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Abstract. In this paper, we consider pricing schemes at an M/M/1
queue with infinite potential demand but where the number of customers
in the queue depends on both the price and the offered quality of ser-
vice (QoS). Our model aims at comparing the optimal revenue for three
different strategies: first the case of a fixed price; second the case where
there is a threshold on the queue occupancy such that a larger charge is
imposed for an occupancy above the threshold (in order to maintain a
given QoS); third the case of a threshold-queue with hysteresis in order to
avoid costly oscillations around the aforementioned threshold. In all those
three situations, we determine the equilibrium number of customers, and
the parameters (price(s), threshold(s)) optimizing the revenue. We can
therefore find the optimal strategy from the provider’s point of view.
In this paper, we use a static demand because session lengths are as-
sumed large with respect to the queue dynamics and therefore consider
the system in steady-state. We then show that, contrary to what could
be expected, a policy without threshold is recommended.

1 Introduction

In many situations, users sharing a common facility can be modeled as queueing
systems. This occurs in manufacturing, computer science, transport (airplanes
on a runaway, cars on a highway...) for instance, but also in communication
networks where data are processed through routers.

In those cases, as the number of users increases, congestion occurs, resulting
in a decrease in terms of offered quality of service (QoS). As a consequence less
customers will be willing to use the facility, which should decrease demand. This
should lead to an (uncontroled) equilibrium.

Pricing is a common way for the facility owner (the service provider in the
case of the Internet) to control demand and provide return on investment. De-
termining the price selection is of interest since a too high price would lead to no
customer and no profit, while a too low price would lead to a too low revenue,
with the number of customers driven only by the offered QoS.



In this paper, we investigate the impact of several pricing policies on the
maximal revenue of the seller (the facility owner) where the facility is modelled
by an M/M/1 queue. We study three different policies. In the first one (the
fixed policy), the price is fixed. In the second one (the threshold policy), there is
a threshold on the queue occupancy such that a higher price is charged above
the threshold in order to limit low QoS levels. In the third case (the hysteresis

policy), we introduce hysteresis for switching between low and high prices, that
might be costly from a signalling and/or engineering point of view. In each case,
we determine the equilibirum number of customers in the queue for fixed prices
and thresholds (if any). We then determine the prices and thresholds leading to
a maximum revenue. This helps the facility owner in determining the policy to
use. Our model is based on the assumption that when a flow sends a packet,
it does not care about the current state of the queue because session lengths
are supposed to be long with respect to the transient evolution of the queue,
meaning that it better considers the queue in steady-state to make a decision
about sending traffic or not. We show that under this assumption, the particular
case of a policy without threshold is the most efficient.

Pricing has already been studied for different scheduling policies, especially
in the case of heterogeneous users [1–3], but to our knowledge there exists no
investigation relating pricing, quality of service and threshold policies.

The paper is organized as follows. We present the basic model in Section 2.
Section 3 deals with the fixed policy and determines the optimal revenue. Sec-
tion 4 is for the threshold policy while Section 5 is for the hysteresis policy.
Section 6 makes a formal comparison between the three policies, and Section 7
is devoted to conclusions and directions for future research.

2 Basic model

In what follows we will have in mind the facility as a network router and users
being networking data flows.

Consider an M/M/1 queue with service rate µ and where users generate
packets according to a Poisson process with rate λ. We consider an infinite
population of infinitesimal potential users. Each of them applies (selfishly) for
service as soon as his utility is positive. The utility function characterizes the
users behaviour and is a well-known notion in economics and game theory in
general [4, 5]. The utility a user gets depends on the mean packet delay D̄, but
also on the average price per packet/customer p̄ (so that users do not know the
instantaneous network status, but rather work based on average value that they
estimate, which is a valid assumption for long sessions):

U = f(D̄) − p̄

where f is a strictly decreasing function representing the valuation of a user
for a QoS of interest, the delay (or response time). Note that it would seem
interesting to add the jitter, that is the delay variance, to the utility function



(as a dis-utility), but since for an M/M/1 queue delay variance equals delay, it
can be incorporated in function f without loss of generality.

Note also that, from our notion of utility and the analysis that will follow,
users do not care about the state of the queue when they enter, they are only
interested in average value, meaning that they are active for a long time.

Therefore users/sources send packets as soon as their utility is positive. A
first point will be to find out wether an equilibrium number of sources N∗ exists
or not, and if it is unique in that case.

On the other hand, from the network provider’s point of view, the goal is to
maximize the revenue R = λp̄N∗ minus the operational cost κOsc, which will
be further defined later, but basically representing the cost of switching between
prices, at the packet/customer level.

Throughout the paper, we will especially focus on the special case f(D̄) =
1/D̄β with β > 0.

3 The M/M/1 queue without threshold

Consider the classical M/M/1 queue and a fixed per packet price p (so that
p̄ = p).

