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Abstract

Performance or dependability analysis is a tremendous challenge for the design or improvement

of modern complex systems. Two different classes of solution methods are usually used: analytic-

numeric methods and simulation methods. Surprisingly the choice between them in the literature

depends more on the analyst’s background than on the system itself. In this paper, we aim to illustrate

on real problems the advantages and drawbacks of each method and to compare the results. Then

we give some hints to choose the method. This is done by using SPNP, a Petri net analysis package

including both kinds of technique.

I. INTRODUCTION

Performance and dependability evaluation of modern systems is a challenging

problem due to the complexity of these systems. Many methods are available in the

literature. The most interesting is the analytic one as it gives accurate results. Un-

fortunately, it becomes very quickly inapplicable, because of the size of the model

or due to, for example, its non-Markovian nature, so we need to apply approxima-

tion methods. Even these approximation methods may become inefficient, in which

case the last resort is to use simulation.

In the literature, the authors either use analytic-numeric methods, or simulation,

but the choice is often arbitrary so a careful comparison of the two methods could
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be useful. In fact, depending on model parameter settings, it may be useful to switch

between the two methods. We wish to illustrate here the advantages and drawbacks

of these methods in order to help a user to choose which one might be the most

efficient.

We consider here as an illustration a client/server system, that is a system where

a server station receives requests from its client stations, processes the requests and

replies to the requesting stations [13]. We will compare the methods while varying

the number of stations connected to the server.

The analysis of the example will be made using SPNP (Stochastic Petri Net

Package) [7], [11]. The systems are modeled by Stochastic Reward Nets (SRNs)

[14], an extension of generalized stochastic Petri nets [1]. Originally, SPNP only

included analytic-numeric methods for studying these models [7], but the power of

this package has been recently enhanced by the introduction of simulation methods

[8], [9], [11], [22].

The lay-out of the paper is as follows. In Section II we introduce stochastic Petri

nets, and the solution methods included in SPNP, the software used throughout this

paper. Section III deals with the analysis of the client/server system and compares

simulation and analytic-numeric methods. Finally, we give our conclusions in Sec-

tion IV.

II. STOCHASTIC PETRI NETS (SPNS) AND SOLUTION METHODS IN SPNP

Petri nets are formal graph models particularly well suited for representing the

flow of information and control in systems with concurrency and synchronization

characteristics [17]. We limit ourselves here to discrete SPNs, eventhough Fluid

Stochastic Petri Nets (FSPNs) [8], [12], [20], hybrid extension of SPNs, can be
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analyzed by SPNP as well.

The class of stochastic Petri Nets we consider is given by an 11-tuple:

�����������	����
��������
����������������������

where

� � is the set of places (represented by circles). Each place may contain

tokens. The marking of the SPN is then defined by the number of tokens in

each place.

� � is the set of transitions (represented by bars).

� � is the set of input arcs (from a place to a transition) and output arcs

(from a transition to a place). Each arc has a multiplicity (default is multi-

plicity one). A transition is enabled if each of its input places contains at

least as many tokens as the multiplicity of the corresponding input arc. The

transition which fires is then the one with the smallest firing time. Then the

transition removes a number of tokens from each of its input places equal to

the multiplicity of the corresponding input arc and it deposits in each of its

output places a number of tokens equal to the multiplicity of the correspond-

ing output arc, leading then to possibly a new marking.

� � 
 is the set of inhibitor arcs, from a place to a transition (represented

by an arc terminated by a small circle), with its associate multiplicity. With

this addition, a transition will be enabled only if each of its inhibitor input

places contains a number of tokens strictly less than the multiplicity of the

corresponding arc.

�  is the (marking-dependent) guard function for each transition. It is a

generalization of inhibitor arcs, saying whether or not a transition is enabled
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in the current marking. Nevertheless we still also consider inhibitor arcs for

their graphical usefulness and for sake of generality.

� � 

is the initial marking.

� � is the explicit priority that can be assigned to transitions.

� � defines the firing time distribution of each transition.

