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Abstract

The goal of this paper is to study pricing of differentiated services and its impact on
the choice of service priority at equilibrium. We consider both TCP connections as
well as non controlled (real time) connections. The performance measures (such as
throughput and loss rates) are determined according to the operational parameters
of a RED (Random Early Discard) buffer management. The latter is assumed to be
able to give differentiated services to the applications according to their choice of
service class. We consider a service differentiation for both TCP as well as real-time
traffic where the quality of service (QoS) of connections is not guaranteed, but by
choosing a better (more expensive) service class, the QoS parameters of a session
can improve (as long as the service class of other sessions are fixed). The choice of
a service class of an application will depend both on the utility as well as on the
cost it has to pay. We first study the performance of the system as a function of
the connections’ parameters and their choice of service classes. We then study the
decision problem of how to choose the service classes. We model the problem as a
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noncooperative game. We establish conditions for an equilibrium to exist and to be
uniquely defined. We further provide conditions for convergence to equilibrium from
non equilibria initial states. We finally study the pricing problem of how to choose
prices so that the resulting equilibrium would maximize the network benefit.

Key words: TCP, RED/AQM, Nash equilibrium, Pricing, Service differentiation.

1 Introduction

We study in this paper the performance of competing connections that share
a bottleneck link. Both TCP connections with controlled rate as well as CBR
(Constant Bit Rate) connections are considered. A RED active queue man-
agement (AQM) algorithm is used for the early dropping of packets. We allow
for service differentiation between the connections through the rejection prob-
ability (as a function of the average queue size), which may depend on the
connection (or on the connection class). More specifically, we consider a buffer
management scheme that uses a single averaged queue length to determine the
rejection probabilities (similar to the way it is done in the RIO-C (coupled
RIO) buffer management [2]); for any given averaged queue size, packets be-
longing to connections with higher priority have smaller probability of being
rejected than those belonging to lower priority classes. To obtain this differen-
tiation in loss probabilities, we assume that the loss curve of RED is scaled by
a factor that represents the priority level of the application. We obtain various
performance measures of interest such as the throughput, the average queue
size and the average drop probability.

We then address the question of the choice of priorities. Given utilities that
depend on the performance measures on one hand and on the cost for a given
priority on the other hand, the sessions at the system are faced with a non-
cooperative game in which the choice of priority of each session has an impact
on the quality of service of other sessions. For the case of CBR traffic, we
establish conditions for an equilibrium to exist. We further provide conditions
for convergence to equilibrium from non equilibria initial states. The game
formulation of the problem arises naturally, since a classical optimization ap-
proach where a common objective function is maximized, is not realistic in IP

� A shorter version of this paper appeared in the Proceedings of the Third IFIP-
TC6 Networking Conference [1].

Email addresses: Eitan.Altman@sophia.inria.fr (Eitan Altman),
dhiman@cs.bu.edu (Dhiman Barman), Rachid.Elazouzi@lia.univ-avignon.fr
(Rachid El Azouzi), David.Ros@enst-bretagne.fr (David Ros),
Bruno.Tuffin@irisa.fr (Bruno Tuffin).
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networks; indeed, it is quite rare that users of a network collaborate with each
other (or even “know” each other).

Finally we study numerically the pricing problem of how the network should
choose prices so that the resulting equilibrium would maximize its benefit.

We briefly mention some recent work in that area. Reference [3] has considered
a related problem where the traffic generated by each session was modeled as
a Poisson process, and the service time was exponentially distributed. The
decision variables were the input rates and the performance measure was the
goodput (output rates). The paper restricted itself to symmetric users and
symmetric equilibria and the pricing issue was not considered. In this frame-
work, with a common RED buffer, it was shown that an equilibrium does not
exist. An equilibrium was obtained and characterized for an alternative buffer
management that was proposed, called VLRED. We note that in contrast to
[3], since we also include in the utility of CBR traffic a penalty for losses
(which is supported by studies of voice quality in packet-based telephony [4]),
we do obtain an equilibrium when using RED. For other related papers, see
for instance [5] (in which a priority game is considered for competing con-
nections sharing a drop-tail buffer), [6] as well as the survey [7]. In [8], the
authors present mechanisms (e.g., AIMD of TCP) to control end-user trans-
mission rate into differentiated services Internet through potential functions
and corresponding convergence to a Nash equilibrium.

The approach of our pricing problem is related to the Stackelberg methodology
for hierarchical optimization: for a fixed pricing strategy one seeks the equilib-
rium among the users (the optimization level corresponding to the “follower”),
and then the network (considered as the “leader”) optimizes the pricing strat-
egy. This type of methodology has been used in other contexts of networking
in [9,10].

The structure of this paper is as follows. In Section 2 we describe the model
of RED, then in Section 3 we compute the throughputs and the loss prob-
abilities of TCP and of CBR connections for given priorities chosen by the
connections. In Section 4 we introduce the model for competition between
connections at given prices. In Section 5 we focus on the game in the case
of only CBR connections or only TCP connections and provide properties of
the equilibrium: existence, uniqueness and convergence. Remark that isolat-
ing elastic (i.e., TCP) flows from real-time (i.e., UDP/CBR) flows—that is,
mapping TCP and UDP flows to two different service classes—is a fairly com-
mon way of protecting TCP traffic from UDP flows in a differentiated-services
architecture. Note that, inside each service class, we consider that flows have
different parameters (like, say, different round-trip times). In Section 6 we pro-
vide an algorithm for computing Nash equilibrium for the symmetric case. The
optimal pricing is then discussed in Section 7. We present numerical examples
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in Section 8 to validate the model.

2 The Model

The main goal of the Random Early Discard (RED) algorithm is to pro-
vide congestion avoidance (that is, an operating region of low delay and high
throughput) by trying to control the average queue length at a router [11].
A RED-enabled router estimates the average queue length q by means of an
exponentially-weighted moving average; this estimate is updated with every
incoming packet as: q ← (1− wq)q + wqQ, where Q denotes here the instan-
taneous queue length “seen” by the packet, and wq ∈ [0, 1] is the averaging
weight (the lower the value of wq, the longer the “memory” of the estimator).
Here we assume that the time averaging parameters of RED are such that
the average queue size, and hence the drop probabilities pi’s have negligible
oscillations. We are aware of the fact that for some RED parameters this may
not be the case, and that the interaction between RED and TCP can lead to
instabilities if the parameters are not chosen correctly.

This average queue value is then compared to two thresholds qmin and qmax,
with qmin < qmax, in order to decide whether or not the incoming packet should
be dropped. The drop probability is 0 if q ≤ qmin, 1 if q ≥ qmax, and pmax(x−
qmin)/(qmax − qmin) if q = x with qmin < x < qmax; the latter is the congestion
avoidance mode of operation. pmax is the value of the drop probability as the
average queue tends to qmax (from the left). This is illustrated in Fig. 1. In
a best-effort network, the value of pmax is the same for all flows sharing the
buffer, whereas in a network implementing service differentiation packets may
“experience” different values of pmax, according to the service class they belong
to—as we will see below, it is the latter case which we are focusing on.

The purpose of the early discarding of packets (i.e., dropping a packet be-
fore the actual physical queue is full) is to signal the sources that implement
congestion-control mechanisms—like TCP sources—to reduce their sending
rates, in order to prevent heavy congestion. The random nature of drops aims
at avoiding synchronization of flows having similar round-trip times [11], i.e.,
all sources increasing and decreasing their congestion windows in unison, lead-
ing to strong oscillations of queue lengths and lower throughput.

