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Abstract— In recent years, the notion of a service of-
fering a degraded performance with respect to the best-
effort service traditionally found in IP networks has gained
acceptance among network researchers. Such a less-than-
best-effort (LBE) service may be considered as another way
of providing a differentiated quality of service, following
A. Odlyzko’s “damaged goods for the Internet” approach.
In this paper we are interested in evaluating, from a pricing
perspective, the implications of the two scheduling models
commonly proposed for building a LBE service—namely,
Priority Queueing and Generalized Processor Sharing
(GPS). In particular, we focus on the network operator’s
issue of maximizing her revenue. We wish to study, for each
scheduler, how to set prices and, especially, the impact that
a given queueing model may have on revenues when users
are mostly sensitive to delay. Drawing on previous work
by Mandjes (2003), we present analytical expressions of
the revenue earned by the network operator, when a GPS
scheduler is used. A comparison of optimal revenues shows
that: (a) Priority Queueing is more efficient, in economic
terms, than both a GPS scheduler and a simple FIFO
queue, that is, a network with no service differentiation;
(b) revenues are lower with a GPS scheduler than with a
FIFO queue. These results may have implications both on
the practical implementation of LBE services and on the
Paris Metro Pricing proposal by Odlyzko (1999).

Keywords: Less-than-best-effort, service differentiation,
pricing, Stochastic processes/Queueing theory, Economics.

I. INTRODUCTION

In the context of IP networks, the term “service
differentiation” usually carries the implicit meaning of
offering enhanced services. A great deal of research
effort has been devoted to defining, implementing and
testing network architectures and mechanisms allowing
to improve the quality of service (QoS) provided to some
flows. However, the notion of differentiated services does

not preclude the possibility of having a (potentially)
degraded service with respect to the ubiquitous best-
effort (BE) service.

Less-than-best-effort (LBE) has been proposed as a
service for carrying non-critical traffic. The goal of LBE
is to exploit unused network capacity, while protecting
best-effort flows (and, of course, flows transported by
enhanced services, if any) from such non-critical traffic.
The usual definition of the LBE service is the following:
in the event of congestion, all LBE traffic must be
discarded before any BE packet is dropped.

LBE may be regarded not only as a means of pro-
tecting more “important” flows from congestion (due
either to less-critical or to potentially “damaging” flows),
but also as a way to shift network usage towards off-
peak times. Since LBE is designed to use idle network
capacity, flows using LBE experience a better quality of
service whenever the critical-traffic load is low. More-
over, it is intuitively clear that LBE traffic should be
charged at a (much) lower rate than, say, BE traffic, so
LBE offers an incentive to users to transport non-critical
data at a lower cost. Therefore, a LBE service may be of
interest not only to network operators, but also to end-
users.

Some examples of application scenarios [1] where a
LBE service may prove useful are: content mirroring
and news distribution; new distributed applications that
can take advantage of spare network capacity; non-
time-critical, bulk-data transfer based on TCP; isolating
production traffic from test traffic; isolating mission-
critical traffic from other kinds of production traffic that
may be disruptive (e.g., traffic generated from a student
dormitory in a university campus).

The LBE concept has already been tested in academic
research networks like Internet2 [2] and GÉANT [3].
Such studies have focused mainly on the impact of LBE



on more-critical traffic, and on practical issues like router
configuration.

A. Providing LBE in a DiffServ network

The notion of a LBE service can be easily integrated
into the DiffServ architecture defined by the IETF; the
Lower Effort per-domain behaviour [4] is an example
of a LBE type of service that can be offered within a
DiffServ domain. One interesting point of LBE is that it
can be incrementally deployed1, allowing to put a LBE
per-hop behaviour where it matters—that is, in congested
links. Another advantage of a LBE service is that there
is no need to police or to shape traffic: since the service
offers no guarantee of delivery, excess LBE traffic can
simply be discarded.

The implementation of LBE using the standard Diff-
Serv building blocks requires, among other things: (1)
marking packets with a DiffServ codepoint (DSCP)
selected to mark packets as “LBE”, and (2) a router
mechanism allowing to treat IP packets differently ac-
cording to the DSCP. Regarding the marking of packets,
one can imagine that it is done voluntarily by end-
systems (for instance, to select the lowest-cost service),
or that marking is enforced by the network operator
(for example, to treat all traffic coming from a given
subnetwork as non-critical). Concerning the second is-
sue, an implementor might choose between putting both
LBE and BE traffic in a single queue handled by an
active queue management algorithm like RIO [5], and
using a separate queue for LBE traffic. Since RIO and
similar algorithms may introduce excessive jitter in best-
effort traffic, it may be preferable to adopt the separate-
queue strategy [2], providing the desired differentiation
by means of a standard scheduling algorithm. Two kinds
of schedulers have been proposed to handle LBE traffic
[1], [2], [4]: strict, non-preemptive priority queueing
(PQ) and weighted fair queueing (WFQ) or one of
its variants, like for instance weighted round-robin [6].
From a theoretical standpoint, a WFQ-like scheduler can
be regarded as a packet-level version of a Generalized
Processor Sharing (GPS) server [7]. As we will discuss
in Section IV, each scheduler may have a different
impact on the performance of the LBE service, especially
when TCP traffic is considered.

B. Marking, scheduling and pricing

In this paper, we are interested in studying the impli-
cations of the two scheduling models commonly used for

1Provided, of course, that intermediate network nodes do not erase
or modify the DiffServ codepoint.

building a LBE service—namely, PQ and GPS— from a
pricing perspective (for an thorough overview of pricing
issues in telecommunication networks, see e.g. [8]). In
particular, we consider a for-profit network provider,
and we focus on the provider’s issue of maximizing
her revenue. We wish to study, for each scheduler,
how to optimally set prices and, especially, the impact
that a given queueing system may have on revenues.
Our work is based on a recent paper by Mandjes [9],
where optimal prices and revenues for PQ have been
determined. Like Mandjes, we will use the performance
of a single FIFO queue (corresponding to a network
without service differentiation) as a benchmark.

