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Abstract:    
We discuss how a new pricing scheme can be integrated within a communication network. The pricing 
scheme is based on the availability of end-to-end communications, and is an alternative to congestion 
pricing, which is not applicable when communication capacity is higher than demand (as happens in most 
communication backbone networks). We also investigate how, based on this scheme, an optimization 
algorithm for updating the network topology can be applied. The network update problem is modeled as a 
combinatorial optimization problem, which is approximately solved using a Genetic Algorithm. The good 
results obtained in a case study show that the method is robust and can be applied even when end-to-end 
availability measures can only be computed approximately (in this case, using a Monte Carlo method). 
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Introduction 
Devising new charging schemes for telecommunication networks has become a hot topic in the 
scientific community, as it is often said that the current flat-rate charges used in the Internet are 
an incentive for overusing the resources and that traffic continues to grow exponentially. Also, 
the network has to deal with applications having different quality of service (QoS) requirements. 
For instance, voice and video over IP require small delays and jitter, but can support some losses, 
whereas e-mail or file transfers do not support losses but are not delay sensitive. To ensure QoS 
for the different applications in case of congestion, a service differentiation scheme has to be 
devised, like in IntServ or Diffserv architectures, and a pricing scheme has to be attached to it, 
otherwise all customers will choose the best available service class, and the service 
differentiation becomes meaningless. This can lead to a substantial gain in revenue, see for 
instance Fishburn and Odlyzko (1998). The exhaustive surveys by Da Silva (2000),  Falkner et al 
(2000), Henderson (2001), and Tuffin (2003) present and discuss the different approaches 
proposed in the recent literature.  
We consider here an alternative viewpoint, based on the increasingly admitted observation that 
with the widespread use of optic fiber and improving technologies, the backbone networks are 
and probably will be over-dimensioned, so that in general congestion will not occur (see Fraleigh 
et al. (2003)). Our paper then focuses on backbone networks (with a possibility to include access 
links to represent access networks, wireless or wirelined, see the examples in Section 5). In this 
context, it could be more suitable to charge the network access, based on connection availability, 
representing the steady-state probability (i.e. proportion of time) a connection between two 
points is available.  
We consider a network topology, where each link is assumed to have an infinite capacity 
(corresponding to over-dimensioning) but may not be available (due for example, to equipment 
or software failures) with a given probability. Each pair of nodes has then a probability to be 
connected. The price for each connection between a source s and a destination t depends on the 
availability of the connection between s and t. Of course the demand is also varying with this 
price, so that a first goal, discussed in Section 1, is to set up a price that maximizes the network 
revenue; for this we need to estimate availability measures, discussed in Section 2. Since those 
availabilities are high, rare event simulation is required. Note that all availabilities are relatively 
high (as can be checked in practice), but critical applications, such as medical ones, may require 
still better ones. In a second stage, the problem is to extend or in general modify the topology of 
an existing network in order to increase the service provider's net profit (the revenue minus the 
cost of modifying the network); this problem is formulated in Section 3, and can be 
approximately solved using a genetic algorithm described in Section 4. Finally, in Section 5 we 
present a test case inspired by the VTHD (Very High Broadband IP/WDM test platform) French 
network topology.  
Our goal here is thus not to compare the proposed pricing scheme with congestion pricing, due to 
their different nature, but to propose an alternative as yet unstudied. Note also that the purpose of 
pricing is here to upgrade the network and propose a computationally feasible algorithm (that we 
do not claim to be the best possible). Pricing for network upgrade has been also proposed in 
congestion pricing by a fixed charge (two-parts tariff), see for instance Wang and Schulzrinne 
(2000). Our scheme proposes to finance this upgrade by imposing a larger cost to users having a 
better QoS (that is a higher availability in our paper; note that the same methodology can be 
employed with other QoS related parameters, such as jitter, delay, etc.). 
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1  Pricing model 
We consider the network of an Internet Service Provider (ISP), represented by an undirected 
communication network G = (N,E) consisting of a set of nodes N and a set of connecting links E 
(it is equally acceptable to assume a directed or mixed network). Let m be the number of links 
and n the number of nodes of G. We assume that each link will be over-provisioned, so that it is 
considered with infinite capacity. We consider that for each link l ∈ E, we can choose between 
different technology types, which have different costs and probabilities of failure. Design by T 
the set of types and, for each link l ∈ E, let T(l) ⊆ T be the set of all the possible technology 
types applicable to link l. So, for each link l ∈ E and each technology type of this link t ∈ T(l), 
we assign an (independent from others) probability of failure ql(t) and a cost cl(t) (which can 
depend on link length, geography, technology amortization, operation and management 
associated costs, etc.). For simplicity, we assume that nodes do not have costs and that they do 
not fail.  
Only a subset of nodes K ⊆ N has connection demands, we call these nodes terminals. To each 

