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A new permutation choice in
Halton sequences

Bruno TUFFIN1

ABSTRACT This paper has several folds. We make first new permu-
tation choices in Halton sequences to improve their distributions. These
choices are multi-dimensional and they are made for two different discrep-
ancies. We show that multi-dimensional choices are better for standard
quasi-Monte Carlo methods. We also use these sequences as a variance re-
duction technique in Monte Carlo methods, which greatly improves the
convergence accuracy of the estimators. For this kind of use, we observe
that one-dimensional choices are more efficient.

1 Introduction

Quasi-Monte Carlo methods are deterministic analogs of Monte Carlo ones.
For the latters, convergence is in O(1/

√
N) for an approximation with N

random points. It is possible to construct a sequence where the points are
deterministic and “well distributed” all over the integration space, for which
the convergence speed is faster (in O(N−1(log N)s) for dimension s). Hal-
ton sequences verify this property. In this paper we give new permutation
choices for Halton sequences to improve their distribution. Next, as the
major problem encountered with quasi-Monte Carlo methods is the error
bound evaluation, we use the sequences in Monte Carlo methods to obtain
a variance reduction. In this case, we observe that a one-dimensional choice
of permutations is more efficient.

This paper is organized as follows: Section 2 describes quasi-Monte Carlo
methods and Halton sequences and section 3 proposes a new choice of
permutations in Halton sequences. Section 4 describes the use of such se-
quences as a variance reduction in Monte Carlo methods and explain why
a one-dimensional choice is better for this kind of use. Finally we conclude
in Section 5.
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2 Quasi-Monte Carlo methods

2.1 General method

Let us consider the integration of functions on [0, 1)s. The objective of the

method is to approximate

∫

[0,1)s

f(u)du by
1

N

N
∑

n=1

f(ξ(n)), where (ξ(n))n∈IN

is a deterministic sequence. Define a measure of uniform distribution over
[0, 1)s. Let P = (ξ(n))n∈IN and define AN (z,P) =

∑N
n=1 1[0,z)(ξ

(n)) where
z = (z1, · · · , zs) ∈ [0, 1]s and [0, z) =

∏s
i=1[0, zi). The discrepancy in space

Lp of the N first terms of P is defined by

T
(p)∗
N (P) =

(

∫

[0,1)s

∣

∣

∣

∣

AN ([0, z),P)

N
− λs([0, z))

∣

∣

∣

∣

p

dz

)1/p

.

This discrepancy is an expression of the mean difference between the fre-
quency of points of P and the measure of each interval of form [0, x). The

sequence is uniformly distributed if and only if lim
n→+∞

T
(p)∗
N (P) = 0. An

expression of T
(2)∗
N (P) (see [3]) is given by

(T
(2)∗
N (P))2 =

1

N2

N
∑

k,m=1

s
∏

i=1

(1−Mk,m
i )− 21−s

N

N
∑

k=1

s
∏

i=1

(1−ξ
(k)2
i )+3−s (1.1)

where ξ
(n)
i is the ith coordinate of the vector ξ(n) and Mk,m

i = max(ξ
(k)
i , ξ

(m)
i ).

There exist error bounds involving this discrepancy (see [12], [3]).

Sequences with T
(p)∗
N (P) = O(N−1(log N)s) are called low discrepancy

sequences.

A new notion of discrepancy, T
(2)
N (P), is described by Morokoff and Caf-

flish in [3]. It is shown that the computation of T
(2)∗
N (P) takes more into

account the points x ∈ [0, 1)s near the origin 0 = (0, · · · , 0) than the others.
The definition is the following: let x < y denote the inequality for each
coordinate of vectors, i.e. xi < yi (i = 1, · · · s). Then

T
(2)
N (P) =

[

∫

x,y∈[0,1)s;x<y

∣

∣

∣

∣

AN ([x, y),P)

N
− λs([x, y))

∣

∣

∣

∣

2

dxdy

]1/2

.