In our model, as in [9], we will assume that delay
is the main QoS parameter users care about. Hence, a
user’s utility is described by a strictly decreasing function
of delay; the impact of packet losses is left for further
study. We will consider that there exist two classes of
users (or applications), which differ in their sensitivity to
delay. Best-effort—and, more so, LBE—can be thought
of as a service intended for transporting data flows
without strong time constraints; nonetheless, for the sake
of notational consistency with [9], we will call “voice”
users those that prefer a lower packet delay, and “data”
users those having less stringent delay requirements.
Both types of flows are assumed to be elastic [10], in
the sense that they may trade delay for price.

We assume that the network under consideration offers
only two services: best-effort and less-than-best-effort,
and that users are charged on a per-packet basis. The
network is modelled as a single bottleneck node, where
either a PQ server or a GPS server is used to handle two
queues, one for packets marked as “BE” and another
for packets marked as “LBE”. BE traffic is charged at a
higher rate than LBE traffic. Like Mandjes, we suppose
that there can be two marking scenarios: (1) a situation of
dedicated traffic classes, in which the network chooses
to which queue packets must be sent, and (2) a situation
of open traffic classes, in which users are able to select
what class to join, according to charging rates and the
expected QoS.

The main contributions of this paper are as follows.
First, we extend Mandjes’ model of a PQ server to the
case of a GPS server. To the best of our knowledge,
there are no closed-form theoretical results concerning
delay in GPS queues (for a discussion, see for instance
[11]). However, one can argue that there is interest in
offering some form of differentiated services (like LBE)
to elastic flows only if congestion may arise. Hence,
for modelling purposes it makes sense to consider a



network under the assumption of a heavy-traffic regime,
as in [12]. In such a case, a two-queue GPS server
behaves approximately like a “partitioned” server, that
is, two independent FIFO queues, each with a service
rate equal to the corresponding minimum guaranteed
rate in the GPS system. This amounts to saying that,
under the heavy-traffic hypothesis, a GPS server with a
different charging rate for each queue can be regarded as
a Paris Metro Pricing (PMP) network [13], in which the
capacity of the link is logically split in two. Second, we
compare the optimal revenues earned with PQ, FIFO and
GPS scheduling. Our main conclusion is that a network
offering two different services (i.e., BE and LBE) may
yield higher revenues than a network with no service
differentiation, and also that the type of scheduler used
may play an important role in maximizing revenues. In
particular, we show that: (a) Priority Queueing is more
efficient, in economic terms, than both a GPS scheduler
and a simple FIFO queue; (b) revenues are lower with a
GPS scheduler than with a FIFO queue.

C. Outline of the paper

This paper is organized as follows. Section II presents
a mathematical model of a DiffServ node supporting
both BE and LBE service classes, using two different
scheduling policies. Section III compares the perfor-
mance of each scheduling policy in terms of the network
provider’s revenue. Section IV provides a discussion on
the possible economic and practical implications of our
main results. Finally, Section V concludes the paper.

II. MATHEMATICAL MODEL

Let us begin by a brief presentation of the model
introduced in [9] by Mandjes2. Next, we will formalize
the heavy-traffic assumption that we will use to treat a
GPS scheduler as a set of independent FIFO queues,
before stating our results on the optimal prices for
the GPS queue that will be necessary for the revenue
comparison.

A. Basic model

Consider an infinite population of potential users.
Two types of flows are considered, differing in their
sensitivity to delay; we will call these traffic classes
type-v (“voice”) and type-d (“data”) traffic.

2In order to make our paper as self-contained as possible, we
provide in the Appendix a summary of the main results of [9],
concerning the optimal prices for both a FIFO and a PQ server.

The utility users get depends not only on the mean
packet delay IED, but also on the price per packet p, in
the following way:

Ud(IED) =
1

(IED)αd
− p, (1)

Uv(IED) =
1

(IED)αv
− p, (2)

with 0 < αd < αv , so that type-v flows have a higher
preference for small delays. αd and αv may be regarded
as the “delay-sensitivity parameter” for each traffic class.
It is assumed that users enter the network whenever their
utility is positive.

Throughout the paper, we are going to consider a
M/M/1 queue with service rate µ and with N indepen-
dent users, each user generating packets according to a
Poisson process with rate λ. The delay is then

IED =
1

µ − Nλ

as long as Nλ < µ [14]. Let λd and λv be the packet
arrival rate for type-d and type-v users, respectively.

If there were only type-d users, the maximum number
of users entering the network would be

Nd(p) =
µ − αd

√
p

λd
, (3)

if p ≤ µαd , and Nd(p) = 0 otherwise; note that Nd(p)
represents the highest number of users corresponding to
a non-negative utility. Similarly, if there were only type-v
users, we would have a maximum of Nv(p) users, where

Nv(p) =
µ − αv

√
p

λv
, (4)

if p ≤ µαv , and Nv(p) = 0 otherwise.
Regarding the case in which there is competition

between both types of traffic, let us quote the following
key result from [9].

Proposition 1 (Mandjes [9]): Consider a FIFO
M/M/1 queue and a per-packet price p. If p < 1 only
type-d users will have an incentive to join the network,
whereas if p > 1 only type-v users have that incentive.

Indeed, if Nd(p) users are already present, with Nd(p)
given by (3), an infinitesimal type-v user will enter the
network if and only if

Uv(p) =

(

µ − λd

(

µ − αd
√

p

λd

))αv

− p = pαv/αd − p.