pair of terminals (s,t) with s,t ∈ K, we associate a total connection demand rate ts,

~λ , a connection 

duration (assumed to be exponential with rate µs,t), and an availability measure rs,t, which 
corresponds to the probability that there is a path in the network connecting nodes s and t. Note 
that the assumption of exponential durations is introduced for tractability reasons, but that 
Poisson arrivals is a common assumption at the session level (see Ben Fredj et al. (2001)). 
Arrivals and connection durations are assumed to be independent for tractability reasons. To 
each pair of nodes (s,t) is also associated the utility function of getting a connection with 
availability r, modeled by a random variable Us,t(r), expressed in monetary units. The overall 
level of satisfaction is then Us,t(r)-p where p is the connection price. A customer will enter the 
network if and only if Us,t(r) ≥ p. The random variable Us,t(r) is characterized by its distribution: 
we denote by tsF , its cumulative distribution function and we define tsts FF ,, 1−= . The actual 

arrival rate of connections between s and t, λs,t(ps,t), is given by  

( ) ( )( ) ( ).~~
,,,,,,,,, tststststststststs pFprUPp λλλ =≥=  

Our goal is then to find out the optimal prices, for each pair (s,t), in terms of the availability 
measure rs,t, maximizing the network revenue( )
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for all s,t, with ns,t mean number of online (s,t)-connections. According to classical queuing 
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If we use first order conditions while maximizing this revenue (as the price ps,t is necessarily 
positive otherwise the revenue between s and t would be zero, meaning that the Lagrange 
multiplier is zero), i.e., ∂G/∂ps,t=0 s,t, (assuming that it gives the solution) we get  
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In general, solving these equations can easily be carried out numerically, using Newton 
algorithm for instance. Nevertheless, we will make some additional hypothesis, leading to 
analytical results. In particular, we will suppose that, as in many economic applications, the 
utility is linear in its argument (here the availability) so that Us,t(r) = -Ds,t+γs,tr with γs,t translating 
the availability in financial terms, as the monetary value of an availability unit (so that the utility 
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increases with r) and Ds,t being a random variable not depending on r and representing a dis-
utility. Let F*

s,t be the distribution function of random variable Ds,t not depending on r. Then the 

previous first order conditions become ( ) ( )
0
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In particular, if for all s, t  ( )
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with 0≤p≤Ms,t  and αs,t  > 0 (so that the dis-

utility increases with the price), from the first order conditions we obtain that 
( )2/, += s,ts,ts,tts rγp α  provides the optimal prices and the maximum revenue.  In the rest of this 

paper, we work with this demand function.  
 