We consider a set N containing N TCP flows (or aggregate of flows) and a set
I containing I real-time CBR flows that can be differentiated by RED; they
all share a common buffer yet RED handles them differently 1 . We assume
that they all share common values of qmin and qmax but each flow i may have

1 RED punishes aggressive flows more by dropping more packets from those flows.
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Fig. 1. Drop probability in RED as a function of q.

a different value p(i) of pmax, leading to a differentiated treatment. In other
words, the slope ti of the linear part of the curve in Fig. 1 depends on the
flow i:

ti =
p(i)

qmax − qmin
.

Denote t = (ti, i ∈ I ∪N ). We identify ti as the priority class of a connection.
The service rate of the bottleneck router is given by µ.

2.1 Practical considerations

Let us add a few remarks concerning practical issues of this proposal, like scal-
ability and implementation complexity. First, in a DiffServ-like architecture
[12], users may select a specific QoS treatment on a packet-per-packet basis,
and that treatment corresponds precisely to a RED-like AQM policy that may
drop packets with a probability that depends on a tag carried by the packet
(this is how the Assured Forwarding per-hop behavior [13] operates)—the tag
may well be set by the user to signal how the packet should be treated by the
core routers. So, in the context of our proposal, from a practical (i.e., imple-
mentation) viewpoint, a user choosing her own p(i) in the router requires just
a straightforward setting of the QoS tag she puts on her packets.

On the other hand, letting a user choose the thresholds qmin and qmax does not
seem realistic: the (feasible) values of the thresholds depend on link speeds
and on the actual, “physical” capacity of router queues, which may vary from
a link/router to another [11].

The fact that each source may choose a different value for the slope could
cause problems in scaling our approach to large networks or to a large number
of flows. This scaling problem can, however, be solved by using the following
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distributed approach: the RED queue could restrict to put on each packet the
value of q at a given time. Then the decision of whether the packet would
be dropped or not, depending on the slope that corresponds to the source of
the packet, can be delegated to the edge router that corresponds to that con-
nection. (In a differentiated service environment, there are edge routers that
behave as policers, i.e. they can mark or drop packets that do not comply with
the user’s type.) The edge routers are directly connected to the corresponding
sources so it is much easier to take the dropping decisions there. Note that
our analysis does not depend on how exactly congestion signals are conveyed
to a given source so using the above approach does not change our results.

3 Computing the Throughputs

We use the well-known relation for TCP rate:

λi =
1

Ri

√
α

pi
, i ∈ N , (1)

where Ri and pi are TCP flow i’s round trip time and drop probability, respec-
tively. α is typically taken as 3/2 (when the delayed-ACKs option is disabled)
or 3/4 (when it is enabled). We shall assume throughout the paper that the
queueing delay is negligible with respect to Ri for the TCP connections.

In contrast, the rates λi, for i ∈ I, of real time flows are not controlled and
are assumed to be fixed. If N = ∅ we assume throughout the paper that∑

j∈I λj > µ (unless otherwise specified), otherwise the RED buffer is not a
bottleneck. Similarly, if I = ∅ we assume that TCP senders are not limited
by the receiver window.

In the model above, we assume that the number of flows is constant over
time. This corresponds to a scenario of long-lived flows in which, for instance,
TCP connections are used for the transfer of large files in storage networks or
in backup of disks (so that we may assume that the square-root throughput
formula (1) holds) and UDP flows are associated to the streaming of long
CBR-encoded multimedia flows. Furthermore, we assume that the short-lived
TCP flows, even if more numerous than long lived flows, do not affect the
performance of long-lived TCP flows. (This assumption is compatible with
the natural scaling that is expected to occur as the Internet grows, see [14].)

In general, since the bottleneck queue is seen as a fluid queue, we can write

∑
j∈I∪N

λj(1− pj) = µ.
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If we operate in the linear part of the RED curve then this leads to the system
of equations:



∑

j∈I∪N λj(1− pj) = µ

pi = ti(q − qmin), ∀i ∈ I ∪ N

with (N + I + 1) unknowns: q (average queue length), and pi, i ∈ I ∪ N ,
where λi, i ∈ N is given by (1). Substituting (1) and

pi = ti(q − qmin) ∀i, (2)

into the first equation of the above set, we obtain a single equation for q:

∑
j∈N

1

Rj

√
α

tj(q − qmin)
(1− tj(q − qmin)) +

∑
j∈I

λj(1− tj(q − qmin)) = µ. (3)

If we write x =
√
q − qmin, then (3) can be written as a cubic equation in x:

Z(x) = z3x
3 + z2x

2 + z1x+ z0 = 0 (4)

where

z3 =
∑
j∈I

λjtj , z2 =
∑
j∈N

1

Rj

√
αtj, z1 = µ−∑

j∈I
λj , z0 = − ∑

j∈N

1

Rj

√
α

tj
.

Note that this equation has a unique positive solution if there are only TCP
or only real-time connections; in either case, it becomes a quadratic equation.

Proposition 1 Fix the values of tj, j ∈ I ∪N . The cubic equation (4) has a
unique real positive solution. Assume that the solution lies in the linear region
of RED. Then the average queue size is given as qmin + x2 where x is the
unique positive solution of (4) and the loss probability for session i is given by
pi = ti(q − qmin).

Proof: Assume first that I and N are both nonempty. Since the coefficients
of the cubic equation are real, it has either a single real solution and two other
conjugate complex solutions, or it has three real solutions [15]. Consider first
the case in which all solutions are real. Then since the product of solutions is
positive (it equals −z0/z3), there are either one or three positive solutions. But
the latter is excluded since the sum of solutions is positive (it equals −z2/z3).

Next consider the case of a single real solution. Since the two other solutions
are conjugate, their product is positive. Then since the product of all solutions
is positive (it equals −z0/z3), the real solution is positive. ✷
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Note that, in the case of only real-time connections (N = ∅) operating in the
linear region, we have

q = qmin +

∑
j∈I λj − µ∑

j∈I λjtj
(5)

and

pi = ti

∑
j∈I λj − µ∑

j∈I λjtj
. (6)

(Recall that, throughout the paper, when considering this case we shall assume
that

∑
j∈I λj > µ.)

In the case of only TCP connections (I = ∅) operating in the linear region,
we have

q = qmin +

(
−µ+

√
µ2 + 4α

∑
j∈N

(
1

Rj

√
tj

) ∑
j∈N

(√
tj

Rj

))2

4α

( ∑
j∈N

√
tj

Rj

)2 (7)

and

pi = ti

(
−µ+

√
µ2 + 4α

∑
j∈N

(
1

Rj

√
tj

) ∑
j∈N

(√
tj

Rj

))2

4α

( ∑
j∈N

√
tj

Rj

)2 . (8)

4 Utility, Pricing and Equilibrium

We denote a strategy vector by t for all flows such that the jth entry is tj . By
(ti, [t]−i), we define a strategy where flow i uses ti and all other flows j �= i
use tj from vector [t]−i.

We associate to flow i a utility Ui. The utility will be a function of the QoS
parameters and the price payed by flow i, and is determined by the actions of
all flows. More precisely, Ui(ti, [t]−i) is given by

aiλi(1− p(ti, [t]−i))− bip(ti, [t]−i)− d(ti), ai > 0, bi ≥ 0

where the first term stands for the utility for the goodput, the second term
stands for the dis-utility for the loss rate and the last term corresponds to the
price d(ti) to be paid by flow i to the network 2 .

