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Abstract

Monte Carlo and quasi�Monte Carlo methods are simulation techniques that have been de�
signed to e�ciently estimate integrals for instance� Quasi�Monte Carlo asymptotically outperforms
Monte Carlo� but the error can hardly be estimated� We propose here to recall how hybrid Monte
Carlo�Quasi�Monte Carlo have been developed to easily get error estimations� with a special em�
phasis on the so�called randomly shifted low discrepancy sequences� Two additional points are
investigated� we illustrate that the convergence rate is not always improved with respect to Monte
Carlo and we discuss the con�dence interval coverage problem�

Key words� Monte Carlo� quasi�Monte Carlo� Simulation

� Introduction

Quasi�Monte Carlo �QMC� methods ���� are deterministic numerical integration tools that
have been designed by analogy with Monte Carlo �MC� simulation technique� In Quasi�
Monte Carlo� the random sample of MC is replaced by a sequence of �well distributed�
points �called a low discrepancy sequence�� so that the estimation is likely to converge faster�
at least on regular integrands� Whereas very promising theoretically� QMC methods su	er
from two main drawbacks� First� their domain of applicability is restricted with respect to
MC� This is due to the correlation structure of the low discrepancy sequence �mandatory to
speed up the convergence�� Second� the error estimation� possible in theory� is intractable
in practice whereas MC easily provides a �statistical� con
dence interval�

The goal of this paper is 
rst to recall how hybrid QMC methods have been designed in
order to circumvent the error estimation problem� Then� as contributions� an illustration
that the convergence rate of hybrid QMC is not always better than MC is presented� as well
as a study of the normal approximation that is used to build the con
dence interval� To our
knowledge� this last point has not been studied in the literature but deserves consideration
since we should know how to simultaneously increase the two involved parameters �instead
of one in MC� to get a correct con
dence interval coverage�

�This work has been partially supported by the Sure�Paths ACI project
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The layout of the paper is as follows� In Section � we recall the basic de
nitions of
MC and QMC and highlight the main drawbacks of QMC� Section � briey describes the
randomization methods from the literature� We especially focus on the convergence re�
sults for the shifted Quasi�Monte Carlo technique �but similar results exist for the other
techniques�� We illustrate in Section � on a counter�example that� nevertheless� the con�
vergence speed is not always faster with randomized QMC techniques �even if it does not
deter from using it on such an example� and we investigate Section � how the two param�
eters involved in the technique should increase in order to obtain a satisfactory con
dence
interval coverage� Section � is devoted to the conclusions and perspectives of research�

� Monte Carlo and quasi�Monte Carlo methods

��� Basic notions on MC and QMC

Assume that we wish to compute the integral
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Z
�����s

f�x�dx�

MC considers a sequence �X�i����i�N of N random and independent vectors uniformly
distributed over ��� ��s� From the central limit theorem� we have a con
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at con
dence level ���� where c� � N����� �
� �� �

� is the variance of the random variable
f�X� with X uniformly distributed over ��� ��s� and N is the cumulative distribution
function of the Gaussian law with mean � and standard deviation �� The convergence
speed of this method is then� on average� O�N������ independent of the dimension s of the
problem�

QMC methods ���� use a deterministic sequence P � ���n��n instead of a random one�
leading to an estimation
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The discrepancy aims at measuring the repartition of the sequence over ��� ��s by
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with x � �x�� � � � � xs�� The sequence P � ���n��n�IN is then equi�distributed if and only if
lim

N���
D�
N �P� � �� Error bounds for the approximation ��� of I are obtained in terms of

the discrepancy� For P partition of ��� ��s in subintervals� let ��f� J� be the alterned sum
of f values at the edges of sub�interval J � The variation in sense of Vitali is de
ned as
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From VV it�f�� we de
ne V �f�� the variation of f in sense of Hardy and Krause by
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where V
�k�
V it �f � i�� � � � � ik� is the variation in sense of Vitali applied to the restriction of f

to the space of dimension k f�u�� � � � � us� � ��� ��s � uj � � for j �� i�� � � � � ikg� We then
have the following Koksma�Hlawka error bound ���������� �N
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A sequence P � ���n��n�IN is said to be a low discrepancy sequence ifD�
N �P� � O�N���lnN�s�

�the best�known result for in
nite sequences� so that the estimation converges faster than
for MC� There exist many low discrepancy sequences� we can quote for instance Halton
����� Sobol� ��� ���� SQRT� Niederreiter ����� or Faure ��� sequences�

��� A drawback of quasi�Monte Carlo

MC methods easily give a con
dence interval for the estimation by using the central limit
theorem� One could argue that QMC methods� by means of the Koksma�Hlawka bound �or
other related bounds�� provide a stronger �since strict� bound that also allows to estimate
the error� Unfortunately� these bounds� composed of the variation of the function and
the discrepancy of the sequence� are useless in practice� To illustrate this� it can 
rst be
observed that QMC does converge for functions with in
nite variation such as function

f�x�� x�� x	� � min�x� � x� � x	� ��

�exhibiting for instance a convergence rate O�N����� for the Niederreiter sequence in base
b � �� in dimension s � � ���� meaning that the Koksma�Hlawka bound is not tight�
Also� even if this variation in the sense of Hardy and Krause is 
nite� it is the sum of
�s � � variation in the sense of Vitali� each of them being at least as di�cult to estimate
as I itself� their sum being potentially large� i�e� useless� even for moderate values of
s� Second� the known bounds of discrepancy� even if useful asymptotically �since they
provide the convergence rate O�N���lnN�s��� usually require a very large N in order
to be O�N���lnN�s�� though it is observed quickly for the actual error� Tables � and
� respectively display the bounds for the ��� ���Niederreiter sequence in base b � � and
dimension s � � and the ��� ����Niederreiter sequence in base b � �� and dimension s � ��
����� The convergence rate is longer to be observed when the dimension increases� In
dimension s � ��� ���� numbers of points could never be sampled� and the result is still
larger than �� The bad behavior of this bound for a 
xed number of points can also be
emphasized by the fact that� straightforwardly from the de
nition� D�

N �P� � ��
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In the next sections� we see how using hybrid QMC methods would bene
t to QMC in
order to circumvent these drawbacks�

� Randomization of QMC for error estimation

We review in this section the randomization techniques that allow to use the central limit
theorem in order to determine�estimate the error in QMC methods� The technique can
also be seen as a use of low discrepancy sequences as a variance reduction technique in
MC� We will more speci
cally focus on the so�called shifted low discrepancy method and
use it as a benchmark� For numerical comparisons between the di	erent randomization
techniques� the reader can refer to ���� ����

��� Shifted low discrepancy sequences

Let X be a random variable uniformly distributed over ��� ��s� and ���n��n�IN a low dis�
crepancy sequence� As randomization technique ���� consider the random variable
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�n�� in QMC� where fxg is the vector of fractional parts of the
coordinates of x� The idea is to compute the average value of I independent copies Zi of
Z�
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and to obtain a con
dence interval from the usual central limit theorem� Note that this
technique can be seen as a special case of the antithetic variates method described in ���
where� for X � U ��� ��s� the estimator of I is
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with �n a one�to�one mapping of ��� ��s� Shifted�QMC is the case where �n�x� � fx���n�g�
To compute f the same number of times� we compare the variance of ��� with the

variance of the standard MC simulation with NI random variables� We will obtain a
variance reduction if and only if
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The convergence speed of the method has been shown in ����� If f is a function with
bounded variation� we have

��
�
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f�fX � ��n�g�
�

� O�N���logN��s��

The estimator gives also good results on functions with in
nite variation� It is proved in
���� that� for any low discrepancy sequence P � ���n��n�IN� the mean variance ��N�avg of Z�
mean taken over the set F of continuous functions f on ��� ��s equipped with the Wiener
measure �W � is in O�N���logN��s�� Recall that the Wiener measure �W is concentrated
on functions with in
nite variation ������

The convergence speed can even be faster for special classes of functions ����� Let � � ��
C � � et �h � ZZs� r�h� �

Qs
i��max��� jhij�� Let Es

��C� be the set of periodic functions
f � IRs � IR� with period � over each coordinate� such that the Fourier coe�cient of rank
h of function f � �f�h� �

R
�����s f�x�e��h�x�dx� where x�y is the standard innner product of

x� y � IRs veri
es
j �f�h�j � Cr�h��� for all h � ZZs�

Let X be a random vector with uniform distribution over ��� ��s� Then� for all � � ��
C � � and N � �� there exists g � ZZs such that
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This work has been extended in ��� �� where the choice of a good g is investigated�

��� Other randomizations

Scrambled �t� s��sequences� Scrambled �t� s��sequences have been introduced by A�
Owen in ���� ���� The idea is to scramble the digits of special low�discrepancy sequences�
the �t� s��sequences in base b by using random permutations for the digits� while preserving
the low�discrepancy property� It basically works as follows� Each permutation is uniformly
distributed on the set of b� permutations of f�� � � � � b� �g� For a point � �

P�
k�� akb

�k in
base b� the permutation used for a� is 	�� the permutation used for a� is 	��a� �dependent
on a� but independent of 	��� and generally the permutation used for ak is 	��ak�������a� �
Other easier permutation choices have been recently proposed� For special classes of func�
tions the variance of the quadrature rule based on scrambled nets can be as small as

O
�
N�	�logN�K��

�
�����

Random�start Halton sequences� This method ���� ��� views Halton sequence as
an application of multidimensional von Neuman�Kakutani transformation ��� with orbit
vector ��� � � � � ��� By randomly choosing an orbit vector� we obtain randomized Halton
sequences�

A generalization of this last work �at the cost of introducing a bias� could be imagined
as follows� Let T be a random variable de
ned over IN and note 	i � P �T � i� �i �
IN� Considering an s�dimensional sequence ���n��n�IN with ��n� � ��

�n�
� � � � � � ��n�s �� de
ne

X�n��T � �n � � by
X�n��T � � ��n�T ��
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Then� �T � the sequence �X�n��T ��n�� is random and
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R
�����s f�x�dx as N �	 from the properties of sequence ���n��n�IN� By using

I independent replications Ti� � � i � I of random variable T � we can obtain a con
dence
interval� from the estimator
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With respect to the other randomization approaches� this generalization of the random
start Halton sequence to any other sequence introduces a bias� A research activity would
be to determine which choices of seed distribution 	 will reduce this bias�

� Randomized�QMC might be as slow as MC

Let us see now if the convergence is always sped up using shifted low discrepancy sequences�
Consider the ��dimensional function f�x�� x�� � � if x� � x�� � otherwise� and the low
discrepancy sequence f�n��m� 
��n�� � � � n � �mg� where 
b is the radical inverse
function in base b� 
b�n� �

Pm��
k��

nk
bk�� if n �

Pm��
k�� nkb

k with nk � f�� � � � � b� �g�
The convergence results are displayed Figure � for MC and randomized QMC� MC and

randomized QMC provide similar convergence speed O�N������ The fact that randomized
QMC is not faster than MC is not due to the integrand alone since the SQRT sequence
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Figure �� Convergence for I � ��	 independent random variables and an increasing number N of
QMC points for for RQMC with respect to the convergence with L � NI replications for MC

performs better on this integration problem� with a regression analysis providing a rate
O�N������� On the other hand� the sequence f�n��m� 
��n�� � � � n � �mg can also
provide very could convergence results� For instance� if use it to integrate f�x�� x�� �

�
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 sin�	x�� sin�	x��� we obtain a very high convergence rate O�N������� It means that the
shifted low�discrepancy sequence might be as slow as the traditional MC� at least on some
functions �even if in �average�� it is proved to be faster on continuous functions��

Nevertheless it has to be mentionned that� even if this example shows that the conver�
gence rate is not always better�


 the variance is by a constant smaller using randomization�


 the simulation time decreases when using randomization ���� times the simulation
time of MC for our example�� This is due to the fact that there are less calls to the
pseudo�random number generator�

For these two reasons� the randomization technique is still preferred�

� Normal approximation and con�dence interval coverage

In this section� we again concentrate on the randomly shifted low discrepancy sequences�
but other randomizations can be considered as well�

Whereas Monte Carlo simulation requires only one parameter� the number I of indepen�
dent random variables� randomized quasi�Monte Carlo simulation involves two parameters�
still the number I of independent random variables� but also the number of points of the
low discrepancy sequence N �

Thus� in MC simulation� we only increase I to obtain convergence� whereas in ran�
domized QMC� we increase the product NI� Typically� users of randomized QMC usually
consider a given number I of random variables �say I � ����� and only increase N to take
bene
t of the faster convergence of QMC� The number I of random variables would be
only used to obtain a con
dence interval based on the normal law from the central limit
theorem� Nevertheless� it is not clear whether keeping a constant I and increasing N will
force the estimator to converge in law to a normal distribution� or even to keep the normal
approximation bounded�

To see how this convergence to the normal distribution works� let us 
rst describe
the Berry�Essen bound in MC simulation ���� Consider a random variable X� Let � �
E�f�X��� �� � E��f�X� � E�f�X����� � � E�jf�X� � E�f�X�j	�� �XI � �

I

PI
i�� f�X

�i���

for �X�i��i independent copies of X� and let �FI�x� be the cumulative distribution of random
variable p

I
�XI � �

�
and N �x� be the Gaussian cumulative distribution with mean � and variance �� We have
�x� �� �FI�x��N �x�

�� � C
�

�	
p
I
� ���

It means that in MC methods� when I increases� the con
dence interval coverage error
decreases�

To simplify the analysis� consider centered intervals� Let c� be the �� ��� quantile of
the cumulative distribution of a Gaussian random variable Y with mean � and variance ��
Using ���� we have
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Thus a con
dence interval for � at con
dence level at least �� � is�
�XI � c�

�p
I
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��I
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If we compare it with the traditional con
dence interval
�
�XI � c�

�p
I
� �XI � c�

�p
I

�
� it can

be observed that the half�width of the interval including the normal approximation error
is about the half�width of the interval without this error for a large I since C�

�p
I
� c�

��I
�

C�
�p
I
�O

�
�
I

�
� Indeed� the error of considering the mean estimation Gaussian �relatively�

vanishes in O���
p
I��

Consider now randomized QMC methods� Let �N be the centred absolute momen�
t of order three of r�v� �

N
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n�� f�fX�i� � ��n�g�� and FN�I�x� be the cumulative distribution of random
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p
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�XI�N��
�N

� We still have from the Berry�Essen bound that
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Following the MC analysis� a con
dence interval incorporating the normal approximation
error is �

�XN�I � c�
�Np
I
� c�N
��NI

� �XN�I � c�
�Np
I
�

c�N
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Thus the traditional interval without inclusion of the normal approximation� of half�width
c�

�Np
I
� will be asymptotically correct if and only if c�N

��
N
I
decreases faster than c�

�Np
I
� meaning

that we have to increase N and I such that c�N
��
N

p
I
� �� Thus the idea to 
x I and increase

N is valid if and only if c�N
��
N

� � when N �	�

But it must be noted that� by applying H older inequality� there exists a constant Cst

such that
�N � Cst�

	
N �

It means that the strategy of 
xing I and increasing N does not improve the normal
approximation� and can even introduce an additional error if �	N decreases faster than �N �
In order to investigate this last possibility� Figures � and � illustrate the convergence rate
of the �normalized� second� third and even fourth moments for MC and randomized QMC
on four di	erent kinds of functions in terms of L � NI for I � ��� and an increasing
N � It can be remarked that the �normalized� moments converge at the same rates� so
that� at least for these functions� �N��

	
N is bounded� At 
rst sight� it might seem that

�	N decreases slower than �N for function
Q��
i�� ���xi � ������ but the curves are parallel

after a while �and it cannot happen from H older inequality�� Other examples exhibit the
same results� In conclusion� we have not been able to 
nd a counter�example showing that
�N��

	
N is unbounded when N �	� but it can be shown that it is lower�bounded�

Based on this idea that the normal approximation does not decrease to zero when
NI � 	� let us now investigate how to incorporate the additional Berry�Essen term in
practice� Let ��N and ��N be estimations of �N and �N �

�
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 A 
rst idea would be to integrate the c�N
��
N
I
term to improve the interval coverage�
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 A second idea is to dynamically increaseN� I so that
��N

���
N

p
I
� � and use the traditional

interval �
�XN�I � C�

��Np
I
� �XN�I � C�

��Np
I

�
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� Conclusions and Perspectives

Randomized quasi�Monte Carlo methods have been designed to provide an error estimation
in QMC� as usually done in MC� In this paper� we have recalled the existing convergence
results of these methods� with a special focus on shifted�low discrepancy sequences� As
main contributions� we have illustrated that randomized QMC does not always improve
the convergence rate with respect to MC �even� it is still preferred thanks to the smaller
computational time�� and we have investigated the normal approximation problem� show�
ing that� unlike for MC� it is advised to add in the con
dence interval a term bounding
the normal approximation error�

As directions for future research� we plan to look more closely at how simultaneously
increase N and I in order to obtain a minimal con
dence interval width for a given total
computational time� We plan also to more deeply investigate the generalization of the
random start Halton sequence that we have introduced� we wish to study how the bias
can be reduced by a given choice of the random start� and how this method compares with
the other randomization techniques�
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