
���� (2)

with ���� � ��������1. Similarly, the probability of
retransmission is

��� � �� 	����	
����

	��� (3)

with �� the FEC code rate for class �.
Performances measures can be directly expressed in

terms of the SINR. Consider for instance the mean
packet delay 
��� for type-� traffic. It is composed of
the mean waiting time in the queue 
��� and the mean
retransmission time 
�	�, 
��� � 
��� � 
�	�� It is
shown in [7] that


��� �
����

����� ����
� (4)

On the other hand, base stations also have constraints on
capacity. As stated in [3], for dynamic range limitations
on the multiaccess receiver and to guarantee system
stability, the total received noise plus interference power
to background noise ratio is limited for a class-� user to
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���

��� ��

�
� ��

��
�

�

�
(5)

where � is typically 0.25 or 0.1. This inequality provides
an upper-bound on the number of users for each class,
for fixed received powers.

1In [7], a function ���� � � �������� is rather used, implying
that the delay of transmission is bounded even if the power is reduced
to zero. To prevent this degenerated case, we adopt the approach used
in [24], where � � � so that the delay of transmission is infinite and
the probability of retransmission is equal to one when the power is
zero.

B. Modelling users’ behavior

Let the class index � be in �� ��, where � could be
for voice traffic and � for data. We abusively use this
notation to keep in mind that class-� is more sensitive
to some QoS metrics (like delay) than class-�. The index
is simply skipped when only one class is considered.

In general, a utility function �� is associated with
a user of class � (� � �� ��), describing his level
of satisfaction when transmitting a packet. This utility
function is expressed as the difference between the value
of the QoS level (depending on the SINR, which is
function of the number of users of each type �
 and
��) and the per-packet charge �� for class �:

����
 ��� � ���	
�����
����� ��� (6)

�� describes how the valuation for service evolves with
the SINR.

Assumption 1:We assume that the valuation function
�� is strictly increasing, differentiable and that is such
that ����� � � for all � � �� ��.

We will specifically assume that the utility function for
class-� traffic (� � �� ��) depends on the mean delay by

����
��� �
�

�
�����
������
� �� (7)

where �� is the sensitivity parameter of class-� traf-
fic to the mean delay (as considered in [25]) and

�����
��� is given by (4). Note that 
�����
 ���
is a function of 	
��������� fitting the above frame-
work.

We assume, at least in a first step, that the number of
potential sources is very large so that demand exceeds
capacity. Selfish class � users apply for service as soon
as their utility �� is positive. Demand is thus directly
controlled by prices and reception powers, so that it
potentially leads to a (Nash) equilibrium on the number
of active users where, for each class, either the number
of sources is zero with negative utility (meaning that no
user has interest in participating), or is equal to capacity
with positive utility (meaning that no more users are
allowed to enter for physical reasons), or the number
of sources is positive and less than capacity, with null
utility (meaning that the users’ cost reach their valuation
and no other user has interest in entering, since it would
lead to a negative utility). Formally, an equilibrium is a
tuple ���


 �
�
� � such that��


 �
�
� � � and �� � � �� ��,

� 	� �:

� Either ��
� � � and ������

� � � �;
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� or��
� has reached the capacity constraint (5) (so the

inequality becomes an equality) and �����

 �

�
��  

�;
� or ��

�  �, under the capacity contraint (5), and
����

�

 �

�
� � � � so that no other user has an

incentive to join (a potentially leaving user being
immediately replaced by a new one).

This leads to two different problems that we try to solve
in the following sections:

� What is the steady-state number of sources for fixed
prices and reception powers? Is there a (unique)
equilibrium, especially when considering two dif-
ferent classes of users in competition?

� What are the prices and powers that the service
provider at the base station should set in order to
maximize his revenue?

III. OPTIMAL PRICING FOR A SINGLE CLASS OF

USERS

We consider in this section that the system has a single
class of users. We first analyze the case where demand
always exceeds capacity, then the case where demand is
random and may at some point be under capacity. Recall
that index � or � is skipped in this section.