2 Linear utilities are commonly used for their tractability (see e.g. [16]), but they
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In particular, we find it natural to assume that a TCP flow i has bi = 0 (as
lost packets are retransmitted anyhow, and their impact is already taken into
account in the throughput). Moreover, since λi for TCP already includes the
loss term pi(ti, [t]−i), the utility function of TCP is assumed to be

Ui(ti, [t]−i) = aiλi(1− p(ti, [t]−i))− d(ti).

We assume that the strategies or actions available to session i are given by a
compact set of the form:

ti ∈ Si where Si =
[
timin, t

i
max

]
, i ∈ I ∪ N .

Here we assume that timin > 0 for all i ∈ I ∪N .

Each flow of the network strives to find its best strategy so as to maximize its
own objective function. Nevertheless its objective function depends upon its
own choice but also upon the choices of the other flows. In this situation, the
solution concept widely accepted is the concept of Nash equilibrium.

Definition 1 A Nash equilibrium of the game is a strategy profile t = (t1, t2, .., tM)
where M = I +N from which no flow has any incentive to deviate. More pre-
cisely, the strategy profile t is a Nash equilibrium if the following holds true
for any i

ti ∈ argmax
t̄i∈Si

Ui(t̄i, [t]−i).

ti is the best strategy that flow i can use if the other flows choose the strategies
[t]−i.

Note that the network income is given by
∑

i∈I∪N d(ti). Since the pi(ti, [t]−i)
are functions of ti and [t]−i, d can include pricing per volume of traffic success-
fully transmitted. In particular, we allow for d to depend on the uncontrolled
arrival rates of real-time sessions (but since these are constants, we do not
make them appear as an argument of the function d).

We shall sometimes find it more convenient to represent the control action of
connection i as Ti = 1/ti instead of as ti. Clearly, properties such as existence
or uniqueness of equilibrium in terms of ti directly imply the corresponding
properties with respect to Ti.

also have some mathematical justification: a utility that is given as the sum of
(weighted) performance measures can be interpreted as the Lagrange relaxation of
constraints that are imposed on the average delays, average loss probabilities etc.
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5 Equilibrium for only Real-Time Sessions or only TCP Connec-
tions

We assume throughout that timax ≤ 1/(qmax − qmin) for all connections. The
bound for timax is given so that we have t

i
max(qmax − qmin) ≤ 1. From (2) we see

that pi ≤ 1 with equality obtained only for the case ti = 1/(qmax − qmin).
3

In our analysis, we are interested mainly in the linear region. For only real-time
sessions or only TCP connections, we state the assumptions and describe the
conditions for linear region operations and we show the existence of a Nash
equilibrium.

Theorem 1 A sufficient condition for the system to operate in the linear
region is that for all i:
1) For only real-time connections:

λ > µ and timin >
λ− µ

λ(qmax − qmin)
. (9)

2) For only TCP connections:

timin >



−µ +

√
µ2 + 4α(

∑
j∈N

1
Rj
)2

4
√
α∆q

∑
j∈N

1
Rj




2

(10)

where λ =
∑
j∈I

λj and ∆q := qmax − qmin.

Proof: The condition (9) (resp. (10)) will ensure that the value of q obtained
in the linear region (see (5) and (7), respectively) is not larger that qmax.
Indeed, for real time connections, (9) implies that

∑
j∈I

λjtj >
λ− µ

qmax − qmin

which implies together with (5) that q < qmax.

Finally, the fact that the queue size is not below the lower extreme of the
linear region (i.e., pi > 0 for all i) is a direct consequence of λ > µ.

The case of only TCP connections is proved in Appendix 10.1. ✷

3 Note that if the assumption does not hold then for some value q′ < qmax we would
already have for some i, pi = 1 so one could redefine qmax to be q′. An important
feature in our model is that the queue length beyond which pj = 1 should be the
same for all j.
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The following result establishes the existence of Nash equilibrium for only real
time sessions or only TCP connections.

Theorem 2 Consider either the case of only real time sessions or of only
TCP connections. Assume that the system operates at the linear regime and
the functions d are convex in Ti := 1/ti. Then a Nash equilibrium exists.

Proof: See Appendix 10.2.

5.1 Supermodular Games

Let us now introduce the notion of a supermodular game, which will be used
in Theorems 3 to 5 below. Supermodular games have the following appealing
monotonicity property: for any user i and any fixed policy [t]−i of the users
other than i, the best response of user i to the other users’ policy [t]−i is
monotone in [t]−i.

This implies the following properties of supermodular games.

• Several dynamic update schemes (for example, a round robin one) converge
to a Nash equilibrium. For example, if we start with all players using their
smallest available action and a round robin update scheme is used (where
at each time period another player changes its action to a best response
against the actions used by other players) then the sequence of actions
will be monotone non-decreasing and hence will converge to a limit. (More
details will be given below in the so called ”Greedy Algorithm” that we
shall introduce.)

• This limit turns out to be an equilibrium. Hence the monotonicity property
of the best response sequence implies existence of an equilibrium.

• Using the same procedure when starting with the largest strategy of each
user gives a monotone decreasing sequence whose limit is again a (possibly
different) Nash equilibrium. For more details see [17].

Definition 2 The game (S1, ..., SM , U1, .., UM) is supermodular if for all i

• Si is a sublattice
4

• Ui is upper semi-continuous in ti and [t]−i

4 Si is a sublattice of R
M if t ∈ Si and t′ ∈ Si imply that t ∨ t′ ∈ Si

and t ∧ t′ ∈ Si, where t ∨ t′ = (max(t1, t′1), ..,max(tM , t′M )) and t ∧ t =
(min(t1, t′1), ..,min(tM , t′M )).
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• Ui has non-decreasing differences in (ti, [t]−i), i.e., for all ti ≥ t′i and [t]−i ≥
[t]′−i,

Ui(ti, [t]−i)− Ui(t
′
i, [t]−i) ≥ Ui(ti, [t]

′
−i)− Ui(t

′
i, [t]

′
−i)

where Si = [t
i
min, t

i
max], S = S1 × S2 · · · × SM and M = I +N .

By non-decreasing differences in (ti, [t]−i), we mean that it has the property
that the incremental gain by choosing a greater ti is greater when [t]−i is
larger. For example if the utility of user i has non-decreasing differences in the
vector t, user i increases her utility if she increases her slope in response to an
increase in the slope of another user j. If Ui is twice differentiable, then the
supermodularity is equivalent to

∂2Ui

∂ti∂tj
≥ 0 (11)

for all t in S. Applying Topkis’ Theorem [17] in this context shows immedi-
ately that each flow’s best response function is increasing in the action of the
other flows. An useful propriety of supermodular games is that we can use
monotonicity to prove the existence of equilibria and greedy algorithms. A
greedy algorithm is a simple, so-called tatônnement of Round Robin scheme
for best response that converges to the equilibrium.

Let us now introduce the following asynchronous dynamic greedy algorithm
(GA).

