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Abstract

Monte Carlo and quasi-Monte Carlo methods are simulation techniques that have been de-
signed to efficiently estimate integrals for instance. Quasi-Monte Carlo asymptotically outperforms
Monte Carlo, but the error can hardly be estimated. We propose here to recall how hybrid Monte
Carlo/Quasi-Monte Carlo have been developed to easily get error estimations, with a special em-
phasis on the so-called randomly shifted low discrepancy sequences. Two additional points are
investigated: we illustrate that the convergence rate is not always improved with respect to Monte
Carlo and we discuss the confidence interval coverage problem.
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1 Introduction

Quasi-Monte Carlo (QMC) methods [11] are deterministic numerical integration tools that
have been designed by analogy with Monte Carlo (MC) simulation technique. In Quasi-
Monte Carlo, the random sample of MC is replaced by a sequence of "well distributed”
points (called a low discrepancy sequence), so that the estimation is likely to converge faster,
at least on regular integrands. Whereas very promising theoretically, QMC methods suffer
from two main drawbacks. First, their domain of applicability is restricted with respect to
MC. This is due to the correlation structure of the low discrepancy sequence (mandatory to
speed up the convergence). Second, the error estimation, possible in theory, is intractable
in practice whereas MC easily provides a (statistical) confidence interval.

The goal of this paper is first to recall how hybrid QMC methods have been designed in
order to circumvent the error estimation problem. Then, as contributions, an illustration
that the convergence rate of hybrid QMC is not always better than MC is presented, as well
as a study of the normal approximation that is used to build the confidence interval. To our
knowledge, this last point has not been studied in the literature but deserves consideration
since we should know how to simultaneously increase the two involved parameters (instead
of one in MC) to get a correct confidence interval coverage.

*This work has been partially supported by the Sure-Paths ACI project



The layout of the paper is as follows. In Section 2 we recall the basic definitions of
MC and QMC and highlight the main drawbacks of QMC. Section 3 briefly describes the
randomization methods from the literature. We especially focus on the convergence re-
sults for the shifted Quasi-Monte Carlo technique (but similar results exist for the other
techniques). We illustrate in Section 4 on a counter-example that, nevertheless, the con-
vergence speed is not always faster with randomized QMC techniques (even if it does not
deter from using it on such an example) and we investigate Section 5 how the two param-
eters involved in the technique should increase in order to obtain a satisfactory confidence
interval coverage. Section 6 is devoted to the conclusions and perspectives of research.

2 Monte Carlo and quasi-Monte Carlo methods
2.1 Basic notions on MC and QMC

Assume that we wish to compute the integral

I= f(z)dz.
[0,1]¢

MC considers a sequence (X (i))lgig ~ of N random and independent vectors uniformly
distributed over [0,1)*. From the central limit theorem, we have a confidence interval for
I
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at confidence level 1 — o, where ¢, = N~ 1(1— ), 0° is the variance of the random variable
f(X) with X uniformly distributed over [0,1)®, and N is the cumulative distribution
function of the Gaussian law with mean 0 and standard deviation 1. The convergence
speed of this method is then, on average, O(N~'/2), independent of the dimension s of the
problem.

QMC methods [11] use a deterministic sequence P = (¢£(™),, instead of a random one,
leading to an estimation
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The discrepancy aims at measuring the repartition of the sequence over [0, 1) by
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with z = (z1,---,xs). The sequence P = (é’(”))nelN is then equi-distributed if and only if

NliI_Il_l D (P) = 0. Error bounds for the approximation (1) of Z are obtained in terms of
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the discrepancy. For P partition of [0, 1]° in subintervals, let A(f,.J) be the alterned sum
of f values at the edges of sub-interval J. The variation in sense of Vitali is defined as

Vva(f) =sup Y |A(f,J)].
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Number of points | 103 10* 108 10° 102 106
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Table 1: Bounds of discrepancy in dimension 5

From Vi (f), we define V(f), the variation of f in sense of Hardy and Krause by

vin=3 Y V(i)

k=11<t1<--<1<s

where V‘S]fz (f 341, ,%k) is the variation in sense of Vitali applied to the restriction of f
to the space of dimension & {(uy,---,us) € [0,1]° :wu; =1for j # 41, ---,4}. We then
have the following Koksma-Hlawka error bound [11]:

< V(f)Dy(P). (2)

LS pem
‘anlf(f )= [, T

A sequence P = (é’(”))nelN is said to be a low discrepancy sequence if Dy (P) = O(N " 1(In N)*)
(the best-known result for infinite sequences) so that the estimation converges faster than
for MC. There exist many low discrepancy sequences; we can quote for instance Halton
[11], Sobol’ [1, 16], SQRT, Niederreiter [11], or Faure [5] sequences.