If there are N active sources, then the packet arrival rate is Nλ, leading to
a traffic load ρ = µ

Nλ and an average delay 1
µ−Nλ .

The utility function

U(N) = f

(

1

µ − Nλ

)

− p

is strictly decreasing with the number N of sources.
Given the infinite potential number of sources, N will increase if U(N) > 0

and decrease if it is strictly negative and N > 0. As a consequence, there is a
unique equilibrium number N∗, verifying U(N∗) = 0 if this equation has a (then
unique) solution, and N∗ = 0 if U(0) < 0. This is summarized in the following
proposition.

Proposition 1. There is a unique equilibrium number of sources given by

N∗ =

{

1
λ

(

µ − 1
f−1(p)

)

if µ − 1
f−1(p) ≥ 0,

0 otherwise.

The solution N∗ = 0 corresponds to the case where the price p is so high that
no users will use the queue.

Since the price is fixed, there is no operational cost for switching between
prices, and the goal of the provider is this to optimize the network revenue
R = λpN∗.

Proposition 2. When f(D̄) = 1/D̄β , the optimal price is

p∗ =

(

µβ

β + 1

)β



resulting in the optimal revenue µ
β+1

(

µβ
β+1

)β

.

Proof. Replacing N∗ by its value, we have R = µp − p1+1/β . Therefore ∂R
∂p =

µ − (1 + 1/β)p1/β = 0 immediately gives the result. ut

4 The M/M/1 threshold queue

Consider the same M/M/1 queue, with a threshold Ks such that the price is PL

if there are n < Ks packets in the queue, and pU > pL otherwise.
We still have D̄ = 1

µ−Nλ when there are N active sources, since those users

are only interested in average values (and as a consequence arrival and depar-
ture rates do not depend on the state of the queue). Remark again that the
utility of users/sources depends only on the average price and delay instead of
instantaneous ones (the reason why we can still use the M/M/1 formula); this
assumption is especially valid in the case of long file tranfers for instance.

Remind that the steady-state probability of having n packets in the queue is
πn = (1 − ρ)ρn, with again ρ = Nλ

µ . The average price is thus

p̄ = pL

Ks−1
∑

n=0

(1 − ρ)ρn + pU

∞
∑

k=Ks

(1 − ρ)ρn

= pL(1 − ρKs) + pUρKs

= pL + (pU − pL)ρKs .

Remark that p̄ increases with N .
From now on, we let f(D̄) = 1/D̄β = (µ − Nλ)β .
The utility of each source is then given by

U(N) = (µ − Nλ)β − pL − (pU − pL)

(

Nλ

µ

)Ks

which is strictly decreasing with N . We therefore have the following result.

Proposition 3. There is a unique equilibrium number N∗ of sources given by

the unique solution of equation (µ − N∗λ)β − pL − (pU − pL)
(

N∗λ
µ

)Ks

= 0 if

µβ − pL ≥ 0, and 0 otherwise.

Proof. Again, if we study the dynamics of the model with an infinite potential
number of customers, the number N of sources that will send packets increases
if U(N) > 0 and decreases if it is strictly negative and N > 0. From the decreas-
ingness of the utility function, there is a unique equilibrium number of sources
N∗, verifying U(N∗) = 0 if this equation has a (then unique) solution, i.e. if
U(0) = µβ − pL ≥ 0 and N∗ = 0 if U(0) < 0. This gives the proposition. ut

In a second part, the goal of the service provider is to optimize its benefits,
that is its revenue R = λp̄N∗ minus its operational costs κOsc, with Osc the



steady-state frequency of price oscillations between pU and pL per unit of time,
Osc = N∗λπKs−1 + µπKs

and κ the cost for each such individual operation.
This optimization has to be carried out over Ks, pL and pU , using the value

of N∗ obtained in Proposition 3.

5 The M/M/1 threshold queue with hysteresis

We now assume that in order to avoid costly and cumbersome oscillations around
the threshold of the previous section, there is a forward threshold KU and a
backward thershold KL. When the number of customers in the system goes
beyond the forward threshold KU , the price is immediately upgraded to pU .
Similarly, when the number of customers falls at the reverse threshold KL (with
KL < KU ), it is decreased to pL. In between, the price is not changed, avoiding
oscillations. Following the analysis in [6], the stationary occupancy distribution
can be determined. The system is modelled by a Markov chain defined over
the state space S = {(n, k)|0 ≤ n ≤ Ku if k = 0, KL + 1 ≤ n if k = 1}. In
this characterization, n is the number of customers in the queue while k = 0
corresponds to the case where the price is pL and k = 1 to the case where it
is pU (see Figure 1). As a consequence, the corresponding state when there are
KL + 1 ≤ n ≤ KU customers depends on which threshold was reached last.
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Fig. 1. State spac for the threshold-queue with hysteresis. For states tagged by 0, the
price is pL while it is pU for states tagged by 1.