A. Demand exceeding capacity

We assume that demand exceeds capacity. So, there
always are users wishing to apply for service when their
residual utility is positive. We first consider the case of
a general utility function and then the case of a typical
function that depends on the mean packet delay.

1) General utility function:With full generality, as-
sume that the utility function of a user is expressed by

���� � ��	
������� �

where function � is positive, continuous, differentiable,
strictly increasing and is such that ���� � � (Assumption
1).

The following theorem gives the number of sources at
equilibrium in terms of fixed price and power.

Theorem 1:Let � be the per-packet price and � be
the received power at the base station for all users. The
number of users �� at equilibrium is:

�� �

���
��

� � �  ��� � ����
��

�

�� ��

��
� �

�������  � �����
��

� � � � ����
��

�

� � ���
�

��

��
 ����������

The first and third cases are border situations: the first
case corresponds to the situation where access is too
expensive for users, the third case to the situation where

full power capacity is reached. The proof of this theorem
can be found in Appendix I.

With the number of sources determined, the second
step is to look for per-packet price and received power
maximizing the revenue of the base station. This problem
can be formalized as

���
�������

��� � � � ����� � �!�� � � (8)

with !�� � � the average throughput for each user and
���� � � the equilibrium number of sources determined
in the above theorem. The average throughput is the av-
erage number of bits successfully transmitted per second,
i.e.

���� � � �
��

��	��� � �

�
�
�

�

�
�� ������

��

������ � �� ��� � ��
�

���
�(9)

The following theorem gives the price and received
power optimizing the base station revenue.

Theorem 2:Let 
 be the set of solutions of the
following equation in "  �:

����
�
��������� ������ ����� ����� �����

�
�� ����

�
����� ����� ������ �����

�
� 	� (10)

Let

"� � ������
���

���
�

��� #����	���"�

�
�� �

�
���

��� #����	���"�

"
�

Then the per-packet price �� and received power � �� that
maximise the base station revenue are

�� � ��"�� and � � �
"���

��
�

The proof is in Appendix II.
2) Utility function depending on the average delay:

Assume now more specifically that the valuation of users
depends on the average delay as �

������ (as used in [26]).
So, the utility is ���� � �

���� ��� The function � such
that ��	
������ � �

������ is

���� �

�
��
��

	�
�� � #����	��

from (3) and (4). Note that this function is positive,
continuous, differentiable, strictly increasing and is such
that ���� � �. Theorems 1 and 2 can be be restated as
follows.

Corollary 1: Under the assumption that the utility
function depends on the average packet delay:
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� the number of users�� at equilibrium as a function
of �� �� is

�� �

�����������
����������

� � �  ���	

���	 � � ��

	�
����� #��

��

�� �	���
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��
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����
�
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��
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��
�
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	�
����� #��

���

�� �	�� � �

���� � � ��

	�
����� #��

��

�� �	���

� � ���
�

��

��
 ����������

� Let "� be the unique positive solution of the
equation

���� � ���"� �
�� �

�
���� � ����" �

� ��� ��
�

�
�

�� �

�
�#�� �

The optimal per-packet price is:

�� � �
��
��

����� #���
�

��	�

and the optimal received power is:

� � �
"���

��
�

This result is proved in Appendix III.
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Fig. 1. Revenue of the base station in terms of the per-packet price
and the received power when demand exceeds capacity and delay is
the metrics of interest.

As a numerical example, we consider the following
variables: � � ��� symbols, � � ���, � � �, � �
��� for rectangular chips, �� � � Mchips/s, �� � ���
dB, � � ��� and � � ��. We also consider the upper
bound of the power ratio � � ���. Corollary 1 gives the
optimal per-packet price �� � �� �� and the optimal
received power � � � ������. The maximal revenue is
�� �  ������. The revenue is displayed in Figure 1 in
terms of the per-packet price � and the received power
� ; it can be observed that this is in agreement with the
optimization results.