� � is the static resampling policy for each transition when it becomes

enabled again after being disabled by the firing of a concurrent transition.

Three policies are possible: PRI (preemptive repeat identical), PRD (pre-

emptive repeat different) and PRS (preemptive resume).

� � defines the affecting resampling policy for each transition when anoth-

er transition fires but the considered transition remains enabled. PRI, PRS

and PRD are also possible.

� � is the weight function to choose between several transitions when they

are all enabled and have the same firing time.

This model (as well as its fluid extension) is used in SPNP, a versatile modeling

tool for performance, dependability and performability analysis of complex systems

[7] including advanced constructs such as marking-dependency or the ability to de-

fine its own reward function. The Petri nets and the solution methods are described

in CSPL, an ANSI C library, but can also be specified by using a Graphical User

Interface (GUI) [11]. Steady-state as well as transient analysis are possible.

The first class of solution methods is the analytic-numeric one. To apply these

methods, several restrictions must be applied on the previous model. The first major

limitation is that the distributions of transition firing times must generally be ex-

ponential or immediate. There exist less general restrictions (see for instance [4],
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[5] where no more than one non-exponential distribution is enabled in any marking,

leading to a Markov regenerative process), but they are still restrictive and are not

currently implemented in SPNP yet. One could emphasize that general distribution-

s can be approximated by phase type distributions, that is, by creating extra places

and extra exponential transitions [16]. Nevertheless this can also increase the size

of the state space. A second assumption we make is that functions
�

and
�

have

fixed policies, PRD for
�

and PRS for
�

(this has been relaxed by some authors

[2]). Given these assumptions, a Markov chain is constructed via the reachability

graph. Several matrix analysis methods may then be used to solve the problem.

Analytic-numeric solution methods in SPNP include steady-state SOR (Successive

OverRelaxation), steady state Gauss-Seidel, steady-state power method [6], [18],

[19] or transient solution using uniformization [15].

On the other hand, simulation methods [9], [10] can be used when the above

restrictions are not satisfied, when the the storage requirements exceeds the mem-

ory capacity or when the computation time is very long. In fact, no generation of

reachability graph is needed, so the simulation requires very little memory, and the

computation time can be reduced by decreasing the number of replications while

reducing accuracy. However the simulation time can be quite often long and all

the simulation methods (except regenerative simulation) are actually transient sim-

ulations, introducing a bias. The simulation methods included in SPNP encompass

the standard discrete event simulation with independent replications or with batch-

es [9], regenerative simulation [21], and some variance reduction techniques well

suited for rare event situation, importance splitting [22] and importance sampling

[21]. As the following example does not involve rare events, we compare analytic-
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numeric methods with the standard discrete event simulation.

III. CLIENT/SERVER EXAMPLE

The example we consider is that of a client/server system where a server sta-

tion receives requests from its client stations, processes the requests and replies to

the client stations [13]. This is a common feature in distributed computing but its

analysis is made difficult by the various kinds of dependencies in the system [13].

A Markov chain will be able to capture the dependencies but a hand construction

of the Markov chain is infeassible. For this reason, the use of SRNs as model of

representation is very helpful. We consider here a distributed system consisting of

�
workstations and one file server interconnected by a local area network. For a

complete description of the models, the reader is advised to read [13]. To avoid any

confusion in the use of the word token, used in PNs and in ring networks, we will

refer throughout this section to the network token or the PN token. We assume here

that a client-station generates requests following an exponential distribution with

rate � and that the transmission time of this request is also exponentially distributed

with rate � . Other times (all assumed to be exponentially distributed) are the time

for the network token to move from a station to another one (rate � ), the request

processing time for the server (rate � ) and the reply transmission time (rate � ). Fig-

ure 1 shows the SRN model for a token ring network-based system with five client

stations. Places
���	��


( ����� �
) represent the condition that station � is idle

and transitions ����� that a request is generated at station � . Then the token moves

to place
���	���

where the client is waiting for the network token to arrive (condition

represented by place
���	���

). When the network token arrives at station � , the trans-

mission of the request can be processed (transition ����� ). Then a PN token is put in
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Fig. 1. SRN the accurate token ring network (
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place
� ��� ���	��� �

(or
��� �

if ��� �
, or

���	���
if the current station is the server), mean-

ing that the network token is waiting to move to the next station (or to the server for
� ���

). This move is made by the firing of the corresponding transition ���	� or ���
� .