With this new definition, all the points of the space [0, 1)s have the same

importance. It is proven in [3] that, if mk,m
i = min(ξ

(k)
i , ξ

(m)
i ),

(T
(2)
N (P))2 =

1

N2

N
∑

k,m=1

s
∏

i=1

(1−Mk,m
i )mk,m

i −21−s

N

N
∑

k=1

s
∏

i=1

(1−ξ
(k)
i )ξ

(k)
i +12−s.

(1.2)
Unfortunately, even if this definition is more representative of equi-distribu-
tion, there exists yet no error bound using this discrepancy.
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There exist many examples of low discrepancy sequences [4]. In this pa-
per, we focus on an important family, Halton sequences, and their proper-
ties.

2.2 Halton sequences and improvements

Let p ∈ IN. Let us denote the digit expansion of n ∈ IN in base p by

n = ajp
j + · · · + a1p + a0 with ai ∈ {0, · · · , p − 1}.

The radical-inverse function of n is then defined by

Φp(n) = a0/p + a1/p2 + · · · + aj/pj+1.

If p1, · · · , ps are s mutually prime integers, the sequence P = (ξ(n))n∈IN

defined by
ξ(n) = (Φp1

(n), · · · ,Φps
(n)),

is a Halton sequence and it verifies

T
(2)∗
N (P) = O(N−1(log(N))s). (1.3)

In practice, we will always let pi equal to the ith prime number. In spite
of the asymptotic low discrepancy of such sequences, it is observed in [1],
[3], [8] that, in a large dimension, a good distribution needs many iterations
to occur (i.e. we obtain bad distributions for a small number of iterations).
As a matter of fact, the monotone cycles of length pi for the ith projection
introduce a great regularity between coordinates. An important research
effort has been made to improve this. In [3] the sequence is scrambled
independently for each coordinate: for the s sequences (corresponding to
the s coordinates), the N points are ranged from the smallest to the largest
and then they are randomly permuted. It is possible to show that this
operation do not change the bound on the discrepancy given by (1.3).

Braaten and Weller [1] have improved the distribution of the sequence
with the introduction, for each prime number pi (1 ≤ i ≤ s), of a permuta-
tion πpi

on {0, · · · , pi−1} satisfying πpi
(0) = 0 and leading to a more chaotic

sequence. In this case again, for each choice of permutation the convergence
speed (1.3) remains unchanged. This scrambling gives sequences that are
the most efficient for certain dimensions and for certain applications [6].

If, from the digit expansion of n in base pi, we set

Spi
(n) = πpi

(a0)/pi + πpi
(a1)/p2

i + · · · + πpi
(aj)/pj+1

i ,

the new Halton sequence is P = (ξ(n))n∈IN with ξ(n) = (Sp1
(n), · · · , Sps

(n)).
The problem is to choose good permutations. Braaten and Weller [1] have
built the permutations πpi

as follows. For each pi, πpi
is chosen in an uni-

dimensional way: if we know πpi
(1), · · · , πpi

(j), we choose πpi
(j + 1) as the

element minimizing the mean square discrepancy T
(2)∗
j+1 of the j + 1 points

{πpi
(1)/pi, · · · , πpi

(j)/pi, πpi
(j + 1)/pi} .



This is page 4
Printer: Opaque this

Although this choice gives good results, we construct here four multi-
dimensional algorithms which should give better results than Braaten and
Weller’s one, which is built uni-dimensionally.

3 New choice of permutations

Two algorithms, MCT* and MCL*, based on T
(2)∗
N (P), are already de-

scribed in [8] (where they are called respectively MC1 and MC2). We re-
call them here and give two new choices, called MCT and MCL, based on

T
(2)
N (P). We will use expression (1.2), instead of (1.1) in [8], to make the

choice of permutations in Halton sequences. The algorithms we generate

are the same as those in [8], but for T
(2)
N (P) instead of T

(2)∗
N (P).