B. Random demand

We assume in this subsection that demand varies so
that, during a portion of time, it does not exceed capacity.
Assume that demand is expressed by a discrete random
variable ! representing the number of potential users
requesting service. The overall goal is again to determine
the fixed price � and power � (remember that we look
for a static pricing) that maximize the expectedbase
station revenue. To reach this goal, we first need to look
at the number of users for each possible level of demand
(exceeding capacity or not), whatever the choice of � and
� .

Theorem 3:Let � and � be the per-packet price and
received power at the base station. Let Æ be the number of
users potentially requesting service. The actual number
of number of users $� at equilibrium is

$� � ����Æ���

with �� being the value found in Theorem 1 when
demand exceeds capacity.
The proof of this theorem is in Appendix IV.

The average base station revenue is expressed by:

��� � � �

�

Æ��

�$��� � Æ�!�� � Æ�
� �! � Æ� (11)

where $��� � Æ� (resp. !�� � Æ�) is the number of
open connections (resp. the throughput) when per-packet
price is �, received power is � and potential demand is
Æ.

The goal of the base station is, again, to find a
price � and a power � that maximize the expected
revenue, representing this revenue over long periods of
time. For instance, assume that demand ! follows a
Poisson distribution with rate �, the other parameters
being the same than for the example when demand
exceeds capacity. By using standard optimization tools
we get the optimal values �� � �� ���, � � � ����� 
and the maximum average revenue �

�
� ��������. This

is sketched in Figure 2.

IV. OPTIMAL PRICING FOR TWO CLASSES OF USERS

Consider now two different classes of applications
with different quality of service valuation for which we
want to differentiate services. For convenience, these
classes are called type-� and type-�. Here again, we
assume that the service valuation for each type of appli-
cation depends of the 	
�� obtained. This is given by
�
�	
��
��
���� (resp. ���	
�����
 ����) for
type-� (resp. type-�) users. Therefore, if �
 (resp. ��) is
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Fig. 2. Average revenue of the base station in terms of the per-
packet price and the received power when demand is random and
delay is the metrics of interest.

the per-packet price for type-� (resp. type-�), the utility
functions for each type are

�� � �� �� ����
 ��� � ���	
�����
��������

The 	
��s, obtained from (1), are given by

	
��
��
��� �
�
�


���
 � ���
 � ����� � ��


	
�����
��� �
����

��
�
 � ���� � ���� � ��


and, as it can be readily checked, the utility function of
a type of users depends on the number of active users
of the other type.

Again, we assume that there is a capacity constraint
at the base station for each class, given by (5). These
requirements lead to

�
 �
�� �

�

��

��

���

��
�


� � (for class-�)

�
 �
�� �

�

��

��

���

��
�


�
��
�


(for class-�)

or just

�
 �
�� �

�

��

��

���

��
�


� � �
�� � �

�


�"���� (12)

where �" is for the indicator function.

A. Demand exceeding capacity

We again first assume that the number of users po-
tentially applying for service is infinite in each type of
application. The case of random demand is studied in
the next subsection.

We assume users act selfishly and apply for service as
soon as their utility is positive. Also, they leave the game
if their utility becomes negative. Again, as in the single
class case, the base station blocks connections from users
if the capacity constraint (12) is reached.

The following theorem shows that a Nash equilibrium
exists for the number of users of each type, when con-
sidering that all users are selfish. The theorem expresses
this equilibrium in terms of prices and received powers
for each class of service.