Place
� ��


represents the condition that the client’s request has arrived at the serv-

er, where it is served by firing transition ��� � . Therefore, place
� ���

represents the

condition that the request is completed. When the server has received the network

token (condition represented by place
� ���

) , it can commence transmitting an an-

swer (by firing transition ����� ). Next we describe the modeling of the server’s buffer.

Places
�� �

represent the condition that a request is waiting for its reply at ���� slot

of the queue from the tail. The multiplicity of input arcs from transitions ��� � to
� � �

is � , to identify the requesting stations. The firing of transition ��� ( �  �  �
)

means that the server sends a reply to station � . A token in place
� ���

means that

the service is completed, so we can empty the first slot of the FIFO queue.

In [13], an approximation of this model is also described to reduce the state

space size. This is done by considering a tagged client and lumping the remaining

clients into one super-client. The SRN for this approximation for the system with

� � � stations is given in Figure 2. For a detailed description of this model, the

reader can consult [13].

Table I describes the state space and storage requirements for both the exact

and approximate models, and when a memory overflow is obtained on a Sun S-

parcStation Ultra 60 with 640Mb of real memory and 982Mb of swapping memory.

Nonzero entries are the number of nonzero elements in the infinitesimal generator

of the underlying continuous time Markov chain. We observe that the state space

size of the exact model increases quickly and becomes too large to construct the
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)

reachability graph for small values of
�

(
� ��� ), even on our powerful computer.

On the other hand, the approximate model reachability graph can be generated for

larger values of
�

, but limited to
� ��� � on our computer.

A. Transient behavior

A.1 Cumulative measure

Table II gives the results obtained when computing the transient cumulative

probability that the server is idle (i.e., places
� � �

and
����


are empty) up to time

� ������� ms, using analytic-numeric methods and simulation (with 10% relative er-

ror and 95%-confidence interval) when the number
�

of workstations is varying. In

these computations, we assume that ��� � ������� ms, ��� � ��� � � ms, ��� � �!� ��� ms,

�"� � �#� �$� ��� � �&% � � % � �����'�)( ms and that � is varied with
�

so that the offered
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�
No. of states Nonzero Entries No. of states Nonzero Entries
(exact model) (exact model) (approx. model) (approx. model)

3 476 1004 274 562
4 3416 7960 790 1754
5 26672 66192 1880 4400
6 228880 591568 3920 9524
7 2160160 5736992 7420 18536
8 Memory overflow Memory overflow 13044 33292
10 34210 90050
15 209240 574700
20 785470 2204850
25 2230150 6343250
30 5281780 15156400
31 6172720 17738324
32 Memory overflow Memory overflow

TABLE I

STORAGE REQUIREMENTS FOR THE CLIENT/SERVER EXAMPLE AS THE NUMBER
�

OF CLIENT STATION

INCREASES

�
Exact model Approx. model Exact model Approx. model
numer. res. numer. res. simulation simulation