Since αv > αd, type-v users would join if and only if
p > 1. Conversely, if there are Nv(p) type-v users in the
queue, a type-d user will have an incentive to join if and
only if p < 1.



B. GPS scheduling in a heavy-traffic scenario
Offering a differentiated treatment to elastic flows

makes sense mainly in the case where long-term con-
gestion may occur. The heavy-traffic hypothesis can
then be regarded as a central assumption for service
differentiation. To illustrate this point, let us recall how
a multi-class queue served by a GPS scheduler with I
classes works. Class i is served with a given proportion
γi of the resource, such that

∑I
i=1 γi = 1; however, when

a queue is empty, its idle server capacity is shared among
the other classes (i.e., the server is work-conserving). In
a heavy-traffic scenario, it is assumed that, for all the
classes, the probability to have an empty buffer is close
to zero; in this situation, the GPS queue can be seen as
I logically separate M/M/1 queues (with queue i having
a service rate γiµ, where µ is the service rate of the
“global” M/M/1 queueing system). If we consider that
traffic in each queue is charged at a different rate, this
logical split of the server actually results in the Paris
Metro Pricing (PMP) model [13], whose performance
has been investigated elsewhere [15], [16].

Assuming independence between the M/M/1 queues,
it is easy to show that the steady-state probability of
having at least one empty queue is P0 = 1 −∏I

i=1 ρi,
with ρi = λ/(γiµ). An ε-heavy-traffic regime is such
that P0 < ε, for an arbitrarily small value of ε. We will
provide later an interpretation of this probability, when
prices are set to their optimal values for the GPS queue.

From now on, let us focus on the I = 2 case,
corresponding to two traffic classes. Let 0 ≤ γ ≤ 1
denote the proportion of bandwidth allocated to queue
i = 2; service rates are then (1−γ)µ and γµ for queues
1 and 2, respectively.

We will begin by looking at the optimal prices and rev-
enues when a given type of traffic is directed to a given
queue (i.e., the dedicated classes scenario described in
Section I-B). Afterwards, we will look at the case of
open classes.

1) Dedicated classes: Assume that queue 1 is dedi-
cated to type-v traffic (the most stringent one) and that
queue 2 is devoted to type-d traffic. Therefore, γ×100%
and (1−γ)×100% of the bandwidth is assigned to type-
d and type-v traffic, respectively. The number of type-d
users is

N2(p) = Nd(p) =
γµ − αd

√
p

λd
, (5)

when p < (γµ)αd , and 0 otherwise. Similarly, the
number of type-v users is

N1(p) = Nv(p) =
(1 − γ)µ − αv

√
p

λv
, (6)

when p < ((1 − γ)µ)αv , and 0 otherwise.
a) Optimal prices: Suppose that the per-packet

price is different for each queue. Let p1 denote the price
in the queue dedicated to type-v traffic, and p2 the price
in the queue reserved to type-d traffic. The revenue Π

(γ)
GPS

is defined as the product of the mean input packet rate
and the per-packet price:

Π
(γ)
GPS(p1, p2) = λ1N1(p1)p1 + λ2N2(p2)p2,

= λvNv(p1)p1 + λdNd(p2)p2,

= (1 − γ)µp1 − p
1+1/αv

1

+ γµp2 − p
1+1/αd

2

(7)

for (p1, p2) ∈ DD = [0, ((1 − γ)µ)αv ]× [0, (γµ)αd ]. The
optimal prices for a fixed value of γ are given by the
following theorem.

Theorem 1: For a fixed γ, the prices that maximize
the revenue Π

(γ)
GPS for a GPS queue under an ε-heavy-

traffic regime are given by:

p∗1 =

(

(1 − γ)µ

1 + 1
αv

)αv

and p∗2 =

(

γµ

1 + 1
αd

)αd

. (8)

Proof: The revenue function Π
(γ)
GPS(p1, p2) as given

by (7) is a continuous, derivable function on the domain
DD. To find its maximum, we first equate the following
partial derivatives to 0:

∂Π
(γ)
GPS

∂p1
(p1, p2) = (1 − γ)µ − (1 +

1

αv
)p

1/αv

1

and

∂Π
(γ)
GPS

∂p2
(p1, p2) = γµ − (1 +

1

αd
)p

1/αd

2 .

Hence, the critical point (p∗1, p
∗
2) is:

(p∗1, p
∗
2) =

((

(1 − γ)µ

1 + 1
αv

)αv

,

(

γµ

1 + 1
αd

)αd
)

.

Remark that (p∗1, p
∗
2) is inside DD. From the second-order

derivatives, it is easy to verify that (p∗1, p
∗
2) corresponds

to a maximum.
Finally, it is easy to verify from (7) that, on the frontier

of DD, the revenue Π
(γ)
GPS is lower (because either the

price or the number of users is 0 for at least one of
the queues). Therefore, the point (p∗1, p

∗
2) is a global

optimum.
We may now compute from (7) the optimal revenue

for a given value of γ:

Π∗
GPS(γ) = (1 − γ)1+αv A(αv) + γ1+αdA(αd) (9)

with: A(x) = µ1+x( x
1+x )x 1

1+x .



b) Optimal bandwidth sharing: Once the optimal
prices have been found, we wish to optimally share
the bandwidth among traffic classes, so as to maximize
Π∗

GPS(γ). The following theorem gives the corresponding
value of γ.

Theorem 2: For a GPS queue under an ε-heavy-traffic
regime, the maximum revenue is given by:

Π∗
GPS = max(A(αv), A(αd)),

which implies that either γ = 0 or γ = 1. This is
equivalent to considering that only one queue is served.
Moreover, we have the following particular cases:

• If αd > 1
µ−1 , then Π∗

GPS = A(αv).
• If αv < 1

µ−1 , then Π∗
GPS = A(αd).