Theorem 4:With the above assumptions, there is a
(Nash) equilibrium ���


 �
�
� � for the number ��


 and
��
� of active type-� and type-� users. The values of � �




and ��
� depend on received powers �
 �� and prices

�
 �� in the following fashion:
1) If �
�� �� � �� �
 � �


�
����
��

�
and ���� �� �

� � �� � ��
�
��
��

�
, no user is interested in

requesting service, so that

���

 �

�
�� � �� ���

2) If �
�� �� � �� �
 � �

�
����
��

�
but ���� ��  

�, only type-� users are present at equilibrium and
the Nash equilibrium is ����

� � with

��
� �

�����
����

�� ��

��
� �

����
 ���

 �

���
���
��

� �

�� � ���
��
��

�

� � ���
�

��

��
 ����������

(13)
3) On the other hand, if ���� �� � � � �� �
��
�
��
��

�
but �
�� ��  �, only type-� users are

present and the Nash equilibrium is �� �

  �� with

��

 �

�����
����

�� ��

���
� ��

����
� ����

 �

�
�
�����
��

� � �
 �

�
�
����
��

�

� � ���
�

��

���
 ����������

(14)
4) If �
�� ��  � and ���� ��  �, there are 3

subcases.
a) If ��

��
� �
 � ��� � �
��"���� �

���
�

��
����

 ���
� ��

����
����

� ����
� �


�
, the ca-

pacity constraint (12) is reached while users
of both classes still want to request service.
The system then chooses to accept only class-
� users if ��  � 

�
�

�� 
�

�
, or only class-

� users otherwise in order to give priority
to users providing the highest revenue, with
�� � �� �� the throughput at capacity

!�� �
���
��

�
�� #

��
����

��
�����������������

		�
�

The equilibrium is thus ����
� � with ��

� �

�� ���
�

��

��
if ��  

� 
�
�

�� 
�

�
 , and ���


  �� with

��

 � � � ���

�
��

���
otherwise.
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b) If ��
����

 ���
� �� � ���

�
��

��
� �
� ��� �

�
��"���� 
����

����
� ����

� �


�
, the equilibrium

is ���

  �� with ��


 defined in (14).
c) Else if ����

����
� ����

� �
 � ���
�

��
����

 ���
�

��
��

��
� �
 � ��� � �
��"����

�
, the equi-

librium is ����
� � with ��

� defined in (13).
This theorem is proved in Appendix V.
It can be observed that, at equilibrium, only one

type of application is in service when demand exceeds
capacity.

Knowing this equilibrium, one can obtain the values
of prices ��
 �

�
� and the received power � �
  �

�
� that

maximizes the network revenue.
Theorem 5:The maximum revenue of the base station

is
�� � ������
  �

�
��

where ��
 (resp. ���) is the maximum revenue when
there are only class-� (resp. class-�) users, provided by
Theorem 2 (single-class case).

Let � � �� �� such that ��� � �� and � � �� ��
such that � 	� �. The class-� optimal per-packet price is
��� � ���"

�� and the optimal received power � �� � ����

���

where class-� is used in Theorem 2 to obtain " �.
Values ��� and � �� for the other class must be chosen

so that only class-� users are present at equilibrium, that
is, they should verify �� ��  �

��� � 	�����
� �� !

�
�

� �� !
�
�

���  ���
� �� ��

��
���	�	���

� �� ��

��
���	�

The proof is provided in Appendix VI.
As an illustration, consider again the case where the

valuation depends on the average delay for each class.
We use the same numerical values than in the case
of a single class, those values corresponding to type-
� users. We additionally use the following processing
gain �
 � � and the delay sensitivity �
 � �, so that
voice users value more small delays. It turns out that, at
equilibrium, only type-� users are present, providing a
revenue �� � �� ����, obtained for values ��
 � ����
and � �
 � ��� .

The revenue is thus maximized when there is only one
class of user in the system at equilibrium. This result
is based on the strong assumption that potential demand
always exceeds capacity. Though, it is likely that at some
point of time, demand is less than capacity. This occurs
for instance during the evening. In the next section, we
assume that demand follows a random variable, and we
keep the idea of having static (fixed) prices (as well

as received powers). Therefore, keeping two classes of
service is useful, both classes being served, but the most
important one getting all resource in case of congestion.

B. Random Demand

We assume that �� � �� ��, !� defines the (discrete)
random demand for type-� users. Given the values Æ�
of random variables !�, an equilibrium exists for the
numbers $�
 and $�� of type-� and type-� users.