3 0.2501126340 0.2500131794 [2.4623e-01,3.0010e-01] [2.2962e-01,2.7220e-01]
4 0.2177441140 0.2175922454 [1.8141e-01,2.2149e-01] [1.8664e-01,2.2796e-01]
5 0.1957598128 0.1955790301 [1.7852e-01,2.1472e-01] [1.7821e-01,2.1775e-01]
6 0.1796752514 0.1794767011 [1.3103e-01,1.5994e-01] [1.7196e-01,2.0928e-01]
7 0.167301986 0.1670913055 [1.4746e-01,1.7913e-01] [1.5417e-01,1.8842e-01]
8 0.1572124840 [1.3973e-01,1.7064e-01] [1.3485e-01,1.6458e-01]
9 0.1491128548 [1.3349e-01,1.6218e-01] [1.2827e-01,1.5670e-01]
10 0.1423266644964 [1.2955e-01,1.5799e-01] [1.3960e-01,1.7019e-01]
15 0.1198182597846 [1.1394e-01,1.3894e-01] [1.1342e-01,1.3843e-01]
20 0.106803594142 [9.5962e-02,1.1727e-01] [9.8970e-02,1.2072e-01]
25 ����� [9.4095e-02,1.1495e-01] [8.8553e-02,1.0816e-01]

TABLE II

RESULTS OBTAINED FOR ANALYTIC-NUMERIC AND SIMULATION METHODS FOR THE CUMULATIVE BEHAVIOR.

load � � � ��� � ��� � � % � ��� � ��� is fixed to 0.9. The analytic-numeric method uses

uniformization [15] whereas the simulation method is the standard discrete event

simulation using independent replications. The number of replications is unknown

as the simulation is stopped only when a �"�	� half-width relative error 
'��� confi-

dence interval is reached. We do not give all the results because the computation

time can be very long for large values of
�

. We observe that the numerical values

given by the approximate model are very close to the exact ones. Of course, we

obtain exact results only for small values of
�

so that we can not be sure that the

results are very good also for larger values, but simulation results show that the ap-
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�
Exact model Approx. model Exact model Approx. model
numer. res. numer. res. simulation simulation

3 19.52 45.25 89.91 45.71
4 196.2 159.14 181.86 150.65
5 2106.34 432.56 154.22 92.92
6 26231.21 952.25 221.40 246.53
7 324109.00 1922.95 716.86 331.95
8 3569.55 986.33 347.60
9 6386.69 904.97 337.40
10 11914.97 2466.47 357.78
15 83379.73 6704.03 719.60
20 339514.88 10562.27 706.04
25 ����� 17892.82 593.45

TABLE III

COMPUTATION TIMES (IN SECONDS) TO OBTAIN THE ANALYTIC-NUMERIC AND
�����

HALF-WIDTH RELATIVE

ERROR ��� � CONFIDENCE INTERVAL SIMULATION RESULTS FOR THE CUMULATIVE ESTIMATION.

proximation is still accurate as
�

increases. The simulation results are in the range

of the analytic-numeric ones. Only in the case of the exact model with
� ��� the

exact value is not included in the confidence interval. This can have two explana-

tions: first it can be due to risk of the confidence interval. In fact, the confidence

level is 
'� � , which means that in � � of cases the values may not be included in the

interval. This is one of the main drawbacks of the simulation: we are never sure that

the interval contains the exact value. More likely in our example, the error is due to

the fact that very few replications (here 10) are necessary to obtain a �"�	� relative

error accuracy so that the normal approximation (and variance estimation) may be

bad. This number of replications is small because the variance of the estimator of

cumulative probability is small. In conclusion about Table II, simulation allows us

to solve larger models, but this is at the cost that we obtain only a confidence in-

terval, i.e., we have only a given probability that the true value is contained in the

interval.

Table III shows the computation times required for the methods to obtain the

results. The computation time for the analytic-numeric solution of the exact model

increases very fast with the state space size. The increase is slower for the approx-
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imate model. Simulation time to obtain the � �	� relative error confidence interval

becomes competitive for
� � � and is close to the analytic-numeric time for small-

er
�

. In this example, simulation is then a better method to use (and even the only

one as soon as there is a memory overflow while using analytic-numeric methods;

see TableI). The reason of the very different simulation times between the exact and

the accurate model is due to the number of events to simulate per run. Recall that

the state space does not intervene in this difference as for analytic-numeric methods

because we do not generate it. Here it is specific to the model in itself: in the exact

model, more transitions occur, which results in a bigger number of events per run.

