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ABSTRACT

The asymptotic robustness of estimators in the context of
rare-event simulation is often qualified by properties such
as bounded relative error (BRE) and logarithmic efficiency
(LE), also called asymptotic optimality. These properties
guarantee that the estimator’s relative error remains bounded
or does not increase too fast, respectively, when the rare
events becomes rarer. Their work-normalized versions take
the computational work into account. Other recently intro-
duced characterizations of estimators include bounded nor-
mal approximation, which implies a uniform Berry-Esseen
bound as a function of the rarity parameter. However, these
properties do not suffice to ensure that moments of order
higher than 1 are well estimated. For example, they do
not guarantee that the variance of the empirical variance
remains under control as a function of the rarity parameter.

We introduce generalizations of the BRE and LE prop-
erties that take care of this limitation. They are named
bounded relative moment of orderk (BRM-k) and logarith-
mic efficiency of orderk (LE-k). These properties are of
interest for various estimators, including the empirical mean
and the empirical variance. Work-normalized versions are
also defined. As an illustration, we study the hierarchy
between these properties (and a few others) for a model of
highly-reliable Markovian system (HRMS) where the goal
is to estimate the failure probability of the system.

1 INTRODUCTION

Rare-event simulation is a key tool in several areas such
as reliability, telecommunications, finance, insurance, and

computational physics, among others (Bucklew 2004, Hei-
delberger 1995, Juneja and Shahabuddin 2006). In typical
rare-event settings, the Monte Carlo method is not viable
unless special “acceleration” techniques are used to make
the important rare events occur frequently enough. The
two main families of techniques for doing that are splitting
(Ermakov and Melas 1995, L’Ecuyer, Demers, and Tuffin
2007) and importance sampling (IS) (Glynn and Iglehart
1989, Juneja and Shahabuddin 2006).

Suppose we want to estimate a positive quantityγ = γ(ε)
that depends on ararity parameterε > 0. We assume that
γ is a monotone (strictly) increasing function ofε and that
limε→0+ γ(ε) = 0. We have a family of estimatorsY =Y(ε)
taking their values in[0,∞), such thatE[Y(ε)]= γ(ε) for each
ε > 0. In applications,γ(ε) can be a performance measure
defined as a mathematical expectation, and some model
parameters are defined as functions ofε in a convenient
way. For example, in queuing systems, the service time and
inter-arrival time distributions and the buffer sizes might
depend onε, while in Markovian reliability models, the
failure rates and repair rates might be functions ofε. The
convergence speed ofγ(ε) toward 0 may depend on how
the model is parameterized, but the robustness properties
introduced in this paper do not depend on this speed; they
depend only on the convergence speed of some moments
of Y(ε) relative to that ofγ(ε).

We may want to compute a confidence interval onγ(ε)
based on i.i.d. replicates ofY(ε). To do this via the classical
central limit theorem (CLT), we need reliable estimators for
both the meanγ(ε) and the varianceσ2(ε) = E[(Y(ε)−
γ(ε))2]. We want these estimators to remain robust in the
sense that their relative error remains bounded (or grows
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only very slowly) whenε → 0. Under the (unrealistic)
assumption that the width of the confidence interval can be
computed by using the exact variance, the relative width
remains bounded if the relative errorσ(ε)/γ(ε) is bounded.
An estimator with the latter property is said to havebounded
relative error (BRE) (e.g., Heidelberger 1995). To estimate
this relative width properly, we need a robust estimator of
σ2(ε) relative toγ2(ε); this involves the fourth moment of
Y(ε). In rare-event settings, reliable (relative) mean and
variance estimators are typically difficult to obtain. The
variance is also often more difficult to estimate than the
mean (relative to the mean).

More generally, a CLT based on an Edgeworth-type
expansion would require reliable estimates of higher relative
moments. As another example, if we want to compare the
efficiencies of alternative mean estimators, we want the
error on the variance to be significantly smaller than the
variance itself; that is, a small relative error of the empirical
variance. Robustness of relative moment estimators can be
important for other applications as well.

In the remainder of this extended abstract, we define
such robustness characterizations, briefly examine some of
their properties, and give examples. The details will be
provided in the (forthcoming) full paper.