Greedy Algorithm: Assume a given initial choice t0 for all flows. At some
strictly increasing times τk, k = 1, 2, 3, ..., flows update their actions; the
actions tki at time τk > 0 are obtained as follows. A single flow i at time τk+1

updates its tk+1
i so as to optimize Ui(., [t

k]−i) where [t
k]−i is the vector of

actions of the other flows j �= i. We assume that each flow updates its actions
infinitely often. In particular, for the case of only real time sessions, we update
tk+1
i as follows:

tk+1
i =

argmax

ti ∈ [timin, t
i
max]

aiλi(1− pi)− bipi − d(ti) (12)

where pi in (12) is given by (6).

For the TCP-only case, we update tk+1
i as follows:

tk+1
i =

argmax

ti ∈ [timin, t
i
max]

ai

Ri

√
α

pi
(1− pi)− d(ti) (13)

where pi in (13) is given by (8).

12



We assume that the duration of a stage is quite long, so that sufficient infor-
mation can be obtained by the user in order to be able to estimate pi.

Remark 1 For the case of real-time sessions, we may obtain a closed-form
solution for tk+1

j with specific cost function d(ti) such as
d
ti
which will lead to

update of tk+1
i as follows,

δk
i =

∑
j �=i

λjt
k
j√

(aiλi + bi)(
∑
j∈I

λj − µ)(
∑
j �=i

λjtkj )− λi

√
d

where δk
i is such that

∂Ui

∂ti

∣∣∣
ti=δk

i

= 0 and Ui corresponds to the utility function

of real-time session i. Then tk+1
i is given by:

tk+1
i =




timin if δk
i < 0,

timax if δk
i < timin, δ

k
i ≥ 0,

timin if δk
i > timax, δ

k
i ≥ 0,

δi otherwise

Theorem 3 For the case of only real-time connections we assume that ∀j,
λmin ≤ λj ≤ λmax, and

(I − 1)λmintmin ≥ λmaxtmax,

where tmin = mini∈I{timin} and tmax = maxi∈I{timax}. Then there is smallest
equilibrium t and largest equilibrium t̄, and the GA dynamic algorithm con-
verges to t (resp. t̄) provided it starts with tjmin for all j (resp. t

j
max for all

j).

Proof: Both statements will follow by showing that the game is super-modular,
see [17,18]. A sufficient condition is that

∂2Ui

∂ti∂tj
= −(aiλi + bi)

∂2pi

∂ti∂tj
≥ 0.

We have

∂pi

∂ti
=


∑

j

λj − µ



(

1∑
j∈I λjtj

− tiλi

(
∑

j∈I λjtj)2

)

leading to

∂2pi

∂ti∂tk
= λk


∑

j∈I
λj − µ


 −∑

j∈I λjtj + 2tiλi

(
∑

j∈I λjtj)3
.
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The latter is non-positive if and only if
∑

j �=i λjtj ≥ λiti. A sufficient condition
is that (I−1)λmintmin ≥ λmaxtmax. Thus the game is super-modular. The result
then follows from standard theory of super-modular games [17,18]. ✷

Theorem 4 For the case of only real-time connections, we assume that ∀j,
λmin ≤ λj ≤ λmax, and 2t

3
minλ

2
min > t3maxλ

2
max. Under supermodular condition,

the Nash equilibrium is unique.

Proof: See Appendix 10.3.

Theorem 5 For the case of only TCP connections, assume that ∀j, tmin ≤
t ≤ tmax and

(3 + pi)
∂pi

∂ti

∂pi

∂tj
≥ 2pi(pi + 1)

∂2pi

∂ti∂tj
∀i, j, i �= j. (14)

Then the game is super-modular.

Proof: See Appendix 10.4.

Remark 2 It would also be interesting to consider a price per unit of re-
ceived volume, i.e., of the form d(ti)λi(1− pi). However, looking at the super-
modularity of the utility function gives a condition depending on d′(ti), d(ti)
and the tj that does not seem tractable. On the other hand, we can consider a
pricing per unit of sent volume, i.e., of the form d(ti)λi (since λi is fixed),
Conditions of Theorems 2-3 then hold to provide a Nash equilibrium.

Note that in the model presented above, users choose at each stage an action
that maximizes their utility function, depending on the actions of all other
flows. This dependence appears in the loss probability pi. In our case, a user
can determine her utility function without hypothesis of full knowledge: since
users only need to have aggregate information about other flows (like the total
rate

∑
j∈I λj in the CBR-only scenario), there are in principle no scalability is-

sues, i.e., no need of exchanging or storing per-flow information at the routers.
The issue of how such aggregate values are signaled to sources is outside the
scope of this paper.

Remark 3 As already mentioned, in supermodular games, one can obtain
equilibrium dynamically in stages, such that during each stage, users choose
an action that maximizes their utility function, depending on the actions of
all other flows. This dependence appears in the loss probability pi. In our case,
a user can determine his utility function without hypothesis of full knowledge
of the actions of other players. Indeed, in real-time connections, it is possible
for each source to obtain the sufficient information for determining its actions
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by using RTP/RTCP (each source can obtain the receiver reports (RRs) that
include the reception quality statistics such as the number of packets received,
fraction lost, and cumulative number of packets lost). Hence the source i can
obtain the loss probability p̄i at each stage. For TCP connections, the ACK
packets could be sufficient to acquire the loss probabilities pi.

In case of only real-time connections, the loss probability at stage k is given
by

pi(ti, [t
k−1]−i) = ti

∑
j∈I λj − µ∑

j �=i λjt
k−1
j + λiti

, (15)

where ti is the action of user i and tk−1
j is the optimal action of user j at stage

k − 1. At stage k − 1, we have

p̄k−1
i = pi(t

k−1
i , [tk−1]−i) = tk−1

i

∑
j∈I λj − µ∑
j∈I λjt

k−1
j

,

where tk−1
i is the optimal action of user i at stage k − 1. Note that the loss

probability p̄k−1
i is estimated through RTP/RTCP protocol at end of stage

k − 1. Hence at stage k, when the action of user i is ti, the loss probability
(15) of user i becomes

pi(ti, [t
k−1]−i)= ti

∑
j∈I λj − µ∑

j �=i λjt
k−1
j + λiti

,

=
ti

tk−1
i

(∑
j∈I λjt

k−1
j + λi(ti − tk−1

i )

tk−1
i (

∑
j∈I λj − µ)

)−1

=
ti

tk−1
i

(
1

p̄k−1
i

+
λi(ti − tk−1

i )

tk−1
i (

∑
j∈I λj − µ)

)−1

= p̂(ti, t
k−1
i , p̄k−1

i ).

Thus, the utility function becomes:

Ui(ti, [t]−i)= aiλi(1− p̂(ti, t
k−1
i , p̄k−1

i ))− bip̂(ti, t
k−1
i , p̄k−1

i )− d(ti)

= Ûi(ti, t
k−1
i , p̄k−1

i ).

In the above formulation, the sources need to know the total rate through
the bottleneck router in order to execute the iteration. This can be achieved
using bottleneck capacity estimation (e.g., pathrate, pathchar) and available
bandwidth estimation tools (e.g., pathload), see [19,20].