Thus it is very interesting that simulation of approximate models can also be much

more powerful than simulation of exact models because when applying simulation,

people almost always use exact models.

A.2 Instantaneous behavior

We now compute the transient probability that the server is idle (i.e., places
� � �

and
��� 


are empty) at given time � , using analytic-numeric methods and simulation

(with 10% relative error 95%-confidence interval) with the number
�

of worksta-

tions varying. Other parameters have the same values as in the previous subsection.

The results for � � ����� ms are displayed in Table IV and the computation times

are given in Table V. Applying the numerical solution method to the exact model

requires a very long time for
� � � � � ��� and afterthat it cannot be applied. The

method performs well on the approximate model (restricted to the fact that
��� � � ),

but the running time increases quickly with
�

. If we compare with simulation,

we see that the results match (and do not forget anyway that we are statistically

authorized ��� error). Similarly, if we compare the simulation results for the models,
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�
Exact model Approx. model Exact model Approx. model
numer. res. numer. res. simulation simulation

3 0.245405983462 0.245309152837 [2.3759e-01,2.9029e-01] [2.1142e-01,2.5833e-01]
4 0.212233219255 0.212087343327 [2.0257e-01,2.4758e-01] [2.0477e-01,2.5019e-01]
5 0.189598853338 0.189427606917 [1.7465e-01,2.1338e-01] [1.7795e-01,2.1745e-01]
6 0.172966955725 0.17278150511 [1.4788e-01,1.8069e-01] [1.5488e-01,1.8925e-01]
7 0.160119663329 0.159925613372 [1.5103e-01,1.8458e-01] [1.3570e-01,1.6582e-01]
8 0.149631257743 [1.3691e-01,1.6733e-01] [1.2700e-01,1.5518e-01]
9 0.141158476542 [1.2036e-01,1.4711e-01] [1.1887e-01,1.4527e-01]
10 0.134033184 [1.2125e-01,1.4817e-01] [1.1019e-01,1.3465e-01]
15 0.110165627749 [1.0836e-01,1.3240e-01] [1.0579e-01,1.2926e-01]
20 0.096121345693 [8.5813e-02,1.0487e-01] [9.4162e-02,1.1506e-01]
25 ����� ����� [8.2386e-02,1.0067e-01]

TABLE IV

ANALYTIC-NUMERIC RESULTS AND
� ���

HALF-WIDTH RELATIVE ERROR � � � CONFIDENCE INTERVAL

SIMULATION RESULTS FOR THE INSTANTANEOUS BEHAVIOR AT ��� � � � MS.

�
Exact model Approx. model Exact model Approx. model
numer. res. numer. res. simulation simulation

3 7.50 20.55 8773.120 8656.66
4 77.12 73.84 15543.22 9715.90
5 821.17 196.48 27302.46 12194.67
6 10778.41 451.20 42109.10 14987.88
7 125182.97 941.24 54362.62 18113.44
8 1742.30 74371.53 19286.46
9 3092.11 107277.69 21250.31
10 5687.44 124570.68 23331.97
15 42696.84 286364.04 23882.59
20 158124.71 586347.98 27547.62
25 ����� ����� 30651.96

TABLE V

COMPUTATION TIMES FOR THE ANALYTIC-NUMERIC AND
� ���

HALF-WIDTH RELATIVE ERROR ��� �

CONFIDENCE INTERVAL SIMULATION RESULTS FOR THE INSTANTANEOUS BEHAVIOR AT ��� � � � MS.

we see that the approximate model gives about the same results as the exact one even

for large values of
�

. The problem here is that simulation times are very long. This

is due to the fact that to obtain just one replication at time � � ����� ms, we need

to simulate the whole path to this time, which is long. We note as in the previous

subsection that the simulation of the approximate model is much quicker because

we have less number of events to deal with. We suggest then to use the simulation

of the approximate model as soon as
�

gets close to 15 as then simulation time is

almost half that of the numeric method one.