We use the following notation. For a functionf :
(0,∞) → R, we say thatf (ε) = o(εd) if f (ε)/εd → 0 as
ε → 0; f (ε) = O(εd) if | f (ε)| ≤ c1εd for some constant
c1 > 0 for all ε sufficiently small; f (ε) = O(εd) if | f (ε)| ≥
c2εd for some constantc2 > 0 for all ε sufficiently small;
and f (ε) = Θ(εd) if f (ε) = O(εd) and f (ε) = O(εd). We
use the shorthand notationY(ε) to refer to the family of
estimators{Y(ε), ε > 0}. We also write “→ 0” to mean
“→ 0+.”

2 ROBUSTNESS PROPERTIES OF THE RELATIVE
MOMENTS

Bounded relative moments. The relative moment of
order k of the estimatorY(ε) is defined as

mk(ε) = E[Yk(ε)]/γk(ε). (1)

We say thatY(ε) hasbounded relative moment of order k
(BRM-k) if

limsup
ε→0

mk(ε) < ∞. (2)

Sincem2(ε) = E[Y2(ε)]/γ2(ε) = 1+σ2(ε)/γ2(ε), it is eas-
ily seen that BRE is equivalent to BRM-2. The BRE property
means that the expected width of a confidence interval on
γ(ε) based on i.i.d. replicates ofY(ε) and the classical
central-limit theorem (CLT) decreases at least as fast as
γ(ε) whenε → 0.

Using Jensen’s inequality, we can show thatmk(ε) is
nondecreasing ink, so that BRM-k implies BRM-k′ for
1 ≤ k′ < k. We also have that for any positive integers
k, ℓ, m, and any non-negative random variableX(ε), if
Y(ε) = Xℓ(ε) is BRM-mk, thenY′(ε) = Xmℓ(ε) is BRM-k.

Work-normalized measures. The BRM-k property
does not take the computational work into account. For
example, if an estimator̃Y(ε) hasm2(ε) = 1/ε, we can turn
it into an estimatorY(ε) with the BRM-k property simply by
definingY(ε) as the average of⌈1/ε⌉ i.i.d. copies ofỸ(ε).
However, the computing cost ofY(ε) increases without
bound asε → 0. A less trivial example of an estimator
that is BWRM-2 but not BRM-2 is exhibited in Cancela,
Rubino, and Tuffin (2005). In that example,t(ε) = O(ε)
but m2(ε) = O(ε−1).

To take the work into account, we introduce thework-
normalized relative moment of order k, defined ast(ε)mk(ε),
wheret(ε) is the expected computational time to generate
Y(ε). We say thatY(ε) has bounded work-normalized
relative moment of order k(BWRM-k) if

limsup
ε→0

t(ε)mk(ε) < ∞. (3)

Logarithmic efficiency. The estimatorY(ε) has
logarithmic efficiency of order k(LE-k) if

lim
ε→0

lnE[Yk(ε)]

k lnγ(ε)
= 1. (4)

One intuitive interpretation of LE-k could be that when
γk(ε) converges to zero exponentially fast,E[Yk(ε)] also
converges exponentially fast and at the same exponential rate.
This is the best possible rate; it cannot converge at a faster
rate because Jensen’s inequality ensures thatE[Yk(ε)]−
γk(ε) ≥ 0. LE-2 is the usual definition of logarithmic
efficiency, also called asymptotic optimality. In general,
LE-k is weaker than BRM-k, but there are situations where
the two are equivalent. The following examples illustrate the
two possibilities. There are several rare-event applications
whereγ(ε) decreases exponentially fast withε and where
practical BRM-2 estimators are not readily available (e.g.,
in queueing and finance), but where estimators with the
(weaker) LE-2 property, and often with the LE-k property for
all k, have been constructed by exploiting the theory of large
deviations (Asmussen 2002, Glasserman 2004, Heidelberger
1995, Juneja and Shahabuddin 2006, Siegmund 1976).

Example 1 Suppose thatγ(ε) = exp[−η/ε] for
some constantη > 0 and that our estimator hasσ2(ε) =
q(1/ε)exp[−2η/ε] for some polynomial functionq. Then,
the LE property is easily verified, whereas BRE does not
hold becausem2(ε) = q(1/ε) → ∞ whenε → 0.

Example 2 Suppose thatγk(ε) = q1(ε) = ε t1 +
o(ε t1) and E[Yk(ε)] = q2(ε) = ε t2 + o(ε t2). That is, both
converge to 0 as a polynomial inε. Clearly, t2 ≤ t1, be-
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causeE[Yk(ε)]−γk(ε)≥ 0. We have BRM-k if and only if
(iff) q2(ε)/q1(ε) remains bounded whenε → 0, iff t2 = t1.
On the other hand,− lnq1(ε) = − ln(ε t1(1 + o(1))) =
−t1 ln(ε)− ln(1+o(1)) and similarly forq2(ε) andt2. Then,

lim
ε→0

lnE[Yk(ε)]

k lnγ(ε)
= lim

ε→0

t2 lnε
t1 lnε

=
t2
t1

.