2.2 A drawback of quasi-Monte Carlo

MC methods easily give a confidence interval for the estimation by using the central limit
theorem. One could argue that QMC methods, by means of the Koksma-Hlawka bound (or
other related bounds), provide a stronger (since strict) bound that also allows to estimate
the error. Unfortunately, these bounds, composed of the variation of the function and
the discrepancy of the sequence, are useless in practice. To illustrate this, it can first be
observed that QMC does converge for functions with infinite variation such as function

f(z1, 22, 23) = min(z; + 22 + 3, 1)

(exhibiting for instance a convergence rate O(N~%7) for the Niederreiter sequence in base
b = 3) in dimension s = 3 [3], meaning that the Koksma-Hlawka bound is not tight.
Also, even if this variation in the sense of Hardy and Krause is finite, it is the sum of
2% — 1 variation in the sense of Vitali, each of them being at least as difficult to estimate
as T itself, their sum being potentially large, i.e. useless, even for moderate values of
s. Second, the known bounds of discrepancy, even if useful asymptotically (since they
provide the convergence rate O(N !(InN)?®)), usually require a very large N in order
to be O(N~!(InN)*), though it is observed quickly for the actual error. Tables 1 and
2 respectively display the bounds for the (0,5)-Niederreiter sequence in base b = 5 and
dimension s = 5 and the (0, 25)-Niederreiter sequence in base b = 27 and dimension s = 25
[11]. The convergence rate is longer to be observed when the dimension increases. In
dimension s = 25, 102! numbers of points could never be sampled, and the result is still
larger than 1. The bad behavior of this bound for a fixed number of points can also be
emphasized by the fact that, straightforwardly from the definition, D} (P) < 1.




Number of points 103 10° 10" 102! 10%°
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Table 2: Bounds of discrepancy in dimension 25

In the next sections, we see how using hybrid QMC methods would benefit to QMC in
order to circumvent these drawbacks.

3 Randomization of QMC for error estimation

We review in this section the randomization techniques that allow to use the central limit
theorem in order to determine/estimate the error in QMC methods. The technique can
also be seen as a use of low discrepancy sequences as a variance reduction technique in
MC. We will more specifically focus on the so-called shifted low discrepancy method and
use it as a benchmark. For numerical comparisons between the different randomization
techniques, the reader can refer to [12, 18].

3.1 Shifted low discrepancy sequences

Let X be a random variable uniformly distributed over [0,1), and (6(),cn a low dis-
crepancy sequence. As randomization technique [4], consider the random variable

N
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instead of & Zn LFEM)Y in QMC, where {z} is the vector of fractional parts of the
coordinates of z. The idea is to compute the average value of I independent copies Z; of
Z,

L
f;Zi (4)

and to obtain a confidence interval from the usual central limit theorem. Note that this
technique can be seen as a special case of the antithetic variates method described in [6]
where, for X ~ UJ[0,1)%, the estimator of Z is

1 N

n=1
with w, a one-to-one mapping of [0,1)*. Shifted-QMC is the case where wy, (z) = {z+£M™}.
To compute f the same number of times, we compare the variance of (4) with the

variance of the standard MC simulation with NI random variables. We will obtain a
variance reduction if and only if

N
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The convergence speed of the method has been shown in [19]. If f is a function with
bounded variation, we have

N
2 (% > FUx + 5(”)})> = O(N2(log N)*).
n=1

The estimator gives also good results on functions with infinite variation. It is proved in
[19] that, for any low discrepancy sequence P = (£(), cix, the mean variance 012\,7 avg O Z,
mean taken over the set F of continuous functions f on [0, 1]* equipped with the Wiener
measure pyy, is in O(N~2(log N)?*). Recall that the Wiener measure puyy is concentrated
on functions with infinite variation [10]).

The convergence speed can even be faster for special classes of functions [20]. Let o > 1,
C > 0 et Vh € ZZ*, r(h) = [1;_; max(1, |h;|). Let E%(C) be the set of periodic functions
f :IR® = IR, with period 1 over each coordinate, such that the Fourier coefficient of rank
h of function f, f(h) = Jooays f(z)e(—=h.z)dz, where .y is the standard innner product of
z,y € IR® verifies

|f(h)| < Cr(h)~® for all h € 7Z°.