In the case of only TCP connections, the loss probability at stage k is given
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by

pi(ti, [t
k−1]−i) =

ti


−µ +

√√√√√µ2 + 4α


∑

j �=i


 1

Rj

√
tk−1
j


+ 1

Ri
√

ti




∑

j �=i



√

tk−1
j

Rj


+ √

ti
Ri






2

4α


∑

j �=i

√
tk−1
j

Rj
+

√
ti

Ri




2

where ti is the action of TCP i and tk−1
j is the optimal action of TCP j at

stage k − 1. Note that at stage k − 1, we have

pk−1
i = pi(t

k−1
i , [tk−1]−i) =

tk−1
i


−µ+

√√√√√µ2 + 4α
∑
j


 1

Rj

√
tk−1
j


∑

j



√

tk−1
j

Rj






2

4α


∑

j

√
tk−1
j

Rj




2

From the definition of loss probability at stage k, it is difficult to express pi

as a function of pk−1
i , ti and tk−1

i , as in real time connections case. The source

needs to estimate the value of


 1

Rj

√
tk−1
j


 and of



√

tk−1
j

Rj


.

From this reason, we define another algorithm which allows us to obtain the

Nash equilibrium without estimating the value of


 1

Rj

√
tk−1
j


 and



√

tk−1
j

Rj


.

In this algorithm we consider that the probability at stage k is approximated
by

pi= pi(ti, t
k−1
i , pi) =

ti


−µ +

√√√√√µ2 + 4α
∑
j


 1

Rj

√
tk−1
j


∑

j



√

tk−1
j

Rj






2

4α


∑

j

√
tk−1
j

Rj




2

=
ti

tk−1
i

pk−1
i .

Thus, the utility function becomes
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Ui(ti, [t]−i)= aiλi(1− p(ti, t
k−1
i , p̄k−1

i ))− d(ti) = Ûi(ti, t
k−1
i , p̄k−1

i ).

From the definition of the loss probability at stage k (see (16)), we can see that
if this algorithm converges, it will be to a Nash equilibrium. We postpone to
future work the mathematical analysis of the convergence of that algorithm.
Nonetheless, using numerical simulations, we have found out that so far, the
iterative algorithm always converged to a Nash equilibrium.

6 Symmetric Users

In this section, we assume that all flows have the same utility function (for
all i, ai = a, λi = λ̄ and bi = b for real-time sessions and ai = a and Ri = R
for TCP connections) and the same intervals for strategies (timin = tmin and
timax = tmax).

Algorithm for Symmetric Nash Equilibrium:

For symmetric Nash equilibrium, we are interested in finding a symmetric
equilibrium strategy t∗ = (t∗, t∗, .., t∗) such that for any flow i and any strategy
ti for that flow (real-time session or TCP connection),

U(t∗) ≥ U(ti, [t
∗]−i).

Next we show how to obtain an equilibrium strategy. We first note that due
to symmetry, to see whether t∗ is an equilibrium it suffices to check (6) for a
single flow. We shall thus assume that there are L+ 1 flows all together, and
that the first L flows use the strategy to = (to, ..., to) and flow L+1 uses tL+1.
Define the set

QL+1(t
o) = argmaxtL+1∈[tmin,tmax]

(
U(tL+1, [t

o]−(L+1))
)
,

where to denotes (with some abuse of notation) the strategy where all flows
use to, and where the maximization is taken with respect to tL+1. Then t

∗ is
a symmetric equilibrium if

t∗ ∈ QL+1(t
∗).

Theorem 6 Consider real time connections only, operating in the linear re-
gion. Assume that the functions d are convex in Ti := 1/ti. The symmetric
equilibrium t∗ satisfies:

T ∗ ∂d̂(T )

∂T

∣∣∣∣∣
T=T ∗

=
aλ + b

(Iλ̄)2

17



where T ∗ = 1/t∗ and d̂(T ) = d( 1
T
).

Proof: Recall that λ = Iλ̄. Then for real time connections, we have

U = aλ̄− (aλ̄+ b)
(λ− µ)

λ̄ + Ti
∑
j �=i

λ̄/Tj

− d̂(Ti)

which gives, when considering the derivative,

∂U

∂Ti
= (aλ̄+ b)

(λ− µ)
∑
j �=i

λ̄/Tj

(λ̄ + Ti
∑
j �=i

λ̄/Tj)2
− ∂d̂(Ti)

∂Ti
.

Equating ∂U
∂Ti

= 0 we obtain (6). ✷

7 Optimal pricing

The goal here is to determine a pricing strategy that maximizes the network’s
benefit. Typically, pricing is motivated by two different objectives: 1) it gener-
ates revenue for the system and 2) it encourages the players to use the system
resources more efficiently.

Our focus here is on pricing strategies for revenue maximization, i.e., how a
service provider should price resources to maximize revenue. The correspond-
ing maximization problem is given by

c(t∗) = argmaxd

I∑
i=1

d(t∗i ),

where t∗ is a Nash equilibrium which can be obtained when considering special
classes function of d(.) depending on a real parameter that we will also (with
some abuse of notation) call d. We then obtain a system of equations that
can be solved numerically (to get the t∗ satisfying the Nash equilibrium), and
a numerical optimization over the parameter d can be obtained. We use in
our numerical example d(t) = d/exp(t). We also considered other families of
pricing functions such as d/t, d/t2 and so on and we observed monotonous
behaviour of cost c as a function of d.

Nevertheless, an assumption of this optimization problem is that the network
knows the number of flows and the parameters ai, bi and Ri ∀i. A more likely
situation is when the network only knows the distribution of the number of
players I (now a random variable) and the distribution of parameters ai, bi and
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Ri (assumed independent and independent between flows for convenience). A
numerical investigation of optimal parameters can be realized as well.

8 Numerical Examples

In the following simulations, we obtain a unique Nash equilibrium for only
real-time sessions or only TCP connections. Moreover, the GA algorithm con-
verges as it satisfies the conditions of supermodularity. All the conditions of
supermodular games (Theorem 3 and Theorem 5) and uniqueness of Nash
equilibrium (Theorem 2 and Theorem 3) are only sufficient but not necessary
as shown in the numerical results. The pricing function that we use for player
i throughout this section is d/exp(ti). We shall investigate how the choice of
the constant d will affect the revenue of the network. 5

8.1 Symmetric Real-Time Flows

In the following numerical evaluations, we show the variation of different
metrics as function of d. Figures 2 and 3 correspond to a unique symmet-
ric Nash equilibrium case in which all the real time flows have λi = 2Mbps
with tmin = 1, tmax = 15, I = 20, qmin = 10, qmax = 40, µ = 30Mbps. Here
we set the values of parameters to ensure that the system operates in the
linear region such as tmin > 1

∆q
(1 − µ∑

j∈I λj
) = 0.0083. Moreover, the values

above also ensure the uniqueness of the equilibrium (Theorem 3). The bound
on tmax is needed only to limit the value of loss probability to 1. The value
of d which maximizes the network revenue occurs at d = 3.33. All the flows
attain a loss rate of 0.25. Note that for the real-time flows symmetric case,
p∗i = (

∑
j∈I λj−µ)/

∑
j∈I λj at the Nash equilibrium is a constant. The average

queue size, given by qmin + p∗i /t
∗
i , is shown in Fig. 2. We observe the value of

t∗ at which maximum network income is achieved is close to tmin while the
system operates in the linear region of RED throughout.