2  Computation of Network Availability Measure 
The scheme described above takes as input the network availability measures for each pair of 
terminal nodes. Computing the availability measure rs,t, is an NP-hard problem (see Provan and 
Ball, 1983, and Valiant, 1979), but there are efficient estimation methods which can be used to 
estimate its value. In this paper, we will employ Monte Carlo simulation with the Generalized 
Antithetic Variable method proposed by El Khadiri and Rubino (1992), as this variant performs 
better in computational time and in precision than the standard Monte Carlo technique.  
As before, we consider the network as a graph G = (N,E'). We define a binary random variable Xl 
for each link l, called the state of the link: Xl = 0 means that link l is unavailable and  
Xl = 1 means that the link is available. The state of the network is completely characterized by 
the vector X whose components are the values Xl. If we fix two nodes s and t, the connection 
availability can be formalized employing a binary function Φs,t, called the structure function, 
such that  Φs,t (X) = 1 if and only if s and t are connected in the graph defined by X. Finally, we 
denote by rs,t the availability measure between s and t, such that rs,t = Pr(Φs,t(X) = 1) = E(Φs,t(X)) 
(this measure is also called in graph theory literature the source-terminal reliability of a graph, 
see Barlow and Proschan (1981)). 
The Generalized Antithetic Variable method generates B independent blocks of L samples each 
one (notation: X(b,1),...,X(b,L) samples of block b). The L samples of a block are chosen in a 
dependent way that decreases the global variance (respect to the standard Monte Carlo). In order 
to estimate the measure rs,t we use the unbiased estimator  
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 To estimate the variance Var(rs,t) we use the unbiased estimator  
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3  Extending the Network, based on Requests 
The next step is to plan the capacity of the network. The idea is as follows: consider a family F 
of graphs such that for every graph  G such that G=(N,E′) ∈ F, the set N of nodes is the same, but 
the set of links E′ is a subset of  the set of feasible links E (E′ ⊆ E). 
 In order to completely define a network G=(N,E′) in our model, we have to choose a technology 
type for each link l ∈ E′, this is modeled with the assignment function a : E′ → T (where a(l) 
means the technology type chosen for the l link, a(l) ∈ T(l)). 
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From the network point of view, the goal is to determine the topology G=(N, E′) (and the 
assignment function a) maximizing the benefits ( ) ( )( ).
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Now, we can summarize the formal problem used throughout the rest of the paper.  Inserting in 
the revenue equation the optimal prices and the demand distribution functions we have 
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We then arrive at the following combinatorial optimization problem: 
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where the decision variables are E′, the edge set of G=(N,E′); and a : E′ → T, the technology 
assignment function;  Note that although we have not made it explicit in the formulation, rs,t 
depends on both E' and a.   
This formulation does not seem easy to exploit by an exact or numerical algorithm, as we have 
two sources of difficulty. On one hand, we have the combinatorial nature of the problem itself; 
on the other, as we already discussed, the fact that computing the availability measure rs,t, is an 
NP-hard problem implies that to exactly compute even a single value of H(G) is also NP-hard. 
An alternative is to employ metaheuristics, which have been used with success to solve many 
difficult combinatorial optimization problems. Among these techniques, we have chosen to 
employ Genetic Algorithms (GA), which, although computationally expensive, have given good 
results in other network design problems, as reported for example by Dengiz, Altiparmak and 
Smith (1997), Deeter (1998), Burgos et al (2003), Duarte, Barán and Benítez (2003). An 
important property of GA is that they are robust with respect to the computed values of the 
objective function, that is, they obtain good solutions even in the presence of (small) errors in the 
evaluation of the function to optimize.  
 
4. Genetic algorithm design 
We have followed a rather standard GA algorithm design. We describe (briefly, for space 
reasons) the components of the proposed algorithm:   

i. Encoding: the genotype (solution encoded) is an array of size given by the number of edges 
of E, where we have an allele for each possible link in the network. The alphabet of each 
allele is an integer between zero and the maximum number of technology types of this link, 
where zero means that this link does not appear in the solution, and any other value that the 
link is present and that we use the corresponding technology type in this link.  

ii. Fitness function: the objective function defined in Section 3 (the benefits of the network) plus 
the sum of the maximum costs of all the links (so that fitness is always positive).  The 
availability measures are computed as discussed in Section 2.  

iii. Initial population: generated randomly. Existing links are always included; each non-existing 
link is selected (or not) according to a Bernoulli variable of parameter 0.8. The type of 
included links is determined uniformly choosing between possible technology types. 