Let X be a random vector with uniform distribution over [0,1]*. Then, for all o > 1,
C >0 and N > 1, there exists g € ZZ° such that

max 0 ( Zf({XJr—g})) O(N~2%(In N)?9),
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This work has been extended in [8, 9] where the choice of a good g is investigated.

3.2 Other randomizations

Scrambled (t,s)-sequences. Scrambled (¢,s)-sequences have been introduced by A.
Owen in [13, 14]. The idea is to scramble the digits of special low-discrepancy sequences,
the (t, s)-sequences in base b by using random permutations for the digits, while preserving
the low-discrepancy property. It basically works as follows. Each permutation is uniformly
distributed on the set of b! permutations of {0,...,b— 1}. For a point & = 322, axb™F in
base b, the permutation used for a; is 7., the permutation used for as is 7.4, (dependent
on a; but independent of =.), and generally the permutation used for ay is m. 4, | . 4
Other easier permutation choices have been recently proposed. For special classes of func-
tions the variance of the quadrature rule based on scrambled nets can be as small as
O (N-3(log N)X-1) [15].

Random-start Halton sequences. This method [17, 21] views Halton sequence as
an application of multidimensional von Neuman-Kakutani transformation [7] with orbit
vector (0,---,0). By randomly choosing an orbit vector, we obtain randomized Halton
sequences.

A generalization of this last work (at the cost of introducing a bias) could be imagined
as follows. Let T be a random variable defined over IN and note m; = P[T = i] Vi €
IN. Considering an s-dimensional sequence (¢£(),cn with £ = (én)’___,fgn))’ define
XM)(T) ¥n > 1 by

XM (1) = ¢+T),



Then, VT, the sequence (X ™ (T)),>; is random and
1N

3 F(x)
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tends to Z = [ 1}« f(z)dz as N — oo from the properties of sequence (™M), ex. By using
I independent replications T3, 1 > 4 < I of random variable T', we can obtain a confidence
interval, from the estimator
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With respect to the other randomization approaches, this generalization of the random
start Halton sequence to any other sequence introduces a bias. A research activity would
be to determine which choices of seed distribution 7w will reduce this bias.

4 Randomized-QMC might be as slow as MC

Let us see now if the convergence is always sped up using shifted low discrepancy sequences.
Consider the 2-dimensional function f(z1,22) = 1 if 21 < 9, 0 otherwise, and the low
discrepancy sequence {(n27™,¢s(n)) : 0 < n < 2™}, where ¢, is the radical inverse
function in base b: ¢y(n) = ZZ‘:_OI g ifn = ZZ‘:_OI nib® with ny € {0,---,b—1}.

The convergence results are displayed Figure 1 for MC and randomized QMC. MC and
randomized QMC provide similar convergence speed O(N ). The fact that randomized
QMC is not faster than MC is not due to the integrand alone since the SQRT sequence
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Figure 1: Convergence for I = 10? independent random variables and an increasing number N of
QMC points for for RQMC with respect to the convergence with L = NI replications for MC

performs better on this integration problem, with a regression analysis providing a rate
O(N~989). On the other hand, the sequence {(n2™™,¢s(n)) : 0 < n < 2™} can also
provide very could convergence results. For instance, if use it to integrate f(x1,z2) =



%2 sin(7x1) sin(7x2), we obtain a very high convergence rate O(N %), It means that the
shifted low-discrepancy sequence might be as slow as the traditional MC, at least on some
functions (even if in ”average”, it is proved to be faster on continuous functions).

Nevertheless it has to be mentionned that, even if this example shows that the conver-
gence rate is not always better,

e the variance is by a constant smaller using randomization;

e the simulation time decreases when using randomization (0.7 times the simulation
time of MC for our example). This is due to the fact that there are less calls to the
pseudo-random number generator.

For these two reasons, the randomization technique is still preferred.

5 Normal approximation and confidence interval coverage

In this section, we again concentrate on the randomly shifted low discrepancy sequences,
but other randomizations can be considered as well.

Whereas Monte Carlo simulation requires only one parameter, the number I of indepen-
dent random variables, randomized quasi-Monte Carlo simulation involves two parameters,
still the number I of independent random variables, but also the number of points of the
low discrepancy sequence N.

Thus, in MC simulation, we only increase I to obtain convergence, whereas in ran-
domized QMC, we increase the product N1I. Typically, users of randomized QMC usually
consider a given number I of random variables (say I = 100), and only increase N to take
benefit of the faster convergence of QMC. The number I of random variables would be
only used to obtain a confidence interval based on the normal law from the central limit
theorem. Nevertheless, it is not clear whether keeping a constant I and increasing N will
force the estimator to converge in law to a normal distribution, or even to keep the normal
approximation bounded.