Thus, LE-k holds iff t2 = t1, which means that BRM-k and
LE-k are equivalent in this case.

Other robustness properties We quickly mention
other related properties. We say thatY(ε) has thebounded
normal approximation(BNA) property if

limsup
ε→0

E
[

|Y(ε)− γ(ε)|3
]

/σ3(ε) < ∞. (5)

This property implies that
√

n|Fn(x) − Φ(x)| remains
bounded as a function ofε, i.e., that the Berry-Esseen
bound on the approximation error ofFn by the normal
distribution remains inO(n−1/2) uniformly in ε. BNA is
equivalent to BRM-3 ifσ(ε) = Θ(γ(ε)), but not otherwise.

Two other robustness properties are introduced in Tuf-
fin (2004), in the context of the application of IS to an
HRMS model, under the name of “well estimated mean
and variance.” They are equivalent to none of the other
properties defined here.

Robustness of the empirical variance An important
special case is the stability of the empirical variance as an
estimator of the true varianceσ2(ε). LetX1(ε), . . . ,Xn(ε) be
an i.i.d. sample ofX(ε), wheren≥ 2. The empirical mean
and empirical variance arēXn(ε) = (X1(ε)+ · · ·+Xn(ε))/n
and

S2
n(ε) =

1
n−1

n

∑
i=1

(Xi(ε)− X̄n(ε))2.

If we take Y(ε) = S2
n(ε) in our framework of the previ-

ous subsections, we obtain definitions of the robustness
properties forS2

n(ε) as an estimator ofσ2(ε).
It can be proved that ifσ2(ε) = Θ(γ2(ε)) (whereγ(ε) =

E[X(ε)]), then BRE-2k for X(ε) implies BRM-k for S2
n(ε),

for any k ≥ 1. These two properties are not equivalent
in general, however. In particular, BRE forS2

n(ε) is not
equivalent to BRM-4 forX(ε). Indeed, Var[S2

n(ε)]/σ4(ε) =
Θ

(

E[(X(ε)− γ(ε))4]/σ4(ε)
)

, which differs in general from
Θ

(

E[X4(ε)]/γ4(ε)
)

.

3 EXAMPLE: A RELIABILITY MODEL

We consider an HRMS withc types of components andni

components of typei, for i = 1, . . . ,c, all those components
being subject to failures and repairs (Shahabuddin 1994).
The system is modeled by a continuous time Markov chain
(Y(t) = (Y1(t), . . . ,Yc(t)), t ≥ 0}, whereYi(t) is the number

of failed type-i components at timet. We suppose that the
state space is partitioned in two subsetsU and F of up
and failed states, whereU is a decreasing set (i.e., ifx∈U

andx≥ y, theny∈U ) that contains the state0= (0, . . . ,0)
in which all the components are operational. Failure and
repair rates of individual components are independent and
given by λi(x) = ai(x)εbi(x) and µi(x) = Θ(1) for type-i
components when the current state isx, whereai(x) > 0
is a real number andbi(x) ≥ 1 an integer. The parameter
ε ≪ 1 represents the rarity of failures; failure propagation
is allowed (which may depend onε) as well as grouped
repairs (independent ofε).

Our goal is to estimateγ(ε) = P[τF < τ0], whereτF =
inf{ j > 0 :Xj ∈F} andτ0 = inf{ j > 0 :Xj = 0}. We further
assume that from0, the failures having probabilityΘ(1) do
not directly drive toF , since otherwiseγ = Θ(1) is not a
rare event probability. Shahabuddin (1994) shows that for
this model, there is a numberr > 0 such thatγ(ε) = Θ(ε r).
To study this probability, we can limit ourselves to the
canonically embedded discrete-time Markov chain (DTMC)
{Xj , j ≥ 0}, with transition matrixP, is defined byXj =
Y(ξ j) for j = 0,1,2, . . . , whereξ0 = 0 and 0< ξ1 < ξ2 < · · ·
are the jump times of the CTMC. We useP to denote the
corresponding measure on the sample paths of the DTMC.
Our final assumptions are that the DTMC is irreducible and
that at least one repairman is active whenever a component
is failed.