3.1 Algorithm MCL

As for Braaten and Weller’s one, this method for the choice of permutations
gives a table which is available for any dimension. But in our case, the table
is generated line per line instead of element per element. Thus the whole
(j +1)th line is chosen knowing the j previous lines. As the only restriction
for the jth permutation is πpj

(0) = 0, there are (pj − 1)! possibilities. For
example, for j = 10, we have 28! = 3.049e29 choices. Since it is impossible
to compute at each time the discrepancy, we make our choice in a random
manner.

Given a K-sample (π(1), · · · , π(K)) of permutations π of {0, · · · , pj+1−1}
such that π(0) = 0, an estimator of πpj+1

is the permutation which mini-

mizes {T (2)
pj+1−1(Pπ(k))|1 ≤ k ≤ K} for pj+1−1 points. That is, T

(2)
pj+1−1(Pπ) =

min1≤k≤K T
(2)
pj+1−1(Pπ(k)) where Pπ is the sequence in dimension j+1 issued

from π (with permutations πp1
, · · · , πpj

fixed for the j first coordinates). We
call this algorithm MCL. The algorithm with the same technique, but for

T
(2)∗
N (P) is called MCL* [8].

3.2 Algorithm MCT

Let us show now an algorithm creating a whole table for each dimension: in a
fixed dimension s, we search for a table (πp1

, · · · , πps
), with πpi

permutation

of {0, · · · , pi − 1} such that πpi
(0) = 0 and πpi

minimizes T
(2)
ps−1(Pp1,···,ps

)
where Pp1,···,ps

is the sequence in dimension s associated with permutations
(πp1

, · · · , πps
). As the number of possible permutations is even larger than

before, we use again a random approach.
Let

Ωs = {(π1, · · · , πs) | ∀1 ≤ i ≤ s πi is a permutation of

{0, · · · , pi − 1} satisfying πi(0) = 0}.
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Let Π be a random variable uniformly distributed on Ωs and

(π
(k)
1 , · · · , π(k)

s )1≤k≤K

a K-sample from Π, with π
(k)
i ith coordinate (i.e. permutation) of kth

variable π(k). An estimator of (πp1
, · · · , πps

) is the table of permutations

(π
(j)
1 , · · · , π(j)

s ) such that

T
(2)
ps−1(Pj

p1,···,ps
) = min

1≤k≤K
T

(2)
ps−1(Pk

p1,···,ps
),

with Pk
p1,···,ps

the sequence corresponding to permutations (π
(k)
1 , · · · , π(k)

s ).
We call this algorithm MCT. The algorithm with the same techniques, but

for T
(2)∗
N (P) is called MCT* in [8].

3.3 Results

Dim Halton B W MCT* (#iter.) MCL* (#iter.)

2 4.34e-2 4.86e-2 4.34e-2 4.34e-2

3 1.67e-2 9.72e-3 8.33e-3 1.35e-2
4 6.97e-3 6.15e-3 3.02e-3 4.51e-3

5 2.49e-3 1.42e-3 9.54e-4 (5 106) 1.16e-3 1.79e-3

6 1.91e-3 6.79e-4 4.58e-4 (106) 5.85e-4 (106)

7 1.18e-3 2.78e-4 1.79e-4 (106) 1.82e-4 (106)
8 9.86e-4 1.81e-4 7.95e-5 (106) 8.06e-5 (106)

9 6.76e-4 1.03e-4 3.13e-5 (106) 3.10e-5 (106)

10 4.18e-4 1.76e-5 1.16e-5 (106) 1.09e-5 (106)
11 3.63e-4 1.13e-5 4.59e-6 (5 105) 4.25e-6 (5 105)

12 2.46e-4 5.34e-6 1.75e-6 (2 105) 1.64e-6 (5 105)

13 1.94e-4 2.34e-6 6.43e-7 (105) 6.16e-7 (5 105)
14 1.71e-4 1.60e-6 2.46e-7 (6 105) 2.27e-7 (2 105)

15 1.38e-4 4.07e-7 8.87e-8 (2 105) 7.87e-8 (2 105)

16 1.04e-4 2.11e-7 3.31e-8 (3.5 105) 2.73e-8 (2 105)

TABLE I. (T
(2)∗
ps−1)

2 for the different algorithms in dimension s.