Theorem 6:Assuming now that potential demand is
Æ
 and Æ� for type-� and type-� users respectively and
that it does not necessarily exceed capacity, there is a
(Nash) equilibrium �$�
  $

�
�� for the numbers $�
 and $��

of active type-� and type-� users. The values of $�
 and
$�� depend on received powers �
 ��, prices �
 ��, and
potential demand Æ
 Æ� in the following way:

1) if (Æ
 � � or �
�� �� � � � �
 � �

�
����
��

�
)

and (Æ� � � or ���� �� � � � �� � ��
�
��
��

�
),

no user has interest in requesting service, so that

�$�
  $
�
�� � �� ���

2) If Æ
 � � or �
�� �� � � � �
 � �

�
����
��

�
but

Æ�  � and ���� ��  �, only type-� users are
present at equilibrium and the Nash equilibrium is
�� $��� with

$�� � ����Æ��
�
� � (15)

��
� being taken from (13).

3) On the other hand, if Æ� � � or ���� �� � � �
�� � ��

�
��
��

�
but Æ
  � and �
�� ��  �, only

type-� users are present and the Nash equilibrium
is �$�
  �� with

$�
 � ����Æ
�
�

 � (16)

��

 being taken from (14).

4) If the total demand is less than what capacity can
support and it still yields positive utilities, that
is if Æ
 �

���
�

��

���
� Æ�

�
��

� � � ����
��

�"���� ,
�
�Æ
  Æ��  � and ���Æ
  Æ��  �, all users are
served, i.e., �$�
  $

�
�� � �Æ
  Æ���

5) Otherwise, if Æ
 Æ�  �, �
�� ��  �, and
���� ��  �, there are 3 subcases.

a) If ��

��
� �
 � ��� � �
��"���� �

���
�

��
����

 ���
� ��

����
����

� ����
� �


�
, capac-

ity constraint (12) (and potential demand
constraints �Æ
  Æ��) are reached while users
of both classes still have interest to request
for service. The system then decides to give
preference to class-� users if ��  

� 
�
�

�� 
�

�
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or to class-� users otherwise in order to
prioritize users that provide a higher revenue.
The equilibrium is thus �$�
  $

�
�� with

� $�� � ����Æ� � � ���
�

��

��
� and $�
 �

���

�

��

�
�����������
�����!

�

�

��
if ��  

� 
�
�

�� 
�

�
 ,

� $�
 � ����Æ
 � � ���
�

��

���
� and $�� �

���

�

��

�
�����������
�����!

�

���

�
otherwise.

b) If ��
����

 ���
� �� � ���

�
��

��
� �
� ��� �

�
��"���� 
����

����
� ����

� �


�
, the equilibrium

is �$�
 �� with $�
 defined in (16).
c) Else if ����

����
� ����

� �
 � ���
�

��
����

 ���
�

��
��

��
� �
 � ��� � �
��"����

�
, the equi-

librium is �� $��� with $�� defined in (15).
The proof follows exactly that of Theorem 4, just adding
demand constraints Æ
 and Æ� to capacity constraints.

In the current case of two classes, the average base
station revenue is expressed by:
���
 �
  �� ��� �

��
Æ���

��
Æ��

�
�
$

�

��
  �
 Æ
  ��

�� Æ��!
��
  �
 Æ
  �� �� Æ�� � ��$
�
���
  �
 Æ
  ��

�� Æ��!���
 �
  Æ
  �� �� Æ��
�

� �!
 � Æ
!� � Æ��

where �� � �� ��, $�� �� � Æ� (resp. !��� � Æ�) is
the number of type-� open connections (resp. the
throughput) when per-packet prices are �
 �
 , received
powers �
 �� and potential demand is Æ
 Æ�.

As an illustration, we look at the case where demand
follows a Poisson distribution with rate � for type-�
traffic and � for type-�. We consider also the following
parameters: �� � ��, �
 � �, �� � ��� and �
 � �.
This choice gives the optimal values ��
 � �����, ��� �
�� � , � �
 � �����, � �� � ����� and maximum average
revenue �� � �� ����. We plot in Figure 3 (resp. 4) the
average revenue in terms of type-� (resp. type-�) users
received power and per-packet price with optimal type-�
(resp. type-�) parameters.