Next we consider the results for a smaller time horizon, say for instance � � ���
ms. The results are presented in Table VI and the computation times in Table VII.
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�
Exact model Approx. model Exact model Approx. model
numer. res. numer. res. simulation simulation

3 0.248990414584 0.248891671673 [2.1377e-01,2.6119e-01] [2.2215e-01,2.7147e-01]
4 0.220642010649 0.220487516342 [1.8385e-01,2.2470e-01] [1.9193e-01,2.3453e-01]
5 0.20335484339 0.203163887109 [1.9346e-01,2.3643e-01] [1.8598e-01,2.2730e-01]
6 0.19187084927 0.191651745495 [1.7333e-01,2.1181e-01] [1.7560e-01,2.1458e-01]
7 0.183738062491 0.183494745277 [1.7639e-01,2.1552e-01] [1.6655e-01,2.0351e-01]
8 0.177427525223 [1.5530e-01,1.8975e-01] [1.6515e-01,2.0177e-01]
9 0.172741528561 [1.5780e-01,1.9281e-01] [1.4994e-01,1.8322e-01]
10 0.169013059683 [1.4478e-01,1.7693e-01] [1.4788e-01,1.8069e-01]
15 0.157887817108 [1.4537e-01,1.7763e-01] [1.5103e-01,1.8458e-01]
20 0.152260872721 [1.3929e-01,1.7023e-01] [1.6124e-01,1.9704e-01]
25 0.148769045652 [1.2261e-01,1.4986e-01] [1.3494e-01,1.6492e-01]

TABLE VI

ANALYTIC-NUMERIC RESULTS AND
� ���

HALF-WIDTH RELATIVE ERROR � � � CONFIDENCE INTERVAL

SIMULATION RESULTS FOR THE INSTANTANEOUS BEHAVIOR AT �����
�

MS.

�
Exact model Approx. model Exact model Approx. model
numer. res. numer. res. simulation simulation

3 1.96 1.08 506.12 400.25
4 17.01 3.60 925.64 617.95
5 169.82 9.38 1330.08 698.69
6 1779.51 21.22 1995.13 801.36
7 19878.53 42.27 2856.53 859.87
8 81.14 4094.41 892.77
9 143.11 5232.79 1153.12
10 232.45 6807.45 1109.47
15 1761.66 16296.33 1198.21
20 7114.52 27600.81 1174.72
25 21015.08 50124.95 1664.06

TABLE VII

COMPUTATION TIMES FOR THE ANALYTIC-NUMERIC AND
� ���

HALF-WIDTH RELATIVE ERROR ��� �

CONFIDENCE INTERVAL SIMULATION RESULTS FOR THE INSTANTANEOUS BEHAVIOR AT �����
�

MS.

The same type of remarks can be applied to the results as in the case � �!����� ms

(but in one case, approximate model with
� � �)� , the exact value is not included in

the confidence interval, probably due to the statistical risk), with the difference that

the running times are smaller because the time horizon is smaller. Simulating the

approximate model is the best method when
�

gets close to 20 and the simulation

times are then less than 20 minutes.

As a conclusion of this subsection, simulation for instantaneous behavior is bet-

ter when “small” time horizons are used. Anyway, it is the only solution when the

state space is big (here when
� � � � ), but the results will take a very long time for

large horizon times.
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�
Exact model Approx. model Exact model Approx. model
numer. res. numer. res. simulation simulation

3 0.245405986097 0.245309143644 [2.0963e-01,2.5612e-01] [2.2727e-01,2.7776e-01]
4 0.212233217673 0.212087148724 [1.8145e-01,2.2174e-01] [1.7796e-01,2.1748e-01]
5 0.189598852479 0.189427509192 [1.6452e-01,2.0103e-01] [1.7541e-01,2.1437e-01]
6 0.172966955399 0.172781457818 [1.4520e-01,1.7746e-01] [1.6325e-01,1.9949e-01]
7 0.16011966318 0.159925589231 [1.5756e-01,1.9253e-01] [1.4701e-01,1.7963e-01]
8 0.149631243957 [1.4030e-01,1.7145e-01] [1.4145e-01,1.7283e-01]
9 0.141158469595 [1.2664e-01,1.5477e-01] [1.1697e-01,1.4294e-01]
10 0.134033180235 [1.1820e-01,1.4446e-01] [1.2562e-01,1.5352e-01]
15 0.110165627613 [9.1028e-02,1.1124e-01] [1.1056e-01,1.3509e-01]
20 0.0961213455293 [9.4511e-02,1.1551e-01] [6.4175e-02,7.8425e-02]
25 0.0865441102832 [8.1165e-02,9.9175e-02] [8.4345e-02,1.0309e-01]