Proof: From (9), we get that the second derivative
of Π∗

GPS(γ) with respect to γ is of the form:

Π∗′′

GPS(γ) = (1 + αv)αv(1 − γ)αv−1A(αv)

+ (1 + αd)αdγ
αd−1A(αd) ≥ 0.

Therefore, Π∗
GPS(γ) is convex in γ. Moreover, we have:

Π∗′

GPS(0) = −(1 + αv)A(αv) < 0

and

Π∗′

GPS(1) = (1 + αd)A(αd) > 0.

Hence, Π∗
GPS(γ) is a convex function which reaches its

maximum either at γ = 0 or γ = 1. Because of the
shape of the optimal revenue function, we conclude that
a single type of traffic should be served if we wish to
optimize the revenue:

max
γ

Π∗
GPS(γ) = max(Π∗

GPS(0),Π
∗
GPS(1)),

= max(A(αv), A(αd)),

Let us study the behavior of the function A(.) defined
over [0,+∞[. Its derivative is:

A′(x) =

(

µ

1 + x

)1+x

xx

(

ln

(

x

1 + x

)

+ lnµ

)

. (10)

This expression is negative if and only if:

ln

(

x

1 + x

)

+ lnµ < 0 ⇔ (µ − 1)x < 1. (11)

However, if 0 < µ ≤ 1 then (µ − 1)x ≤ 0, ∀x > 0,
so the function A(.) is decreasing over [0,+∞[. Since
αv > αd, we have that A(αv) < A(αd), so the maximum
revenue is attained at γ = 1; in other words, only “data”
traffic is handled whenever 0 < µ ≤ 1.

Finally, when µ > 1 we may deduce from (10) and
(11) that:

A′(x) = 0 only at x = 1/(µ − 1),

A′(x) < 0,∀x < 1/(µ − 1),

A′(x) > 0,∀x > 1/(µ − 1).

Hence, A(x) reaches its minimum at x = 1/(µ − 1).
Depending on the values of µ, αv and αd, we have three
possible cases (recall that αd < αv):

• If αd > 1
µ−1 , then the revenue is maximized by

taking γ = 0 (i.e., only “voice” traffic is accepted).
• If αv < 1

µ−1 , then the revenue is maximized by
taking γ = 1 (i.e., only “data” traffic is accepted).

• Otherwise, if αd < 1
µ−1 < αv , then one has to

numerically compare A(αd) and A(αv) to find the
maximum revenue.

Remark 1: Theorem 2 states that revenue is optimized
by serving only one queue of the GPS system. This
amounts to say that, in order to maximize the revenue,
only one traffic class should be accepted into the net-
work.

c) Heavy-traffic hypothesis and optimal prices: Let
0 < γ < 1, that is, both traffic classes are handled by
the network. The load of queues 1 and 2 is given by:

ρ1 = ρv =
λvNv

(1 − γ)µ
and ρ2 = ρd =

λdNd

γµ
.

Assume that we have the maximum number of users of
each class, as given by (5) and (6). Hence, ρ1 and ρ2

can be expressed as:

ρ1 = 1 −
αv
√

p1

(1 − γ)µ
and ρ2 = 1 −

αd
√

p2

γµ
.

If we set prices to their revenue-optimizing values p∗1
and p∗2, as given by (8), we get

ρ2 =
1

1 + αd
and ρ1 =

1

1 + αv
.

Hence, the probability of having at least an empty queue
in the system is:

P0 = 1 − 1

(1 + αv)(1 + αd)
.

Note that, interestingly enough, when prices are opti-
mal the load of each queue (and so the probability P0

related to the heavy-traffic regime) depends only on the
delay sensitivities αv and αd.



2) Open classes: Let us suppose now that users are
free to select to which queue packets are sent, irrespec-
tive of the traffic class; this means that there might be
both type-v and type-d packets in the same queue. We
will keep the same notation as in the dedicated-class
scenario. In particular, γ denotes the proportion of total
bandwidth µ allocated to queue 2.

Let p1 be the per-packet price for queue 1, that is,
the queue receiving a service rate (1 − γ)µ. Likewise,
let p2 be the per-packet price for queue 2, that is, the
queue receiving a service rate equal to γµ. The revenue
is given by:

Π
(γ)
GPS(p1, p2) = λ1N1(p1)p1 + λ2N2(p2)p2. (12)

Proposition 2: If p1 < 1 then only type-d packets will
enter queue 1. If p2 < 1 then only type-d packets will
enter queue 2. A similar situation will arise with respect
to type-v packets if either p1 > 1 or p2 > 1.

Proof: The system is composed of two queues in
parallel, so we may use (3) and (4) and follow the same
reasoning as in Section II-A. Consider first queue 1, and
assume that there are Nd(p1) type-d users in this queue,
where:

Nd(p1) =
(1 − γ)µ − αd

√
p1

λd
.

For an infinitesimal type-v user to enter this queue, her
utility Uv(p1) has to be positive:

Uv(p1) = ((1 − γ)µ − λdNd(p1))
αv − p1

= p
αv/αd

1 − p1 > 0,

which happens if and only if p1 > 1. Conversely, if
there are already Nv(p1) type-v users in this queue, an
infinitesimal type-d user will only enter the queue if
p1 < 1.

The same analysis can be done for queue 2. Assum-
ing Nv(p2) type-v users are already in this queue, an
infinitesimal type-d user will enter this queue if

Ud(p2) = (γµ − λvNv(p2))
αd − p2

= p
αd/αv

2 − p2 > 0,

which happens if and only if p2 < 1.
Therefore, there can be only one class of traffic in

each queue.
a) Optimal prices: As a consequence of the price-

induced separation of traffic classes, the revenue function
Π

(γ)
GPS takes a different form depending on the composi-

tion of incoming traffic. For a fixed γ, the optimization
domain can be decomposed in three sub-domains: VO

(only type-v traffic), DO (only type-d traffic) and MO

(both types of traffic are present), as follows; see also
Fig. 1.