The same thing is performed in Figures 5 and 6, but
with their respective powers and prices varying. The
values in the figures are in accordance with the optimal
value found.

V. CONCLUSIONS

We have investigated in this paper a new pricing
scheme for DS-CDMA communications, allowing ser-
vice differentiation. With respect to the schemes de-
veloped in the literature, we have chosen a static and
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Fig. 3. Average base station revenue in terms of type-� users
received power �� and per-packet price �� with optimal type-�
received power ��

� and per-packet price ��� .
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Fig. 4. Average base station revenue in terms of type-� users
received power �� and per-packet price �� when type-� parameters
are fixed to � �

� and ���.

predictable per-packet price that, we believe, is more
likely to be accepted by users. The base station (as-
suming perfect power control) controls two variables per
class: the price and received power. For fixed values, we
have found the number of users applying for service at
equilibrium, whatever demand is. We have also looked at
the price and power values that maximize the revenue at
the base station. Our findings show that, when demand
exceeds capacity, one type of service will get the priority.
On the other hand, assuming a more likely random
demand, we have illustrated that both classes will be
served.

As extensions of our results, we would like to look
at the case where users are not continuously active, but
their activity follow a random variable [7].
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APPENDIX I
PROOF OF THEOREM 1

We consider that the per-packet price � and received
power � are fixed. The goal is to find an equilibrium
number of sources �� such that no additional users will
have an incentive to join the system (and somehow no
present users will want to leave). This means that we are
looking for a value �� such that
� ���� � � and �� � �,
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� or �����  � and �� � ���
�

��

��
� � (this last

equality corresponding to the case where capacity
is reached in (5)),

� or ����� � � and � � �� � ���
�

��

��
� �.

The equality ����� � � is equivalent to
��	
������� � �, or 	
������ � ��

����������� �

������. Since the 	
�� is a strictly decreasing
function of the number of sources, the equation
has a (unique) solution if the maximal 	
��
when there is only one user 	
����� is above
������ and the SINR at capacity constraint is under
������. The first condition defines the maximal price
��� � ��	
������ � �������� above which no
user will enter (�� � �) the system, since his utility
will always be negative. The second (capacity) condition
defines a price ��	
��� ���

�
��

��
���� � �����

��
� above

which the number of sources is less than what capacity
allows. If this is not verified, If the price is higher
than this threshold, capacity is reached, leading to the
third equilibrium case described in the theorem (new
customers are not allowed to enter ven of their utility is
positive).

If �����
��

� � � � ���, the number �� of sources
satisfies ��	
������� � �, that is �� � � � ��

��
�

�
������� .

APPENDIX II
PROOF OF THEOREM 2

The base station revenue is

��� � � � ����� � �!�� � ��

From Theorem 1, we have 3 subdomains for the expres-
sion of �� in terms of �� � � (as illustrated in Figure 7).
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Fig. 7. Three equilibrium domains (“nobody” in area A, “full
capacity” in area C, or “null utility” in area B) for the number of
active users as a function of price � and power � .

� In the region of �� �� such that �����
��

� � � �
����

��
� (where users get null utility), ���� � � �

�� ��

��
� �

������� from Theorem 1. Inserting this in
the expression of the average throughput (9) we get

��� � � � �
�
�� ��

��
� �

�������

�
���

�
��

�� #���
�����

�	�
�

(17)

This function is continuous and differentiable in
both of its variables and it is easy to check that
�� �

%�

%�
�� � � �

���

�� �
 ��

Therefore, the revenue over the domain �����
��

� �

� � ����
��

� �� ��

�
������ � � � ��

��
������

is such that � � ��

��
������, i.e., � � �����

��
�,

meaning that price and power are configured such
that full capacity is reached.