TABLE VIII

ANALYTIC-NUMERIC AND
� ���

HALF-WIDTH RELATIVE ERROR ��� � CONFIDENCE INTERVAL SIMULATION

RESULTS FOR THE STEADY-STATE BEHAVIOR.

B. Steady-state behavior

We now compute the steady-state probability that the server is idle (i.e., places
� ���

and
��� 


are empty) using analytic-numeric methods and simulation (with 10%

relative error 95%-confidence interval) with the number
�

of workstations varying.

The analytic-numeric method used is steady-state SOR. As simulation method,

the standard discrete event simulation with independent replications is not relevant

anymore for it is meant for the transient behavior and it would require very long

simulation paths to approach a steady state behavior. A better way is use batching

techniques. Then only one simulation path is generated so that we can assume that

steady-state will be reached (a warm-up can be used). This path is decomposed in

several blocks assumed to be independent, so that a statistical analysis is performed

using the method of batch means [19].

The results for analytic-numeric methods and simulation using batching meth-

ods (with a batch size of � � � ms) are displayed in Table VIII. The computation

times are presented in Table IX. The analytic-numeric is powerful when applied

on the exact model until
� � � . Beyond

� ��� , the running time is long. Use of

the approximate model is much better as the results are very close and the running
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�
Exact model Approx. model Exact model Approx. model
numer. res. numer. res. simulation simulation

3 5.60 0.79 65.82 49.32
4 11.11 1.74 107.18 74.30
5 105.08 4.31 196.00 79.15
6 1078.54 9.43 255.12 92.39
7 13749.02 18.17 331.55 110.46
8 32.14 511.63 114.35
9 54.61 544.08 136.92
10 99.66 734.51 132.56
15 660.64 1905.18 163.36
20 2444.84 3266.75 222.21
25 6807.75 5918.24 202.02

TABLE IX

COMPUTATION TIMES FOR THE ANALYTIC-NUMERIC AND
� ���

HALF-WIDTH RELATIVE ERROR � � �

CONFIDENCE INTERVAL SIMULATION RESULTS FOR THE STEADY-STATE BEHAVIOR.

times are much smaller (18 seconds as compared with 3 hours and 50 minutes for

� � � ). But even the approximate model can not be used if
� � � � . Simulation of

the exact model is powerful for small values of
�

but the simulation time increas-

es with
�

. On the other hand, simulation of the approximate model requires very

small running times (about 3 minutes 30 seconds for
� � ��� or

� � ��� ). Thus

the simulation of the approximate is a very powerful technique. The problem when

using batch methods for steady-state estimation is the choice of the batch size. It has

to be big enough so that successive blocks are nearly independent. In our case, the

exact value gets closer to the edge of the confidence interval as
�

increases. This

suggests that the batch size should be increased with
�

. Indeed, when
�

increases

the number of tokens in the system is larger and hence more events have to occur to

decorrelate blocks.

Regenerative simulation is another way to perform steady-state simulation [10].