VO = [1, ((1 − γ)µ)αv ] × [1, (γµ)αv ]

DO = [0,min(1, ((1 − γ)µ)αd)] × [0,min(1, (γµ)αd)]

MO = M
(1)
O ∪ M

(2)
O

where:

M
(1)
O = [1, ((1 − γ)µ)αv ] × [0,min(1, (γµ)αd)]

M
(2)
O = [0,min(1, ((1 − γ)µ)αv )] × [1, (γµ)αd ]

When using the notation [a, b], we follow the conven-
tion: [a, b] = ∅ whenever a > b.

PSfrag replacements

VO

DO M
(1)
O

M
(2)
O

p1

p2

((1 − γ)µ)αv

(γµ)αd

0

1

1

Fig. 1. GPS queue in an ε-heavy-traffic scenario: optimization
domains for the revenue function.

For each sub-domain VO, DO and MO, we will now
find ΠGPS(p1, p2).

b) VO (only type-v traffic): In this case, only
“voice” traffic enters the network, and this homogeneous
traffic is split among the two queues. Suppose that
((1 − γ)µ)αv ≥ 1 and (γµ)αv ≥ 1, so that the set VO is
non-empty. Note that this happens if and only if:

0 ≤ 1

µ
≤ γ ≤ 1 − 1

µ
≤ 1. (13)

The number of users N1(p1) and N2(p2) in queues 1
and 2, respectively, is:

N1(p1) =
(1 − γ)µ − αv

√
p1

λ1
(14)



and

N2(p2) =
γµ − αv

√
p2

λ2
. (15)

The revenue function to be optimized, with µ and γ
fixed, is obtained from (12), (14) and (15):

Π
(γ)
GPS(p1, p2) = (1 − γ)µp1 − p

1+1/αv

1

+ γµp2 − p
1+1/αv

2 .
(16)

Notice that Π
(γ)
GPS(p1, p2) is continuous in p2 and in p1.

Let us find the maximum of Π
(γ)
GPS for p1 ∈ [1, ((1 −

γ)µ)αv ] and p2 ∈ [1, (γµ)αv ].
Proposition 3: The optimal prices over VO are given

by:

p∗1 = max

(

1,

(

(1 − γ)µ

1 + 1/αv

)αv
)

,

and

p∗2 = max

(

1,

(

γµ

1 + 1/αv

)αv
)

.

Note that (p∗1, p
∗
2) ∈ VO.

Proof: Note that the revenue function (16), with γ
fixed, can be decomposed as the sum of two functions,
one depending only on p1 and the other depending only
on p2:

Π
(γ)
GPS(p1, p2) = f(p1) + g(p2),

with:

f(p1) = (1 − γ)µp1 − p
1+1/αv

1 ,

g(p2) = γµp2 − p
1+1/αv

2 .

From:

f ′(p1) = (1 − γ)µ − (1 + 1/αv)p
1/αv

1 ,

g′(p2) = γµ − (1 + 1/αv)p
1/αv

2 ,

we get that, over [1, ((1−γ)µ)αv ], f attains its maximum
at max

(

1,
(

(1−γ)µ
1+1/αv

)αv
)

and, over [1, (γµ)αv ], g attains

its maximum at max
(

1,
(

γµ
1+1/αv

)αv
)

, which leads to
the result.

c) DO (only type-d traffic): This case is similar to
the preceding one, except that only “data” packets are
present.

Proposition 4: The optimal prices over DO are given
by:

p∗1 = min

(

1,

(

(1 − γ)µ

1 + 1/αd

)αd
)

,

and

p∗2 = min

(

1,

(

γµ

1 + 1/αd

)αd
)

.

Note that (p∗1, p
∗
2) ∈ DO.

Proof: The revenue function to be optimized is:

Π
(γ)
GPS(p1, p2) = (1−γ)µp1 − p

1+1/αd

1 +γµp2− p
1+1/αd

2 .

Using the same kind of reasoning as for the previous
case, we can obtain the result of Proposition 4.

d) MO (both types of traffic are present): The
condition for M

(1)
O to be non-empty is:

1 ≤ p1 ≤ ((1 − γ)µ)αv and 0 ≤ p2 ≤ min(1, (γµ)αd).

which is verified if

0 ≤ γ ≤ 1 − 1

µ
.

Similarly, the condition for M
(2)
O to be non-empty is:

0 ≤ p1 ≤ min(1, ((1 − γ)µ)αv ) and 1 ≤ p2 ≤ (γµ)αd

which is verified if
γ ≥ 1

µ
.

Over M
(1)
O , the revenue function is:

Π
(γ)
GPS(p1, p2) = (1−γ)µp1 − p

1+1/αv

1 +γµp2 − p
1+1/αd

2 .

In a similar fashion, we obtain the revenue function over
M

(2)
O , which is:

Π
(γ)
GPS(p1, p2) = (1−γ)µp1 − p

1+1/αd

1 +γµp2− p
1+1/αv

2 .

Proposition 5: The optimal prices over M
(1)
O are

given by:

p
(1)∗
1 = max

(

1,

(

(1 − γ)µ

1 + 1/αv

)αv
)

,

and

p
(1)∗
2 = min

(

1,

(

γµ

1 + 1/αd

)αd
)

.