Naive Monte Carlo simulation is inefficient in this
case (the relative error of this estimator increases toward
infinity when ε → 0) and something else must be done to
obtain a viable estimator. Several IS schemes have been
proposed in the literature for this HRMS model; see, e.g.,
Cancela, Rubino, and Tuffin (2002), Nakayama (1996),
Shahabuddin (1994). They all pertain to a classI of
measuresP∗ defined by a transition probability matrixP∗

with the following property: wheneverP(x,y) = Θ(εd), then
P∗(x,y) = Θ(εℓ) for ℓ ≤ d. This means that the probability
of a transition under the new probability transition matrix
is never significantly smaller than under the original one.
From now on, we assume thatP∗ satisfies this property. For
example, the so-calledsimple failure biasing(SFB), is such
that for statesx∈F ∪{0}, we haveP∗(x,y) = P(x,y) for all
statesy, i.e., the transition probabilities are unchanged. For
any other statex, a fixed probabilityρ is assigned to the set
of all failure transitions, and a probability 1−ρ is assigned
to the set of all repair transitions. In each of these two
subsets, the individual probabilities are taken proportionally
to the original ones.

For a given sample path ending at stepτ = min(τF , τ0),
the likelihood ratio is

L = L(X0, . . . ,Xτ) =
P[(X0, . . . ,Xτ)]

P∗[(X0, . . . ,Xτ)]
=

τ

∏
j=1

P(Xj−1,Xj)

P∗(Xj−1,Xj)
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and the corresponding (unbiased) IS estimator ofγ(ε) is
given byY(ε) = 1{τF <τ0}L(X0, . . . ,Xτ).

A characterization of the IS schemes for the HRMS
model that satisfy the BRE property was obtained by
Nakayama (1996) and the equivalence between BRE and
LE for this model was mentioned without proof in Hei-
delberger (1995). Our first result generalizes this. Indeed,
in our HRMS framework, with a measure inI , we can
prove that the three properties BRM-k, BWRM-k, and LE-k
are equivalent. These three properties are also equivalent
if we replaceY(ε) by its gth empirical moment or by its
empirical variance.

Another interesting remark is that for any IS measure in
I , σ2(ε) = O(γ2(ε)), and even more,E[(Y(ε)−γ(ε))k] =
O(γk(ε)) in general.

We have also been able to characterize BRM-k for
the gth empirical moment in the HRMS framework. In
particular, we have gives characterizations for BRM-k (of
the mean), as well as BRE and LE for the empirical variance.
Define∆m as the set of paths(x0, · · · ,xn) such thatτF < τ0
andP{(X0, · · · ,Xτ) = (x0, · · · ,xn)} = Θ(εm)} and letsm be
the integer such thatE[Ym(ε)] = Θ(εsm) with sm≤ mr. For
an IS measureP∗ ∈I , we have BRM-k for thegth empirical
moment if and only if for all integersmsuch thatr ≤m< ksg

and all (x0, · · · ,xn) ∈ ∆m,

P
∗{(X0, · · · ,Xτ) = (x0, · · · ,xn)} = Θ(εℓ)

for someℓ ≤ k(mg−sg)/(kg−1). This result means that a
path cannot be too rare under the IS measureP

∗ to verify
BRM-k of thegth moment. Special cases of this result were
obtained under the same conditions by Nakayama (1996)
for BRE and by Tuffin (1999), Tuffin (2004) for BNA.

In the specific case of empirical mean and variance,
we have BRM-k for Y(ε) if and only if for all integersm
such thatr ≤ m< kr and all (x0, · · · ,xn) ∈ ∆m,

P
∗{(X0, · · · ,Xτ) = (x0, · · · ,xn)} = Θ(εℓ)

for ℓ ≤ k(m− r)/(k−1). We also have BRM-k for Y2(ε)
if and only if the same condition holds withℓ ≤ k(2m−
s2)/(2k−1) . We have BRM-k for the empirical variance
if and only if ℓ≤ k(2m−s)/(2k−1) with s the integer such
that σ2(ε) = Θ(εs) (with s2 = s iff σ2(ε) = Θ(E[Y2(ε)])).

Some relationships between measures of robustness
were proved by Tuffin (2004) for a more restricted class of
IS measures such that for each failure transition not starting
from 0, wheneverP(x,y) = Θ(εd), then P∗(x,y) = Θ(εℓ)
with ℓ < d. It was shown that BNA implies BRE, but that the
converse is not true. Now, for the same class of measures,
we are also able to prove that BRE for the empirical variance
implies BNA, but that the converse is not true.
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