We plot in Fig. 3 sample paths of a connection that uses the GA Algorithm for
symmetric users (Sec. 6) (the evolution for all connections is the same). The
figure illustrates convergence to the same Nash equilibrium when t0 started

5 We note that it is desirable to have a “nontrivial” parameterized pricing function
that leads to an optimal revenue for some parameter. We also tested other pricing
functions that did turn out to be “trivial” in the sense that the benefit was always
monotone in the parameter; an example of such a function is exp(−βti) and the
network optimizes with respect to β.
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Fig. 2. Symmetric Real-Time flows.

from tmin or tmax. We plot it for d = 20. In Fig. 3(a), the value of t
∗ is 4.152208,

and in Fig. 3(b), it is 4.152208.
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Fig. 3. Symmetric Real-Time flows: Convergence to Nash Equilibrium.
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8.2 Non-Symmetric Real-Time Flows

In the next experiment, instead of having the symmetric case, the rates λi are
drawn uniformly from [1, 10] Mbps with tmin = 1, tmax = 15, qmax = 40, qmin =
10, I = 20, µ = 30Mbps. Figure 4 shows how different metrics vary with d
at unique Nash equilibrium. To ensure that the flows operate in the linear
region, we need tmin > 1

∆q
≥ 1

∆q
(1 − µ∑

j
λj
). We observe that d = 15.66

maximizes the network revenue. Figure 4(b) shows that values of t∗ for flows
having higher rates increase slower than that of flows having lower rates, i.e.,
higher rate flows experience less loss rates. Figure 4(c) shows that flows having
different rates gain similarly in their utility functions. We plot the individual
and average loss rate in Figs. 4(e) and 4(f). We confirm in these experiments
about uniqueness of Nash equilibrium, although the sample path of different
connections will depend on the connection rates. The condition for uniqueness
is that 2t3maxλ

2
min > t3minλ

2
max which in our case is given by, 2×153×12 = 6750 >

100 = 13 × 102.

8.3 Symmetric TCP Connections

For symmetric TCP connections we have considered Ri = R = 20ms for
all connections with tmin = 2, tmax = 20, µ = 30Mbps, N = 20, a = 0.1.
Figures 5(a-d) show the effect of increasing d on the queue size, equilibrium
strategy, utility and network income. Figures 6(a-b) show the convergence to
Nash equilibrium in case of symmetric TCP connections starting from tmin

and tmax respectively. The maximum value of network revenue is found at
d = 0.6704. In this symmetric case, the loss probability is given by

p∗ =
R2

3N2


µ2 +

3N2

R2
− µ

√
µ2 +

6N2

R2




= 0.0017

To ensure that the symmetric TCP flows operate in the linear region, we
satisfy the condition on tmin:

tmin >



−µ +

√
µ2 + 4(

∑
j∈N

1
Rj
)2

4
√
α∆q

∑
j∈N

1
Rj




2

= 4.6271× 10−5.

We plot sample paths of a connection which illustrate convergence to Nash
equilibrium when t0 started from tmin or tmax. We plot it for d = 0.1. In
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Fig. 4. Non-Symmetric Real-Time flows.

Fig. 6(a), the value of t∗ is 2.724076, and in Fig. 6(b), it is 2.724076.

8.4 Non-Symmetric TCP Connections

We present a non-symmetric case in Figure 7 in which the Ris are drawn
uniformly from [1, 20]ms with tmin = 2, tmax = 20, µ = 30Mbps, N = 20, a =
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Fig. 5. Symmetric TCP Flows.
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Fig. 6. Symmetric TCP flows: Convergence to Nash Equilibrium.

0.2, qmax = 40, qmin = 10. The value of d at which network revenue is highest
is 0.8948. We ensure that the non-symmetric connections operate in the linear
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region by setting:

tmin >



−µ+

√
µ2 + 4(

∑
j∈N

1
Rj
)2

4
√
α∆q

∑
j∈N

1
Rj




2

= 0.5476.
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Fig. 7. Non-Symmetric TCP.
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8.5 Real-Time Flows and TCP Connections

In this experiment (see Fig. 8), we combine both real-time and TCP connec-
tions. We have I = 15, N = 15, µ = 13Mbps, RTT=10ms, treal

min = 5, treal
max =

11, tTCP
min = 5, tTCP

max = 11, λ = 1Mbps, qmin = 10, qmax = 40, a for both real-time
and TCP connections are 100 and b = 4. We found two Nash equilibriums
for each values of d. Therefore, we plot two curves in each plot correspond-
ing to each Nash equilibrium. The highest network revenue is achieved at
d = 353.15, treal = 11, tTCP = 5 and at d = 254.35, treal = 5, tTCP = 11. In
the simulations, we observe the values of q < qmax and since there is at least
one TCP flow i with throughput λi > 0 , this implies that the flow has loss
probability pi > 0 and average queue length q > qmin. We conclude that the
system operates in the linear region. Our objective in this set of experiments
is to show that there exists a Nash equilibrium for both real-time and TCP
connections. The loss experienced by real-time flows at the first NE is 0.3676
and that by TCP flows is 0.1826. The corresponding values at the second NE
is 0.2349 and 0.4461.

9 Conclusions and Future Work

We have studied in this paper a fluid model of the RED buffer management
algorithm with different drop probabilities applied to both UDP and TCP traf-
fic. We first computed the performance measures for fixed drop policies. We
then investigated how the drop policies are determined. We modeled the deci-
sion process as a noncooperative game and obtained its equilibria. We showed
the existence of the equilibria under various conditions, and provided ways
for computing them (establishing also convergence properties of best-response
dynamics). The goal of the network provider is to use a pricing function that
is going to optimize its revenue. Determining an optimal function seems a dif-
ficult problem (left for future research), and we restricted ourselves to specific
classes of functions where only one parameter varies. We finally addressed the
problem of optimizing the revenue of the network provider.

Concerning the future work, we are working on deriving sufficient and neces-
sary conditions for operating at the linear region when there are both real time
and TCP connections; these seem to be more involved than the conditions we
have obtained already. We will further study the impact of buffer management
schemes on the performance and on the revenues of the network; in particular,
other versions of RED will be considered (such as the gentle-RED variant).
We will also examine how well the fluid model is suitable for the packet-level
model that it approximates.
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Fig. 8. Both Real-Time and TCP flows.

We intend to consider in the future other utility functions, and in particular
include delay and/or jitter terms. We plan to compare the performance of
Nash equilibrium with the team problem in which the whole network efficiency
is maximized. We shall then consider other pricing functions which would
increase the efficiency of the Nash equilibrium.
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10 Appendix

10.1 Proof of Part 2 of Theorem 1

For only TCP connections, we have,

√
q − qmin ≤ √

qmax − qmin =
√
∆q. (16)
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From (7), we get the following sufficient and necessary condition for q ≤ qmax:

−µ+

√
µ2 + 4α

(∑
j

√
tj

Rj

)(∑
j

1

Rj

√
tj

)

2
√
α
(∑

j

√
tj

Rj

) ≤
√
∆q

or equivalently,
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√
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 .

A sufficient condition for the latter is

∑
j∈N

1

Rj

√
tmin

≤ µ
√
α∆q + α∆q

∑
j∈N

√
tmin

Rj

. (17)

Solving the quadratic equation (17) for tmin, we see that this is implied by
(10).

Finally the fact that we are not below the lower extreme of the linear region
(i.e., pi > 0 for all i) is a direct consequence of the fact that zero loss probability
would imply infinite throughput (see (1)), which is impossible since the link
capacity µ is finite.