Similarly, the optimal prices over M
(2)
O are given by:

p
(2)∗
1 = min

(

1,

(

(1 − γ)µ

1 + 1/αd

)αd
)

,

and

p
(2)∗
2 = max

(

1,

(

γµ

1 + 1/αv

)αv
)

.

Note that (p
(1)∗
1 , p

(1)∗
2 ) ∈ M

(1)
O and (p

(2)∗
1 , p

(2)∗
2 ) ∈

M
(2)
O .

Proof: The proof follows along the same lines as
the proof of Proposition 3.

Finally, in order to find the optimal prices, one simply
has to compare the maximum revenue over the three sub-
domains VO, DO and MO.

e) Optimal bandwidth sharing: In order to find the
optimal revenue for the open-classes case, it remains to
find over which sub-domain this maximum is attained
and for which value of γ. However, for the sake of clarity
we will postpone this analysis to Section III-.4 (we will
find that, anyway, the best solution is to take γ = 0 or
γ = 1, which is equivalent to the single-queue, FIFO
case).

III. COMPARISON OF OPTIMAL REVENUES

In this section, we will compare the maximum revenue
that may be obtained with the two chosen server types,
PQ and GPS. We will use the maximum revenue yielded
by a single FIFO queue, given by Mandjes in [9], as a
benchmark. First, we will study the dedicated classes
scenario, then the case of open classes.

3) Dedicated classes: In this case, type-v packets are
sent to queue 1, whereas type-d packets are sent to
queue 2. Let Π∗

D denote the optimal revenue for a PQ
system with dedicated classes (Appendix B.1). We have
the following main result.

Theorem 3: In the dedicated-classes context, maxi-
mum revenues always verify:

Π∗
GPS = Π∗

FIFO ≤ Π∗
D.

In words, the maximum revenue in a Priority Queueing
system is always higher or equal than that of a “par-
titioned” server (i.e., a GPS server under heavy load).
Moreover, a FIFO queue yields the same optimal revenue
as a GPS server under heavy traffic.

The proof of this theorem is divided in two parts.
First, we will show the relationship between the optimal
revenues for a GPS server and for a FIFO queue, then
we will prove that the latter is less than or equal to the

optimal revenue of a PQ server. Each result is given as
a lemma.

Lemma 1: In a system with dedicated classes, we
have that:

Π∗
GPS = Π∗

FIFO.

Proof: We showed in Theorem 2 that the optimal
revenue Π∗

GPS for the GPS server is:

Π∗
GPS = max(A(αv), A(αd)),

with A(x) = µ1+x( x
1+x)x 1

1+x , which amounts to taking
either γ = 0 or γ = 1. That is, when the revenue
is optimal the system becomes a single M/M/1 queue
served in FIFO fashion with service rate µ. As shown
in Appendix A, the above expression is exactly that of
the optimal revenue for a FIFO queue. Hence, Π∗

GPS =
Π∗

FIFO.
In other words, revenue is optimal when there is a sin-

gle traffic type in the GPS system with dedicated classes
but, as Mandjes [9] proved, optimizing the revenue in a
single FIFO queue also requires having a single traffic
class (because, for a given price, flows from different
classes do not mix).

Lemma 2: In a system with dedicated classes, we
have that:

Π∗
D ≥ Π∗

FIFO.

Proof: Let us quote the following argument from
[9]. A FIFO queue can be regarded as a special case
of a PQ system—indeed, it suffices to take p1 = µαv

or p2 = p
2αd/αv

1 /µαd , in which case only one queue
is “active”. Hence, the PQ system cannot yield lower
revenues than the FIFO queue.

4) Open classes: In this scenario, users are able to
select to which queue packets are sent. Let us recall the
form of the revenue function that we wish to maximize:

Π(p1, p2) = λ1N1(p1, p2)p1 + λ2N2(p1, p2)p2,

with λi and Ni denoting the arrival rate and the number
of users, respectively, for queue i. Let Π∗

O denote the
optimal revenue for a PQ system with open classes
(Appendix B.2). We then have the following main result.

Theorem 4: In the open-classes context, maximum
revenues always verify:

Π∗
GPS = Π∗

FIFO ≤ Π∗
O.

That is, the maximum revenue in a Priority Queueing
system is always higher or equal than that of a “par-
titioned” server (i.e., a GPS server under heavy load).



Moreover, a FIFO queue also yields higher or equal
revenues than a GPS server.

To prove this theorem, we will proceed as in the
dedicated-classes case; two intermediate lemmas will
allow us to show the main theorem.

Lemma 3: In a system with open classes, we have
that:

Π∗
GPS = Π∗

FIFO.

In words, the highest revenue that we can get with a GPS
server corresponds to that of a single FIFO queue.

Proof: Let us compare, over each sub-domain VO,
DO and MO, the revenue of a GPS server under heavy
load with that of a FIFO queue.

Let us focus first on VO. Recall from Proposition 3
that the optimal prices are:

p∗1 = max

(

1,

(

(1 − γ)µ

1 + 1/αv

)αv
)

,

p∗2 = max

(

1,

(

γµ

1 + 1/αv

)αv
)

.

Hence, there are four possible cases to study.
1) Suppose that p∗1 = ( (1−γ)µ

1+1/αv
)αv and p∗2 =

( γµ
1+1/αv

)αv . From (16), we readily obtain the op-
timal revenue for a fixed γ:

Π∗
GPS(γ) = (1 − γ)1+1/αv A(αv) + γ1+1/αvA(αv).

This function is convex in γ, and its maximum is
at one of the edges of the interval given by (13):

Π∗
GPS = max

γ∈[(1+1/αv)/µ,1−(1+1/αv)/µ]
Π∗

GPS(γ),

since we are assuming that VO is non-empty, i.e.
(

(1−γ)µ
1+1/αv

)αv

> 1 and
(

γµ
1+1/αv

)αv

> 1. So the
maximum revenue is

Π∗
GPS = max

(

Π∗
GPS(

1+1/αv

µ ),Π∗
GPS(1 − 1+1/αv

µ )
)

≤ max (Π∗
GPS(0),Π

∗
GPS(1))

≤ Π∗
FIFO.