From [6], the steady-state probabilities are, with ρ = Nλ
µ and α = ρKU (1−ρ)

1−ρKU −KL+1 :

∀0 ≤ n ≤ KL, πn,0 = ρnπ0,0

∀KL < n ≤ KU , πn,0 =

(

ρn −
ρKU+1(1 − ρn−KL)

1 − ρKU−KL+1

)

π0,0

∀KL + 1 ≤ n ≤ KU + 1, πn,1 = αρ
1 − ρn−KL

1 − ρ
π0,0

∀n ≥ KU + 2, πn,1 = αρ
ρn−KU−1(1 − ρKU+1−KL)

1 − ρ
π0,0.



By straightforward computations (or by noting that it also correspond to
an M/M/1 queue if we aggregate the states in terms of occupancy), it can be
verified that π0,0 = 1 − ρ.

Therefore, the average price is given by:

p̄ = pL

KU
∑

n=0

πn,0 + pU

∞
∑

n=KL+1

πn,1

= (1 − ρ)

[

pL

KL
∑

n=0

ρn + pL

KU
∑

n=KL+1

(

ρn −
ρKU+1(1 − ρn−KL)

1 − ρKU+1−KL

)

+pU

∞
∑

KU+1

ρn + pU

KU
∑

n=KL+1

ρKU+1(1 − ρn−KL)

1 − ρKU+1−KL

]

.

= (1 − ρ)

[

pL

KU
∑

n=0

ρn + pU

∞
∑

KU+1

ρn

+(pU − pL)

KU
∑

n=KL+1

ρKU+1(1 − ρn−KL)

1 − ρKU+1−KL

]

.

Finally,

p̄ = pL + (pU − pL)(KU − KL + 1)
ρKU+1(1 − ρ)

1 − ρKU−KL+1
. (1)

Again, the utility for N sources is given by

U(N) = (µ − Nλ)β − p̄.

Also, this function is strictly decreasing with N : (µ − Nλ)β decreases with N
(as soon as N < µ/λ), as well as p̄ since in (1),

ρKU+1(1 − ρ)

1 − ρKU−KL+1
=

1
∑KU−KL

k=0 ρk−KU−1
.

Indeed, as k −KU − 1 < 0 ∀k ≤ KU −KL, p̄ is increasing with N , which shows
the result.

As a consequence, we have again the steady-state result:

Proposition 4. There is unique equilibrium number of sources given by the

unique solution N∗ of equation (µ − N∗λ)β − pL − (pU − pL)(KU − KL +

1) ρKU +1(1−ρ)

1−ρKU −KL+1 = 0 if µβ − pL ≥ 0, and 0 otherwise.

Proof. The proof follows by exactly the same arguments that in previous sections.
ut

Again, the goal of the provider is to optimize its average benefits per unit of
time:

λp̄N∗ + κ(N∗λπKU ,0 + µπKL+1,1)

over all possible values of KL, KU , pL and pU .



6 Comparison of the three policies

The aim of this section is to show that the optimal revenue is obtained in the
special case of no threshold, even if the other strategies are generalizations (which
cannot lead to a smaller optimal revenue).

Let’s forget about the switching cost in thresholds policies. The revenue for
the three policies is then given by R = λp̄N∗, with optimal N∗ and p̄ that may be
different. Note that N∗ is a function of p̄, by, in all three cases, U(N) = f(D̄)−
p̄ becoming zero for N∗. We therefore have with exactly the same functional
dependence because average delay D̄ is given by the same formula for the three
policies.

As a consequence, in the most general case of thresholds with hysteresis,
every pair of price pU and pL and every threshold value Ks, or KU and KL, will
lead to a given p̄ and a corresponding revenue. On the other hand, fixing p = p̄
in the policy without threshold will give the same N∗ because demand is the
same, and therefore the same revenue. Thus pricing without threshold drives to
the optimal revenue for this model. A similar analysis can of course be realized
in the case of thresholds without hysteresis.

Numerically, this result is easily confirmed: the best threshold policy (with
and without hysteresis) in terms of revenue is by pushing the thresholds as far
as possible, resulting therefore in the policy without thresholds.

7 Conclusions

This paper investigates three pricing strategies at an M/M/1 queue, and com-
pares the maximal revenues obtained in each case. In each case, we have been
able to prove the existence, unicity (and determine) the equilibrium number of
sources, and explained how optimal values can be computed. Note that fixed

policy is a special case of threshold policy, itself a particular case if hysteresis

policy. Nonetheless, under the assumption that a user does not care about the
current state of a queue when he sends packets because session lenghts are large
with respect to the dynamics of the queue, meaning that he rather see the queue
in steady-state, then the particular case of a fixed policy is shown to be the one
providing the best revenue.

As a direction for future work, we would like to investigate the best policy
when sessions may be short and decisions of sending packets depend dynamically
on the queue length. This complicates the analysis because it requires to make
a transient analysis of the queue.
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