10.2 Proof of Theorem 2

We first show that the utility function is concave in the case of only real time
sessions. Replacing ti by 1/Ti in Equation (6), we obtain

pi =

∑
j∈I λj − µ

λi + Ti
∑

j �=i λj/Tj

,

which is convex in Ti. The convexity of pi in Ti follows from the fact that∑
j∈I

λj −µ > 0. Hence Ui are concave in Ti and continuous in Tj . The existence
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then follows from [21]. For TCP connections, we have

∂2Ui

∂T 2
i

= ai

[∂2λi

∂T 2
i

(1− pi)− 2
∂λi

∂Ti

∂pi

∂Ti
− λi

∂2pi

∂T 2
i

]
− ∂2d̂(Ti)

∂T 2
i

(18)

where d̂(Ti) = d(1/ti). On the other hand, (1) implies

∂pi
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= −2α

R2
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λ3
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∂2pi

∂T 2
i
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4
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Then (18) becomes
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Since the function d̂ is convex in Ti, then form (20), it is sufficient to show
that the second derivative of λi with respect to Ti is non-positive. We have
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where C1 =
∑
j �=i

√
tj

Ri
and C2 =

∑
j �=i

1√
tjRi

. Now, we must prove that the second

derivative of the functions F1 and F2 are non-positive for all C1 ≥ 0 and C2 ≥
0. We begin by taking the second derivative of F1. After some simplification,
we obtain

∂2F1(Ti)

∂T 2
i

= −1/4µR
2
iC2(3

√
Ti + C2Ri)

(T
3/2
i (

√
Ti + C2Ri)3)

which is positive. For the second function F2, since the function F2 is positive,
it suffices to show that the second derivative of function [F 2(Ti)]

2 is non-
positive, we have
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2
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2
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2
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3
2 + 3Tiµ

2R2
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which is non-positive.

10.3 Proof of Theorem 4

Under supermodular condition, to show the uniqueness of Nash equilibrium,
it suffices to show that [22],

− ∂2Ui

(∂Ti)2
≥ ∑

j �=i

∂2Ui

∂Ti∂Tj
. (21)

or equivalently,
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∑
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≥ 0. (22)
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For the case of only real time sessions, pi =
∑
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Therefore, in order to get the uniqueness, we need that
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This leads to the sufficient condition:
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10.4 Proof of Theorem 5

For supermodularity on TCP connections, we consider the sufficient condition
∂2Ui

∂ti∂tj
≥ 0. It follows that
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Thus a sufficient condition for supermodularity ( ∂2Ui
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Response to the referees 
------------------------ 
 
Reviewer #1: 
----------- 
 
> The paper presents a game theoretical approach to  
> determine the slop of the dropping probability curve in Random Early  
> Detection buffer Management. The model considers N TCP flows and I CBR  
> flows. Each of the flows has the same RED parameters but the slop t of  
> the linear part of the curve can be chosen properly by each flow as a  
> continuous variable in a given interval, to obtain different levels of  
> service. After defining a utility for the flow as a function of the  
> obtained performances and the paid price, each flow can be considered  
> as a player in a non-cooperative game. Under this model, the condition  
> for the existence of the Nash equilibrium and the related solution are  
> given in particular cases where only TCP or CBR flows are present. 
> The paper presents a novel approach to select the parameters of a RED  
> buffer to obtain a required quality of service balancing the costs.  
> The paper is well written and clear to understand. My main concern is  
> about the model and its applicability to the real cases. 
> First, the traffic model with homogeneous flows and fixed number of  
> flows doesn't reflect the highly dynamic conditions of Internet  
> traffic.  
 
We agree with the comment of the referee. Fixing the number of flows 
and also using throughput formula for long lived flows indeed restricts 
the scope of this paper to applications such as disk backups and storage 
networks where long files are transfered. We should mention that there 
has been a great interest in studying long lived TCP connections and 
there are many outstanding papers on TCP analysis that restrict to  
symmetric long lived TCP connections. We hope that research on some 
restricted models could help researchers later on to study more general 
scenarios. 
 
 
> Second, the proposed solution model, where each flow select  

* Revision Letter



> its best slop, seems not be enough scalable to be implemented.  
 
Scaling the proposed model to the whole Internet is beyond the scope 
of this paper. Yet  
(i) we believe that our approach for service 
   differentiation can be quite useful even if it does not scale 
   at the level of the global Internet. 
(ii) We added a paragraph in the Subsection "Practical 
   considerations" where we describe a way to decentralize marking 
   decisions in a way that can scale well. 
 
 
> Finally, the hypothesis of full knowledge of the slops of the other  
> flows to determine the optimal solution seems to be unrealistic. This  
> review would like to see these issues addressed in the paper and  
> explained with realistic example of applicability of the proposed  
> approach.  
 
In the model presented in the paper, users could reach the Nash equilibrium 
by  choosing at each stage an  
action that maximizes their utility function, depending on the actions  
of all other flows. This dependence appears in the loss probability  
$p_i$. In our case, a user can determine her utility function without  
hypothesis of full knowledge: since users only need to have  
\emph{aggregate} information about other flows (like the total rate  
$\sum_{j \in \mathcal{I} \lambda_j$ in the CBR-only scenario), there  
are in principle no scalability issues, i.e., no need of exchanging or  
storing per-flow information. The issue of how such aggregate values  
are signaled to sources is outside the scope of this paper. 
 
 
> As a minor observation, variables in the thesis of Theorem 3  
> should be corrected. 
  
Done. 
 
 



Reviewer #2: 
----------- 
 
> I have two main objections against this paper: 
> 
> 1. I am not sure whether this paper is sufficiently accessible for the  
> audience of Computer Networks. The paper starts with a paragraph in  
> which it is assumed that the reader is familiar with TCP (which  
> probably many of the readers are) and RED (which probably just a  
> fraction is). There is nothing on the background of RED (what is it  
> supposed to do?, why is it needed?, perhaps some remarks on  
> oscillation of TCP's window size, a reference to Floyd's seminal work  
> on this, 
> ). It is necessary to briefly sketch a context before the story starts  
> off. 
 
We have added some text to better explain the context of RED as a  
congestion avoidance tool. 
 
 
> 
> Similarly, it is not stated clearly why the problem described in the  
> paper is interesting in the first place. Why is it that we want to  
> know about this game?  
 
Finding the "right" set of parameters for RED is very difficult, as has  
been shown by many authors (see e.g. [Christiansen et al., SIGCOMM  
2000] [Firoiu and Borden, INFOCOM 2000]). In the context of service  
differentiation, where extensions of RED (like RIO [Clark & Fang,  
IEEE/ACM ToN 1998]) are usually used to perform active queue management  
and differentiated handling of packets, the problem gets aggravated by  
an increased number of parameters---and the QoS users get depends on  
those parameters. On the other hand, a common problem of differentiated  
services is that of finding the "right" pricing mechanism. This work  
may be regarded as trying to address the problem of parameter setting  
for service differentiation so that users "get what they pay for" in  
terms of QoS (represented here by the loss probability and the  



resulting throughput). Note that, although the paper uses RED for  
service differentiation, another scalable QoS mechanism could have  
served the purpose. RED offers an instance of such a mechanism in which  
belonging to a service class is interpreted in terms of loss. 
 
Moreover, the game formulation of the problem arises naturally, since a  
classical optimization approach where a common objective function is  
maximized, is not realistic in IP networks; indeed, it is quite rare  
that users of a network collaborate with each other (or even "know"  
each other). 
 
 
> Is RED going to be implemented soon?  
 