2) Suppose now that p∗1 = 1 and p∗2 = 1. We obtain
that the revenue for a fixed γ is

Π∗
GPS(γ) = µ − 2,

which is independent of γ. However, for a FIFO
queue with p = 1 we have a revenue µ − 1.
Therefore, we also have that Π∗

GPS ≤ Π∗
FIFO.

3) Suppose now that p∗1 = ( (1−γ)µ
1+1/αv

)αv but p∗2 = 1.
The optimal revenue for a fixed γ is now:

Π∗
GPS(γ) = (1 − γ)1+1/αv A(αv) + γµ − 1,

which is also convex in γ. As before, we have that

Π∗
GPS ≤ max (Π∗

GPS(0),Π
∗
GPS(1))

≤ max (A(αv), µ − 1)

≤ Π∗
FIFO.

4) Finally, the case p∗1 = 1 and p∗2 = ( γµ
1+1/αv

)αv is
similar to the previous one.

We follow a similar approach to deal with the sub-
domains DO and MO. For instance, regarding DO (i.e.,
only “data” traffic is present), it is easy to check that the
previous results apply by simply changing αv by αd, with
the optimal prices given by Proposition 4. By similar
convexity arguments, we also get that Π∗

GPS ≤ Π∗
FIFO.

Since taking γ = 0 or γ = 1 in the GPS case is
equivalent to having a single FIFO queue, we deduce
that Π∗

GPS = Π∗
FIFO.

Let us now state the second lemma, concerning the
revenues of the PQ and the FIFO system.

Lemma 4: In a system with open classes, we have
that:

Π∗
FIFO ≤ Π∗

O.

Proof: As described in Appendix B.2, we de-
compose the optimization domain of ΠO in three sub-
domains V , D and M (see Fig. 2).

Assume that µ > 1 (otherwise V and M would be
empty).

• Over V , the revenue function is

Π
(V )
O (p1, p2) = (µ − αv

√
p1)p1

+

(

αv
√

p1 − µ αv

√

p2

p1

)

p2,

with p1 ≤ µαd and p2 ≤ p2
1/µ

αd .
• Over D, the revenue function is

Π
(D)
O (p1, p2) = (µ − αd

√
p1)p1

+

(

αd
√

p1 − µ αd

√

p2

p1

)

p2,

with p1 ≤ µαv and p2 ≤ p2
1/µ

αv .
• Over M , the revenue function is

Π
(M)
O (p1, p2) = (µ − αv

√
p1)p1

+

(

αv
√

p1 − µ
αd
√

p2
αv
√

p1

)

p2.

with p1 ∈ [1, µαv ] and p2 ∈ [0,min(1, p
2αd/αv
1

µαd
)].



We have:

Π∗
FIFO =

= max

(

max
1≤p≤µαv

(µ − αv
√

p)p, max
p≤ min(1,µαd)

(µ − αd
√

p)p

)

= max

(

max
1≤p≤µαv

Π
(M)
O (p, 0), max

p≤ min(1,µαd )
Π

(M)
O (µαv , p)

)

The optimization domain of the FIFO queue is a subset
of the optimization domain of the PQ server. Therefore,
we have necessarily that Π∗

FIFO ≤ Π∗
O.

On the other hand, if µ ≤ 1, then V and M are empty,
so we simply have to find the maximum of Π

(D)
O . We

have that:

Π∗
FIFO = max

p∈(0,µαd)
((µ − αd

√
p)p)

= max
p∈(0,µαd)

Π
(D)
O (0, p).

which also leads to Π∗
FIFO ≤ Π∗

O.

IV. DISCUSSION

The results of Mandjes [9] imply that it is interesting,
from an economic point of view, to offer some kind of
service differentiation; in fact, as shown in [9], having
more than one queue may increase revenues even if there
is a single traffic class. Hence, adding LBE to her service
offer may help a for-profit network provider to increase
her income.

Nonetheless, as we have seen in Sections II and III, the
choice of the scheduling mechanism for building a LBE
service may have an impact on the network provider’s
revenues. Indeed, our results seem to suggest that rev-
enues may be lower, not higher, when a differential
treatment is offered to flows—it depends on what kind
of queueing system is used. It is noteworthy that we
have arrived at similar conclusions as in [15], in spite of
the fact that the model analyzed in this paper is fairly
different from that of [15].

On the other hand, the scheduling mechanism may
also strongly affect the performance of traffic flows and
applications. We have assumed that flows are “infinitely
elastic”, in the sense that they may accept an unbounded
queueing delay, as long as the per-packet price is
decreased accordingly. However, in general real flows
cannot tolerate arbitrarily large delays. LBE has been
designed mainly as a service intended for transporting
TCP (or TCP-friendly) flows [2]. In the case of a TCP
connection, very long delays may result in the connection
being broken. This may happen with a PQ server during

heavy-load periods, leading to the starvation of the low-
priority (i.e., LBE) flows3.

To summarize, economic considerations suggest using
a PQ server, whereas technical considerations suggest
using a GPS server with a (quite) small value of γ. Note
that our results, as well as those of Mandjes, are based
on a Poisson model of incoming traffic, i.e., a model that
does not take into account the adaptive nature of TCP
[17]. Further study is needed to clarify the implications
of the type of server and the pricing mechanism on
TCP(-friendly) flows.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have evaluated the issue of deploying
a less-than-best-effort service for revenue-maximization
purposes. Based on a model by Mandjes, we have studied
the economic implications of the two scheduling models,
Priority Queueing and Generalized Processor Sharing,
which are commonly proposed to build such a service.
We have extended Mandjes’ model to cover the case of
a GPS server in a heavy-traffic regime. Our main results
suggest that, in order to increase revenues with respect to
a single-service network, it may be necessary to carefully
choose the scheduler used in routers to deploy a LBE
service.