To see how this convergence to the normal distribution works, let us first describe
the Berry-Essen bound in MC simulation [2]. Consider a random variable X. Let p =
B(f(X)), 0® = B((f(X) — B(f(X))?), 8 = B(f(X) — B(F(X)P), X; = 2L, F(x®),
for (X(); independent copies of X, and let F;(x) be the cumulative distribution of random
variable _

\/YXI —H
o
and N (z) be the Gaussian cumulative distribution with mean 0 and variance 1. We have
Vx,
p

ST (6)
It means that in MC methods, when I increases, the confidence interval coverage error
decreases.
To simplify the analysis, consider centered intervals. Let ¢, be the 1 — /2 quantile of
the cumulative distribution of a Gaussian random variable Y with mean 0 and variance 1.
Using (6), we have

|Fi(z) = N(z)| < C

B Xr—p
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Thus a confidence interval for p at confidence level at least 1 — «v is

. o cf cfB
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If we compare it with the traditional confidence interval (X I— ca%, X+ ca%) , 1t can
be observed that the half-width of the interval including the normal approximation error
is about the half-width of the interval without this error for a large I since C,-% f Cﬂ =

C’aﬁ +0 (7) Indeed, the error of considering the mean estimation Gaussian (relatlvely)

vanishes in O(1/v/1).
Consider now randomized QMC methods. Let By be the centred absolute momen-
t of order three of r.v. &S f({X + ¢M™}), oy be its standard deviation, X; n =

e Zﬁ;lf({X(i) + ¢M1), and Fy;(z) be the cumulative distribution of random
variable v/T XI+N_“ We still have from the Berry-Essen bound that

ﬁff )

Following the MC analysis, a confidence interval incorporating the normal approximation
error is

|F[7N($) —N($)| <

(XN,I —Ca(\j/]; Cﬂ]\} XN1+Caf/]§ + ij})

Thus the traditional interval without inclusion of the normal approximation, of half-width

ca%, will be asymptotically correct if and only if Cgl" decreases faster than c, 2% f’ meaning

that we have to increase N and I such that CB N_ — 0. Thus the idea to fix I and increase

v
N is valid if and only if Cﬂ” — 0 when N — oc.

But it must be noted that by applying Holder inequality, there exists a constant Cl;
such that

/BN > Csta?v-

It means that the strategy of fixing I and increasing N does not improve the normal
approximation, and can even introduce an additional error if a?’v decreases faster than Gy.
In order to investigate this last possibility, Figures 2 and 3 illustrate the convergence rate
of the (normalized) second, third and even fourth moments for MC and randomized QMC
on four different kinds of functions in terms of L = NI for I = 100 and an increasing
N. It can be remarked that the (normalized) moments converge at the same rates, so
that, at least for these functions, By /0% is bounded. At first sight, it might seem that
o3 decreases slower than By for function []}%; 12(x; — 0.5)2, but the curves are parallel
after a while (and it cannot happen from Holder inequality). Other examples exhibit the
same results. In conclusion, we have not been able to find a counter-example showing that
Bn/ a?’v is unbounded when N — oo, but it can be shown that it is lower-bounded.

Based on this idea that the normal approximation does not decrease to zero when
NI — oo, let us now investigate how to incorporate the additional Berry-Essen term in
practice. Let GN and &y be estimations of 8y and oy.
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e A first idea would be to integrate the % term to improve the interval coverage:
N
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e A second idea is to dynamically increase IV, I so that &f 1:’/7 — 0 and use the traditional
N

interval
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6 Conclusions and Perspectives

Randomized quasi-Monte Carlo methods have been designed to provide an error estimation
in QMC, as usually done in MC. In this paper, we have recalled the existing convergence
results of these methods, with a special focus on shifted-low discrepancy sequences. As
main contributions, we have illustrated that randomized QMC does not always improve
the convergence rate with respect to MC (even, it is still preferred thanks to the smaller
computational time), and we have investigated the normal approximation problem, show-
ing that, unlike for MC, it is advised to add in the confidence interval a term bounding
the normal approximation error.

As directions for future research, we plan to look more closely at how simultaneously
increase N and [ in order to obtain a minimal confidence interval width for a given total
computational time. We plan also to more deeply investigate the generalization of the
random start Halton sequence that we have introduced: we wish to study how the bias
can be reduced by a given choice of the random start, and how this method compares with
the other randomization techniques.
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