RED is already implemented in commercial routers (indeed, it's been  
available for some time in routers from Cisco and Juniper, for  
instance). Implementations under Linux, FreeBSD and Solaris are also  
available. Some anecdotal evidence on RED's deployment on the Internet  
can be found on Sally Floyd's RED webpage:  
http://www.icir.org/floyd/red.html 
 
 
> Is it indeed true that any user can pick his own p(i) (which I doubt)? If  
> so, why can't he choose the parameters q(min) and q(max)? Is it  
> realistic that users are indeed going to pay for their p(i)? Perhaps  
> this is just an academic study, which is fine, but then it might be  
> better to explicitly say this. 
  
In a DiffServ-like architecture [RFC 2475], users may select a specific  
QoS treatment on a packet-per-packet basis, and that treatment  
corresponds precisely to a RED-like AQM policy that may drop packets  
with a probability that depends on a tag carried by the packet (this is  
how the AF per-hop behavior [RFC 2597] operates) --- the tag may well  
be set by the user to signal how the packet should be treated by the  
core routers. So, from a practical (i.e., implementation) viewpoint, a  
user choosing her own p(i) in the router requires just a  
straightforward setting of the QoS tag she puts on her packets. 



  
On the other hand, choosing the thresholds q(min) and q(max) does not  
seem realistic: their (feasible) values depend on link speeds and on  
the actual, "physical" capacity of router queues, which may vary from a  
link/router to another. 
 
The fact that the mechanism that 
we propose and analyze allows to get the performance measures 
explicitly for any choices of $p(i)$ seems to us very appealing  
and useful for dimensioning. Other buffer management schemes (with 
different q(min) and q(max)) are much more difficult to analyse and 
do not lead to explicit expressions. 
 
 
> Then, at some point, the authors start to talk about quite  
> specialistic game theory, such as supermodular games. This concept is  
> not at all known to the majority of ComNets readers, I suppose, and I  
> would think that at least it should be explained what supermodular  
> games are (at an intuitive level), and why these work so nicely in  
> this context. Sentences like "The result then follows from standard  
> theory of supermodular games" do not give any insight. 
 
We added an explanation on supermodular games. 
We do not expect readers to know game 
theory and in particular, supermodular games. We only use 
some properties of these games, for which we give in this new 
version the exact related references. 
 
 
> 
> These omissions narrow down the target audience of the paper  
> substantially. Now it can be read by just the subset of networking  
> engineers who know about game theory. 
> 
> 2. My second major objection relates to the time-scales involved.  
> Indeed RED reacts to the average queue length, but there are several  
> ways to compute this. The most common procedure being  



> exponentially-weighted moving averages, there are several parameters  
> involved, corresponding to "the amount of memory" used. 
> 
> There will be, however, oscillations of the buffer content: TCP's  
> window grows, the buffer starts to fill, due to RED packets are  
> dropped with higher and higher probability, and TCP's window shrinks  
> back again. 
> 
> My question here is: how does the time-scale of the buffer  
> fluctuations relate to the time-scale that is used to estimate the  
> buffer content. 
> 
> Wouldn't it be better to take into account the asynchronous arrival of  
> patterns by looking at Poisson arrivals with time-varying rate?  
> Related work is done by the first author (in collaboration with  
> Avrachenkov et al.), and also by Lassila, Key, Kuusela, 
> 
 
Here we assume that  
the time averaging parameters of RED are such that the average queue size, 
and hence the drop probabilities $p_i$'s have negligible oscillations. 
We are aware of the fact that for some RED parameters this may 
not be the case, and that the interaction between RED and TCP can 
lead to instabilities if the parameters are not chosen correctly. 
The choice of the queue averaging parameter  (which 
determines the "slower" time scale of RED) as a  
function of other parameters like the  
link rate, and its relationship with RED dynamics have been studied  
elsewhere (see e.g. [work on A-RED by Floyd et al., 2001]) and are  
totally outside the scope of our paper. 
  
 
> 
> Summarizing: perhaps the author's approach is the correct one (i.e.,  
> then it would be justified to ignore the window size fluctuations, and  
> the inherent burstiness of packet arrivals), but at least this should  
> be convincingly motivated. 



> 
> 3. Finally, I have a number of smaller comments. For instance, why is  
> there a section on optimal pricing if there isn't any structural  
> result you can prove? 
> The conclusions aren't very precise; sentences as "The equilibrium  
> depends on the pricing strategy of the network provider" are almost  
> meaningless (of course it does, but is it meant that somehow the  
> "nature" of the solution depends on the pricing strategy?). 
  
The goal of the network provider is to use a pricing function that is  
going to optimize her revenue. Determining an optimal function seems a  
difficult problem (left for future research), and we restricted  
ourselves to specific classes of functions where only one parameter  
varies. 
 
 
> Why do the authors choose linear utility curves? (page 7) 
> 
 
We added a footnote to explain that. 
 
 
Reviewer #3: 
----------- 
 
> The paper is well written and organized. It deals with  
> pricing of differentiated services and its impact on the choice of  
> service priority at equilibrium. The interactions among users(flows)  
> are built into a non-cooperative game and the authors thoroughly  
> investigated the conditions for the existence and uniqueness of the  
> Nash equilibrium in this game. 
> 
> ------------------------------ 
> Major Comments 
> 
> The design of utlitity function is the most critical to a  
> non-cooperative game in which each user maximizes his utility  



> selfishly. In this paper, the (net) utility function is defined to be  
> the utility(goodput) minus the price(d(t_i)) where d(t_i) is also  
> considered as network income. The only constraint for the pricing  
> function is that it is convex in T_i so as to assure the concavity of  
> utility function. On the other hand, the authors try to optimize the  
> network income which is a social optimum of the network by changing a  
> specific parameter(d) in the pricing function. Therefore it would be  
> important and necessary to show why a particular pricing function is  
> used. The authors are suggested to examine the properties of pricing  
> functions and justify how your pricing function could be used as the  
> network income. 
 
The pricing schemes should  
satisfy two objectives: first, it should maximize network income and 
second, it should improve the efficiency of the NE.  
We are not aware of any explicit formula for the utility 
of the network owner or of  users. Where as the users' utility 
that we assumed have allowed us to obtain qualitative results 
(e.g. the supermodularity structure) as well as explicit best 
responses, the pricing function that 
we chose for the network was less important since in any case, 
the solution of the hierarchical optimization problem (i.e. solving 
for the network's parameter $d$ that maximizes its revenue 
assuming that the users are at the equilibrium that is induced 
by that parameter) is done numerically and not analytically. 
The fact that we restricted to price functions that depended on 
a single parameter was for simplifying the computations. 
 
 
> 
> ------------------------------ 
> Some detailed comments 
> 
> (1)pp.6, proof of Proposition 1: the product of solutions is  
> positive(it is equal to -z_0/z_3) and the sum of solutions is  
> positive(it equals -z_2/z_3). 
 



Done 
 
 
> 
> (2)pp.7: should include the feasible value range for a_i and b_i.  
> (a_i>0 and b_i>=0) 
> 
 
Done 
 
 
> (3)pp.8, proof of Theorem 1: "which implies together with (6)..." The  
> equation referred to should be (5). 
> 
 
Done 
 
 
> (4)pp.14, the last 3 lines: You probably cannot "confirm" the  
> uniqueness of Nash equilibrium. The parameters chosen for this  
> simulation do not satisfy the conditions in Theorem 4 and thus it is  
> not correct to say there is a Nash equlibrium. Anecdotal results  
> cannot be used to prove or confirm here. 
 
We now use other parameters for which we  
managed to show that the sufficient conditions for uniqueness 
indeed hold.  