The square of discrepancies (T
(2)∗
ps−1(P))2 obtained for each method and

each dimension are given in Table I and for (T
(2)
ps−1(P))2 in Table II. The

number of iterations used (K in the previous subsections) is indicated after
the value of discrepancy when we are not sure to obtain the real minimum.
For algorithms MCL* and MCL, it indicates the number of iterations for the
choice of the line. We can make the following remarks on both Tables: the
improvements of our algorithms increases with the dimension with respect
to standard Halton and Braaten and Weller permutations (due to the multi-
dimensional heuristic). Moreover, the best results are given by algorithm
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Dim Halton MCT (#iter.) MCL (#iter.)

2 1.39e-2 1.39e-2 1.39e-2

3 1.15e-3 9.93e-4 1.13e-3

4 1.39e-4 1.16e-4 1.22e-4
5 1.13e-5 8.85e-6 (5 106) 9.16e-6

6 1.62e-6 1.15e-6 (106) 1.11e-6 (106)

7 1.83e-7 1.15e-7 (106) 1.11e-7 (106)
8 2.81e-8 1.55e-8 (106) 1.36e-8 (106)

9 3.59e-9 1.89e-9 (106) 1.78e-9 (106)

10 4.03e-10 2.08e-10 (106) 1.75e-10 (106)
11 6.26e-11 3.09e-11 (5 105) 2.60e-11 (106)

12 7.57e-12 3.48e-12 (2 105) 2.83e-12 (5 105)

13 1.07e-12 4.28e-13 (2 105) 3.26e-13 (5 105)

14 1.75e-13 6.96e-14 (6 105) 4.37e-14 (2 105)
15 2.66e-14 9.34e-15 (3 105) 5.25e-15 (2 105)

16 3.73e-15 1.31e-15 (3.5 105) 6.46e-16 (2 105)

TABLE II. (T
(2)
ps−1)

2 for the different algorithms.

MCL* for (T
(2)∗
ps−1(P))2 and MCL for (T

(2)
ps−1(P))2, although it should be

given by respectively MCT* and MCT (as they are algorithms which, for
a sufficiently large number of iterations, give the smallest discrepancy).
Then it should be better to use the permutations given by MCL* or MCL,
and it should be more practical because we get only one table for every
dimension. Furthermore, the larger the dimension, the longer the cycles
dependence between successive coordinates in standard Halton sequences
[8]. If we compare the discrepancies for large dimensions (in this way, if
the number of points ps − 1 is large and the dimension s is small, standard
Halton gives good results), then our improvements are significant.

Let us compare in Table III, on the example of the function in dimen-
sion 16 defined by

∏16
i=1 12(xi − 1/2)2, the approximation of the integral

∫

[0,1)16

16
∏

i=1

12(xi −
1

2
)2dxi, which value is 1, given by

1

N

N
∑

n=1

16
∏

i=1

12(ξ
(n)
i − 1

2
)2.

We see that Braaten and Weller’s permutation choice improves the qual-
ity of the approximation in comparison with Halton’s one, and that ours
improve the one of Braaten and Weller. In this case, for a standard quasi-
Monte Carlo method, the best choices are given by algorithms MCL and
MCT.