 
6

iv. Stopping criterion: we tested two criterions, either to fix the number of generations; or to 
iterate while there is an "improvement" in the solution. The first one was selected, on the 
basis on tests over calibration problems.  

v. Selection: "roulette wheel" selection with elitism; the best individual is always included in 
the next generation, and for the other individuals, the probability of including them in the 
next generation is proportional to their fitness over the population total fitness.  

vi. Crossover: single point Crossover selecting the crossover point uniformly, and swapping all 
alleles of the parents between the sampled position and the end of the string. Crossover is 
applied to two randomly selected strings with a probability pc (if this does not happen, the 
parents are copied exactly to the next generation).   

vii. Mutation: the new value for the current allele is chosen uniformly between zero and the 
maximum number of technology types of this link. The value zero corresponds to removing 
the link; the other values include the link with a given technology type.   

A remark is that the operations preserve the feasibility of the solutions; this is useful, because 
feasibility can be hard to maintain in a genetic algorithm when the problem has many constraints. 
 
5  Numerical Illustration 
The VTHD (Very High Broadband IP/WDM test platform; see http://www.vthd.org) network is 
a French project, whose main goal is to investigate the applications of a new generation of 
Internet and Intranet networks. We use this network as an illustrative application of our method. 
The VTHD network uses two main technologies types for its links: the backbone part of the 
network uses a IP/WDM architecture, with STM1/4 and STM16 links (in this work we suppose a 
0.01 probability of non-availability for these links); the access part of the VTHD network uses 
Giga-Ethernet links (with a probability of failure of 0.1). Figure 1 shows the network for our 
illustrative example. The same network is shown schematically in Figure 2, also representing 
some feasible additional links (shown as dotted lines).  
 
 

 
Figure 1: Validation Problem: Very High Broadband IP/WDM test platform. 
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Figure 2: Graph corresponding to the Very High Broadband IP/WDM test platform. 
 

Specifically, we apply the proposed GA method to three different scenarios. The three problems 
have the same specification (the same parameters of the demand, utility, etc.), but they differ in 
the possibilities of network extension. In the first problem (called VTHD1), we evaluate the 
benefits of extending the backbone of the network with the links shown as dotted lines; in this 
case the best solution of this problem can be found by enumeration because the network 
extension has only 32 possibilities. The second and third problems (called VTHD2 and VTHD3 
respectively) add the possibility to upgrade the access network with IP/WDM links, that is to 
increase the availability of links connecting red nodes to the backbone in Figure 2, since they are 
less reliable. The difference between these two problems is the cost of updating the technology 
of the access links (in VTHD2 problem we use reasonably moderated costs, and in VTHD3 
problem we consider very high costs). It is very hard to obtain the optimal solution for these two 
problems, as the solution space is very large (exactly 225 possibilities). The VTHD1 optimal 
solution is also feasible for these problems, its value providing then a lower bound for their 
optima. 
The experiments were run on a SunFire 280R, with two 1.2 GHz UltraSPARC III Cu processors, 
2 GB of main memory, and Solaris™ 8 operating system. The parameters of the algorithm were 
chosen as follows: mutation rate pm=0.01, crossover rate pc=0.95, population size P=100, 
generation number G=100, generalized antithetic Monte Carlo block size B=100 and number of 
blocks L =50. These values were chosen on the basis of calibration experiments over a set of ten 
smaller problems.    
The execution times for the three problems are similar. Each mutation takes in average 75.26 
milliseconds, and each crossover takes 1.16 seconds. The mutation and the crossover are often 
executed in the execution of a genetic algorithm (exactly 10000 times the mutation and 5000 
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times the crossover, because we have a population of size 100, and 100 generations). The 
selection operator needs the fitness of the population to be computed, therefore, before each 
selection, we have to calculate the fitness of the new individuals, that implies an availability 
estimation. This estimation takes in average 1660.99 milliseconds, the consequence is that the 
algorithm execution time is approximately 5 hours.  
 