� In the region such that �����
��

�  � (full capac-
ity reached and positive utility meaning that no
other user is allowed to enter), Theorem 1 gives
���� � � � � � ���

�
��

��
leading to the expression

of the revenue:

��� � � � �

�
� �

�� �

�

��

��

	
���
�

�
�� #��

��

��
�
�	�

�(18)

This function is also continuous and differentiable
such that

%�

%�
�� � � �

�
� �

�� �

�

��

��

	
���
�

�
�� #��

��

��
�
�	�

 ��

Again, a maximum over this region is thus neces-
sarily at a point �� � � such that

� � ��
���

��
�

on the border such that the utility is zero.
� Over the third region �  ��� � ����

��
�, �� � �

leading to no revenue.
From what is above, the maximum is necessary on the
curve of maximal capacity � � �����

��
�, where the

revenue is expressed in terms of � by

��� � � ��	�

��

��
� � � � 	�


��

��
�

�
� �

�� �

�

��

��

�
�

���




�
�� �

�� ��
��

�
���

� (19)

This function is continuous and differentiable over
	���. Defining the variable " � ��

��
�, the revenue
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can be rewritten as

���"� � ��� � �
���
�

��� #����	���"� �

�� �

�
���

��� #����	���"�

"
�

Equation "�
"�

�� � � � is equivalent to "��

"�
�"� � �

because "�
"�

� �
��
� 	� �. Also,

���

��
��� �

���



����������� �

��������
	��� �

�� � �
������	 ����� �

�� �

�
��� �

������� ���������	���

��
�

���� �������	 ����

��
�

��� �������	���

��
�

After some computations, "��

"�
�"� � � if and only if

��"�
�
�"����#��� �"��� � ����� ����� #����

�
�� ��"�

�
�"���� #���� �"��� � #����

�
� ��

Denoting by 
 the set of solutions, we obtain prove the
theorem.

APPENDIX III
PROOF OF COROLLARY 1

The following lemma will be helpful to prove the
corollary.

Lemma 1:Let & and ' be real numbers such that &  
� and '  �. The equation

&"� � '" � � � #� 

has a unique strictly positive solution.
a) Proof: Define ( �"� � &"� � '" � � � #� .

We have ( ��� � �, "���	� ( �"� � �, ( ��"� �
�&"�' with ( ���� � '��  �, and ( ���"� � �&�#� .

� If �& � �, ( � is strictly decreasing over 	��
(from ( �� � �). Since ( ����  �, there is only
one strictly positive solution to the equation.

� If �& � �, ( � is first increasing, with ( ����  �,
then strictly decreasing to � when" �. Thus
( is first increasing and positive (since ( ��� �
�), then decreasing to �, meaning that there is a
unique solution to ( �"� � �.

The result follows.

We can then prove the corollary.

b) Proof of Corollary 1.: Using the specific func-
tion � corresponding to delay, (10) becomes,

�����������
�� �

�
��������
�������




�
�

�� �

�

�

��
�

(20)

This can be rewritten, with ) � �" as

&) � � ') � � � ## 

where & � ���� � �� �
������� and ' � ���� � ��. We

have &  � and '  � because ' � ���� ���  �� and
since ��, the number of information bytes per packet is
typically more than 1 in communication systems. From
Lemma 1, (20) has a unique solution " � over "  �.
Then, Theorem 2 gives the optimal per-packet price

�� � �
��
��

����� #���
�

��	�

and the optimal received power is � � � ����

��
�

APPENDIX IV
PROOF OF THEOREM 3

The per-packet price and the received power are fixed
to � and � . Assume that, at a given time, the potential
number of users is Æ. There are several situations:

� If Æ � �, there is no demand, so that the actual
number of users $� is $� � �.

� If Æ  �� (�� being the equilibrium value when
demand exceeds capacity), assume that there are
already� customers in communication. If � � � �

(resp. �� � � � Æ), the number of active sessions
increases (resp. decreases) exactly in the same way
as in the case where demand exceeds capacity (see
the proof of Theorem I) since users have a positive
(resp. negative) utility, so that finally $� � ��.