This is page 7
Printer: Opaque this

It. Halton B W MCT* MCL* MCT MCL

103 0.48939 1.69686 0.76792 0.18115 0.29996 0.65553

104 0.42182 2.95772 0.53146 1.11605 0.64943 1.29340

106 0.90964 1.06985 0.95899 1.05608 1.00286 1.02135

TABLE III. Test on function
∏16

i=1
12(xi − 0.5)2 for the different algorithms.

4 On the use of low discrepancy sequences in
Monte Carlo methods

Unfortunately, the known error bounds are generally impossible to evaluate
in practice. Then, to obtain a useful error bound, we use low discrepancy
sequences to reduce variance in Monte Carlo methods.

Let X be a random variable uniformly distributed on [0, 1)s and (ξ(k))k∈IN

a low discrepancy sequence as described in the previous section. Instead of
simulating the random variable f(X), we study

Z =
1

n

n
∑

k=1

f({X + ξ(k)}), (1.4)

where {x} is the fractional part for each coordinate of x ∈ IRs. To our
knowledge, this type of technique has been used for the first time in [2]
where (ξ(k))k≤n is a lattice developed by Korobov and then for Bayesian
integration in [7] with low discrepancy sequences. Owen [5] uses a slightly
different technique, where the randomness is introduced on permutations
for Niederreiter sequences. In our applications, we will use the permuted
Halton sequences described in the previous section.

Theorem 1 [9] If (ξ(k))k∈IN is a low discrepancy sequence and f a (bounded)
Riemann integrable function, we have

σ2

(

1

n

n
∑

k=1

f({X + ξ(k)})
)

= O(n−2(log n)2s).

Then, for a sufficiently large n, we are sure to obtain a variance reduction
with respect to n independent random variables f(X), which variance is
in n−1. Efficient applications of this method to the analysis of product-
form multi-class queuing networks and of a cellular system with dynamic
resource sharing can be found respectively in [11] and in [10].

To compare permutation choices for this kind of method, we use the
function f(x1, · · · , x12) =

∏12
i=1

π
2 sin(πxi). We take n = 104 elements of

the low discrepancy sequences and make I = 100 independent iterations
of the random variable to estimate the variance. We compare in Table IV
the variance of this estimator for each permutation choice with the one of
the standard Monte Carlo estimator for 106 iterations, to have the same
number of calls to the function.
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Method Variance

Monte Carlo 1.130e-2
Halton 7.228e-4

B& W 1.645e-5

MCL* 7.188e-5

MCT* 3.361e-5
MCL 1.019e-4

MCT 6.753e-5

TABLE IV. Variance of different estimators of
∫

[0,1)s

∏12

i=1
π

2
sin(πxi)dxi: the

Monte Carlo one and those using permuted Halton sequences as a variance re-
duction.

An important remark is that the best choice for this application is the
one-dimensional sequence of Braaten and Weller (except for MCT, but
our experiments tell us that this is marginal). As a matter of fact, the
introduction of an additional term in (1.4) breaks the multi-dimensional
building of the sequence. Another remark is that the Braaten and Weller
sequence generally outperforms the (0, s) sequence of Niederreiter, usually
used in quasi-Monte Carlo methods, for dimensions smaller than 10 (see
[9]).

5 Conclusion

We give here new permutation choices in Halton sequences. The new choices

are based on T
(2)
N or on T

(2)∗
N and are multi-dimensional, which is an advan-

tage with respect to previous proposals. These choices are better in a stan-
dard quasi-Monte Carlo integration. We also use low-discrepancy sequences
as variance reduction techniques in Monte Carlo methods. Whereas classical
Monte Carlo algorithms do not change the convergence speed, ours does it.
For this utilization of Quasi-Monte Carlo in a Monte Carlo scheme (and be-
cause of the additional term) a one dimensional choice for the permutations
is recommended. It is commonly known that quasi-Monte Carlo techniques
give better accuracy than Monte Carlo ones. Nevertheless in practice, to
obtain an error bound, a combination of Monte Carlo and quasi-Monte
Carlo methods can be efficiently used.
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