Problem Benefit of known 
feasible solution 

Best  Fitness  
of GA 

Maximum 
Cost 

Cost Benefit 

VTHD1  1630 1628   160    0 1468 
VTHD2  1630 2137   370 80 1767 
VTHD3  1630 3892 2260     120 1632 

 
Table 1: VTHD solutions. The maximum cost of the network is the sum, for all links, of the most 
expensive technology type costs. The cost corresponds to ( )( )∑

∈ 'El
l lac , i.e. the newly included and 

the upgraded links.   The benefit is the objective function, i.e. ( ) ( )( ).
´

∑
∈

−
El

l lacGH  

 
Table 1 shows the results of the genetic algorithm. We found that for VTHD1 the GA obtains a 
solution very close to the optimal solution (with a difference well within the statistical error 
induced by the computation by Monte Carlo ). In the VTHD2 problem, the solution found is 
quite better than the lower bound, and the selected links are in general quite different. The results 
of the GA for the VTHD3 problem are also quite better than the ones obtained for VTHD1, but a 
bit below the VTHD2 ones, this is expected as in the VTHD3 case, the technology upgrade costs 
are much higher.  
In Figures 3 and 4 we show the evolution of the average fitness and best fitness of the population 
respectively. For problems VTHD1 and VTHD2, the initial population has already quite good 
fitness values; that is not the case for VTHD3. All the same, the GA attains quickly good values 
in the three cases; for VTHD1, the best value seems to be found in less than forty generations. In 
the case of VTHD2 and VTHD3, it is difficult to know if the optimum has been attained, but the 
evolution seems to have stopped after 80 generations. 
An important point is the influence on the optimization procedure of the availability estimation 
error. We have estimated that the deviation coefficient of a single fitness evaluation in our 
experiments is about 3%. In order to evaluate its impact, we did five experiments for the VTHD2 
case, using different random number seeds in the Monte Carlo procedure that estimates the 
availability measures. The deviation coefficient of the fitness values of the solutions obtained by 
the GA was about 1%, smaller than the deviation of a single fitness evaluation, and showing the 
robustness of the method. All the same, this value, even if small, can correspond to significant 
monetary amounts in the context of network design.   
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Figure 3: Population average for each GA generation. 
 

Figure 4: Population best benefit for each GA generation. 
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6  Conclusions and Future Work 
In this paper, we have studied a new pricing scheme based on connection availability, and used it 
to set prices and to extend an already existing network in order to increase the service provider's 
benefit.  To validate our method, we have run the method on three problems inspired by the 
VTHD (Very High Broadband IP/WDM test platform) network. One of the problems consists of 
modifying the backbone by incorporating new links. The other two, with a large solution space, 
additionally upgrade the access network technology of the access links. The genetic algorithm 
finds an almost optimal solution for the first problem, and very good solutions (although we can 
not be sure if optimal) for the remaining problems.  
Note that the fitness evaluation of GA is computationally very expensive since it is based on 
availability estimation, an NP-hard problem in general. In our work, the availability is estimated 
by means of the Generalized Antithetic Monte Carlo simulation method. Our GA evaluates the 
fitness many times, therefore an important improvement in run time can be attained by 
diminishing the computing time of each evaluation or the total number of evaluations. As future 
work, we could try different approaches to solve this problem:  
a) using efficient upper bounds; this approach is interesting because it can represent Service 

Level Agreements, based in availability, in a natural way;  
b) in the execution of our GA, as some estimations might be computed more than once; savings 

can be attained by storing previous computations and avoiding repeating them;   
c) developing heuristic methods to estimate the availability from previous similar estimations 

(for example, using a random neural network). 
An important point is the impact on the optimization procedure of the availability error 
introduced by the estimation. A preliminary evaluation of this aspect has been discussed in 
Section 5; a refinement of the trade-off between uncertainty in genetic algorithm and availability 
estimation is then an important issue for future work, in order to improve the overall precision of 
the method.  
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