The advantage is that the variance estimation is unbiased. The drawback is that

we need a regeneration point (each state is suitable in the Markovian case) where

a cycle will begin. Each cycle is then independent and a statistical analysis can be

performed. Confidence intervals and computation times are given in Tables XI and
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�
Exact model Approx. model

3 [2.0995e-01,2.5657e-01] [2.2702e-01,2.7746e-01]
4 [1.9919e-01,2.4343e-01] [1.9277e-01,2.3559e-01]
5 [1.7791e-01,2.1743e-01] [1.6220e-01,1.9825e-01]
6 [1.6976e-01,2.0747e-01] [1.7197e-01,2.1017e-01]
7 [1.4151e-01,1.7295e-01] [1.5128e-01,1.8484e-01]
8 [1.4514e-01,1.7739e-01] [1.2864e-01,1.5720e-01]
9 [1.2253e-01,1.4976e-01] [1.2850e-01,1.5702e-01]
10 [1.2906e-01,1.5774e-01] [1.1046e-01,1.3499e-01]
15 [9.6841e-02,1.1835e-01] [1.0197e-01,1.2461e-01]
20 [8.8288e-02,1.0791e-01] [8.4866e-02,1.0372e-01]
25 [8.1428e-02,9.9516e-02] [8.2673e-02,1.0103e-01]

TABLE X
� ���

HALF-WIDTH RELATIVE ERROR � � � CONFIDENCE INTERVAL REGENERATIVE SIMULATION RESULTS FOR

THE STEADY-STATE BEHAVIOR.

�
Exact model Approx. model

3 140.96 118.22
4 261.74 160.10
5 461.25 232.33
6 784.07 244.99
7 954.92 323.77
8 1382.12 399.25
9 1917.75 373.76
10 2180.04 467.40
15 6633.18 561.98
20 11764.46 670.85
25 24719.10 787.32

TABLE XI

COMPUTATION TIMES TO OBTAIN THE
�����

HALF-WIDTH RELATIVE ERROR ��� � CONFIDENCE INTERVAL

REGENERATIVE SIMULATION RESULTS FOR THE STEADY-STATE BEHAVIOR.

X. The exact values look less at the edge of the confidence intervals. Note how-

ever, at least in this model, batch method is quicker than regenerative simulation.

Moreover, as
�

increases, the mean length of a cycle is increasing, making it more

difficult to estimate the variance of the estimator as we need a sufficient number of

cycles.

Note that another way to perform regenerative simulation is using � -cycles [3].

Instead of using a state as a regeneration point, we use a subset of states, hence

increasing the number of regenerations. This estimator is biased (because the initial

state is not generated from the regenerative subset with the steady-state distribution,

which would be too difficult) and the cycles are dependent. The analysis is then
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more tricky and more approximate than the classical regenerative method, but it is

more promising. Nevertheless, as it is not yet implemented in SPNP, we do not use

it.

IV. CONCLUSION

To choose between simulation and analytic-numeric methods, we make the fol-

lowing recommendations:

� When the system is non-Markovian (especially without regenerative struc-

ture), very few analytic-numeric methods are available. Simulation is then

the natural and often the only possibility.

� When the system is Markovian

– When the state space is big (and no approximate model close to

the exact model reducing the state space is available), the reachabil-

ity graph can not be generated. Simulation is then again the only

possibility (in our example if
� � � � ).

– In the other cases, a choice is very specific to the application. N-

evertheless, from our experience and the example of this paper, we

can say that for “small” state spaces analytic-numeric methods per-

form well. When the state space increases, there is always a point

where simulation time is more efficient (the worst situation is when

the reachability graph is too big to be generated). But we can point

out that the natural switch form analytic-numeric to simulation meth-

ods is faster for steady-state behavior, then cumulative transient be-

havior and finally instantaneous transient behavior (except for very

small time horizons). Usually, simulation takes a very long time to
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obtain good results for long horizon instantaneous behavior.

Note that even if the running time of analytic-numeric methods is a

little larger than the one of simulation, it is still relevant to use them

because they give an accurate result instead of a confidence interval.

How different it should be is very subjective and depends on the user.

Moreover, using approximate models can be very helpful even when

using simulation, as pointed out in this paper. Indeed, even if the

state space is not generated as in analytic-numeric methods, an ap-

proximate model can tremendously reduce the computation time per

run by reducing the number of events.
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