� If Æ � ��, all users, up to full demand Æ are served
and have positive utility. This means that they all
ask for service. Thus, $� � Æ.

This proves the theorem.

APPENDIX V
PROOF OF THEOREM 4

The proof studies different cases.

1) If �
�� �� � �� �
 � �

�
����
��

�
and ���� �� �

� � �� � ��
�
��
��

�
, no user has interest in

requesting service when the base station is idle
since an entering user will get a negative utility.
Additionally, knowing that �� and �
 are decreas-
ing functions in both of their variables �
 and
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��, this result also holds for all couple ��
���.
Therefore,

���

 �

�
� � � �� ���

2) If �
�� �� � �� �
 � �

�
����
��

�
but ���� ��  

�, only type-� users apply for service, since
�
��
 �
� � � ���
���. As a consequence,
we are in the case of a single class studied in
Theorem 1, leading to the result.

3) If ���� �� � �� �� � ��
�
��
��

�
but �
�� ��  

�, we follow exactly the same line of argument,
switching type-� and type-�.

4) If �
�� ��  � and ���� ��  �, users of both
types can apply for service.
The Capacity constraint (12) can be rewritten as
the linear relation between the number of users

�
�
����� �
�� �

�

��

�
��
������
��"���� �

Note also that relations ����
��� � � and
�
��
 ��� � � can be rewritten

����� ��� � 	 
���������� �

���

�	��

� ����
�
��

�
����

and

����� ��� � 	 
���������� �

���

�	��
� ����

�
��

�
����

These equations define three parallel lines. The
equilibrium depends on the ordering of those lines.

a) If ��

��
� �
 � ��� � �
��"���� �

���
�

��
����

 ���
� ��

����
����

� ����
� �


�
, the ca-

pacity constraint (12) defines the lowest
curve. Thus, users apply for service until
capacity is reached, so that

��������� �
�� �

�

��

�
�������������	
	� �

(21)

The base station decides which users to ac-
cept and which users to reject. We follow
here the policy that the base station chooses
users that will result in a larger revenue. The
revenue is

�
!
�
 ���!��� � �����!� � �
!

��
�


� �

�
!
�
�� �

�

��

��

� � �

�� � �

�


�"�����

using relation (21), where the throughputs !

and !� are

!�
 �
���
�


��� #
�� ����

��
��������������� �	�

and

!�� �
���
��

��� #
��

��
��
��������������� �	�

and they do not depend on �� and �
 . The
revenue is thus linear in �� and the optimal
value depends on the sign of ��!����
!

�


�
��

.
This provides the result.

b) If ��
����

 ���
� �� � ���

�
��

��
� �
�

��� � �
��"���� 
����

����
� ����

� �


�
, the curve

����
 ��� � � is the lowest one. Then
users enter the system until this curve is
reached. Yet, type-� users have positive util-
ity, so they continue to enter. At the same
time, the utility of type-� users becomes
negative so that some of them leave. We
therefore slide on the curve ����
��� � �
until �� � �. Then �
 still increases until
capacity is reached or �
��
��� � �.
The equilibrium is thus ���


  �� with ��



defined in (14).
c) Else if ����

����
� ����

� �
 � ���
�

��
����

 ���
���

��

��
� �
 � ��� � �
��"����

�
, the result

follows by a similar argument, switching just
type-� and type-�.

This concludes the proof.

APPENDIX VI
PROOF OF THEOREM 5

Following Theorem 4, there is only one type of user
at equilibrium. Thus we shall choose the type � � �� ��
so ��� � �����������. From Theorem 2 for the case
of a single class, this is given by

��� � ���"
�� ��� � �� �

"���

���


with "� defined by:

"� � ������
���

���
�

��� #����	����"� �

�� �

�
���

��� #����	����"�

"
�

Though, the values of ��� and � �� with � � �� ��, � 	� �,
are chosen from Theorem 4 so that only class-� users are
present at equilibrium. This is provided by the range of
values given in the theorem.
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