Concerning our future work, the following issues are
worth exploring:

• Incorporating a model of TCP traffic into the queue-
ing and pricing model. This may allow to study, for
instance, the effect of starvation due to the use of a
PQ server.

• Concerning the utility function, it may be interesting
to take packet losses into account.

APPENDIX

RESULTS FOR FIFO AND PQ SERVERS

We recapitulate here the main results of Mandjes [9]
on the optimal prices for both a FIFO and a PQ server.

A. FIFO scheduling

We consider a single queue with FIFO (First In First
Out) scheduling policy, and we look at the price p
optimizing the revenue

ΠFIFO(p) = λdNd(p)p + λvNv(p)p.

3Indeed, it is for this very reason that the definition of the
Scavenger service in the Internet2 project explicitly discourages the
use of PQ [2].



From Proposition 1, if p > 1 we only have type-v
packets, and only type-d packets otherwise. It is shown
in [9] that the optimal revenue is given by

Π∗
FIFO = max

p∈IR+

ΠFIFO(p) = max(A(αd), A(αv)),

where A(x) = µ
x+1( µx

x+1)x. Also, for a service rate less
that µ∗, with

µ∗ =

((

αd

αd + 1

)αd
(

αv + 1

αv

)αv αv + 1

αd + 1

)
1

αv−αd

,

we only have type-d traffic, whereas if µ > µ∗ we only
have type-v traffic.

B. PQ scheduling

The main results of [9] deal with finding optimal
prices in the cases where there are two classes of traffic
with a non-preemptive strict priority for queue 1. We are
going to summarize first the case of dedicated classes,
then the case of open classes.

1) Dedicated classes: Assume that priority-class 1 is
dedicated to type-v traffic (the most stringent one) and
priority-class 2 is dedicated to type-d traffic. The revenue
is given by

ΠD(p1, p2) = λvNv(p1, p2)p1 + λdNd(p1, p2)p2,

where p1 and p2 are the per-packet price for priority
class 1 (the highest priority) and 2 (the lowest priority),
respectively. We have

Nv(p2, p1) = Nv(p1) =
µ − αv

√
p1

λv
,

if p1 ≤ µαv and 0 otherwise. Also,

Nd(p2, p1) = λ−1
d ( αv

√
p1 − µ αd

√
p2/

αv
√

p1)

if p2 < p
2αd/αv

1 /µαd and p1 ≤ µαv ,

Nd(p2, p1) = λ−1
d (µ − αd

√
p2)

if p2 < µαd and p1 > µαv , and Nd(p2, p1) = 0
otherwise.

In [9], Mandjes obtains the optimal prices p∗1 and p∗2,
and then the optimal revenue, depending on the value of
the service rate µ. Let µ∗

− and µ∗
+ be defined by

µ∗
− :=

((

αd

αd + 1

)αd

.
2αd + 1

αd + 1

)
1

αv−αd

,

and

µ∗
+ :=

((

αv

αv + 1

)αv

.
2αv + 1

αv + 1

)
1

αd−αv

.

Then,
• If µ ∈ [0, µ∗

−], we only have type-d traffic and

p∗1 = µαv and p∗2 =

(

µαd

αd + 1

)αd

.

• If µ ∈ [µ∗
−, µ∗], both types of traffic enter and

p∗1 = p1 and p∗2 =

(

µαd

µ(αd + 1)

)αd

p
2αd/αv

1 ,

where p1 is the unique solution of g′−(p) = 0 with

g−(p) = (µ− αv
√

p)p+

(

αd

µ(αd + 1)

)αd p(2αd+1)/αv

αd + 1
.

• If µ ∈ [µ∗, µ∗
+], both types of traffic enter and

p∗1 = p1 and p∗2 =

(

µαv

µ(αv + 1)

)αv

p
2αv/αd

1 ,

with p1 unique solution of g′+(p) = 0 with

g+(p) = (µ− αd
√

p)p+

(

αv

µ(αv + 1)

)αv p(2αv+1)/αd

αv + 1
.

• If µ ≥ µ∗
+,we only have type-v traffic and

p∗1 = µαd and p∗2 =

(

µαv

αv + 1

)αv

.

2) Open classes: We assume now that each user
is free to choose her priority class. The optimisation
domain can be decomposed in three sub-domains V , D
and M like shown in Fig. 2.

1

1

0 P

P

L

H

µα v

D

µα v

V
M

Fig. 2. Optimization domain for PQ and open classes. V , D and
M represent the areas where we have only type-v traffic, only type-d
traffic, and both types of traffic in the system, respectively.

Indeed, using Proposition 1 we can get that:
• On V , 1 ≥ p2 ≥ p2

1/µ
αv and 1 ≤ p1 ≤ µαv ,

meaning that we only have type-v traffic.



• On D, where p1 ≤ min(1, µαd) and p2 ≤
min(1, p2

1/µ
αd), we only have type-d traffic.

• On M , where p2 ∈ (0,min(1, p
2αd/αv
1

µαd
)) and p1 ∈

(1, µαv ], type-v traffic uses the higher priority queue
and type-d traffic uses the lower priority queue.

Note that we have assumed that µ > 1 so that V and M
are non-empty.

Like in the dedicated classes model, an algorithm for
computing the optimal prices depending on the value of
µ is provided in [9]. Due to space limits, we do not
reproduce it here.
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