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In the context of rare-event simulation, splitting and importance sampling (IS) are the primary
approaches to make important rare events happen more frequently in a simulation and yet recover

an unbiased estimator of the target performance measure, with much smaller variance than a

straightforward Monte Carlo (MC) estimator. Randomized quasi-Monte Carlo (RQMC) is another
class of methods for reducing the noise of simulation estimators, by sampling more evenly than

with standard MC. It typically works well for simulations that depend mostly on very few random
numbers. In splitting and IS, on the other hand, we often simulate Markov chains whose sample

paths are a function of a long sequence of independent random numbers generated during the

simulation. In this paper, we show that RQMC can be used jointly with splitting and/or IS to
construct better estimators than those obtained by either of these methods alone. We do that in

a setting where the goal is to estimate the probability of reaching B before reaching (or returning

to) A when starting from a distinguished state not in B, where A and B are two disjoint subsets
of the state space and B is very rarely reached. This problem has several practical applications.

The paper is in fact a two-in-one: the first part provides a guided tour of splitting techniques,

introducing along the way some improvements in the implementation of the multilevel splitting.
At the end of the paper, we also give examples of situations where splitting is not effective. For

these examples, we compare different ways of applying IS and combining it with RQMC.

Categories and Subject Descriptors: G.3 [Mathematics of Computing]: Probability and Sta-
tistics; I.6 [Computing Methodology]: Simulation and Modeling

Additional Key Words and Phrases: Quasi-Monte Carlo, Markov chain, variance reduction, split-

ting, RESTART, importance sampling, highly-reliable Markovian systems

1. INTRODUCTION

Rare-event simulation was the prime focus of Perwez Shahabuddin’s research. He
gave us crisp insight on several aspects of its two main tools: importance sampling
(IS) and splitting. For IS, he worked on both the light-tail and the (more difficult)
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heavy-tail settings. He also developed clever simulation techniques for Markov
chains representing various classes of highly-reliable systems. For splitting, he and
his co-authors used branching-process theory to find the optimal degree of splitting,
gave conditions under which the method is asymptotically efficient, and shed light
on (potential) practical difficulties with the method. In all these cases, he came up
with sharp theorems, most of them on the asymptotic behavior as the probability
or the frequency of the important events goes to zero. His contributions cover
the major application areas of rare-event simulation in our community: reliability,
communication networks (e.g., buffer overflow probabilities), finance, and insurance
risk, for example.

In this paper, we build on part of his work by examining how IS and splitting
can be combined with randomized quasi-Monte Carlo (RQMC) to improve their
efficiency even further. The setting is a discrete-time Markov chain simulated until
a random stopping time. We consider two types of RQMC approaches. The first
one (called classical RQMC) takes a high-dimensional RQMC point set and uses
each point to simulate an entire sample path of the system. The other one (called
array-RQMC) simulates several copies of the chain in parallel and uses a different
low-dimensional RQMC point set at each step to move all the chains to the next
step. We also introduce unbiased variants of splitting that trade a small variance
increase for a more significant work reduction, and fit well with the array-RQMC
approach.

Our backbone model is a discrete-time Markov chain {Xj , j ≥ 0} with arbitrary
state space X . Let A and B be two disjoint subsets of X and let x0 ∈ X \ B, the
initial state. Often, x0 ∈ A. The chain starts in state X0 = x0, leaves the set
A if x0 ∈ A, and then eventually reaches B or A. Let τA = inf{j > 0 : Xj−1 6∈
A and Xj ∈ A}, the first time when the chain hits A (or returns to A after leaving
it), and τB = inf{j > 0 : Xj ∈ B}, the first time when the chain reaches the set
B. The goal is to estimate γ0 = P[τB < τA], the probability that the chain reaches
B before A. This particular form of rare-event problem, where γ0 is small, occurs
in many practical situations; see, e.g., Shahabuddin et al. [1988], Shahabuddin
[1994b], Shahabuddin [1994a], and Heidelberger [1995].

To estimate γ0, the standard Monte Carlo method runs n independent copies of
the chain up to the stopping time τ = min[τA, τB ], counts how many times the event
{τB < τA} occurs, and divides by n. The resulting estimator γ̂n is highly unreliable
(almost useless) when the probability γ0 is very small. For example, if γ0 = 10−10

and if we want the expected number of occurrences of this event to be at least 100,
we must take n = 1012 (a huge number). For n < 1010, we are likely to observe not
even a single occurrence of this event. In this case, not only the estimator of γ0

takes the value 0 but the empirical variance as well, which can be quite misleading
if we use the empirical mean and variance to compute a confidence interval on γ0.
The estimator γ̂n has the binomial distribution with parameters (n, γ0). Its relative
error is

RE[γ̂n] =
(Var[γ̂n])1/2

γ0
=

(γ0(1− γ0)/n)1/2

γ0
≈ (γ0n)−1/2,

which increases toward infinity when γ0 → 0. An alternative unbiased estimator
of γ0, say γ̃n, is said to have bounded relative error if limγ0→0+ RE[γ̃n] < ∞. This
ACM Journal Name, Vol. V, No. N, Month 20YY.
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implies that

lim
γ0→0+

log(E[γ̃2
n])

log γ0
= 2. (1)

When the latter (weaker) condition holds, the estimator γ̃n is said to be asymptoti-
cally efficient [Heidelberger 1995; Bucklew 2004]. To take into account the comput-
ing cost of the estimator, it is common practice to consider the efficiency of an esti-
mator γ̃n of γ0, defined as Eff[γ̃n] = 1/(Var[γ̃n]C(γ̃n)) where C(γ̃n) is the expected
time to compute γ̃n. Efficiency improvement means finding an unbiased estima-
tor with larger efficiency than the one previously available. The work-normalized
relative error of γ̃n is defined as RE[γ̂n][C(γ̃n)]1/2. We say that γ̃n has bounded
work-normalized relative error if limγ0→0+ γ2

0Eff[γ̃n] > 0. It is work-normalized as-
ymptotically efficient (a weaker condition) if limγ0→0+ log(C(γ̃n)E[γ̃2

n])/log γ0 = 2.
A sufficient condition for this is that (1) holds and limγ0→0+ log C(γ̃n)/ log γ0 = 0.

Example 1. Following Shahabuddin [1994b], we consider a highly-reliable Mar-
kovian system (HRMS) with c types of components and ni components of type i,
for i = 1, . . . , c. We assume that the system’s evolution can be represented by a
continuous-time Markov chain (CTMC) {Y (t) = (Y1(t), . . . , Yc(t)), t ≥ 0}, where
Yi(t) ∈ {0, . . . , ni} is the number of failed components of type i at time t. This
CTMC has a finite state space of cardinality (n1 +1) · · · (nc +1), which can be huge
when c is large.

When the state Y (t) satisfies certain conditions, the system is up (operational),
otherwise it is down (failed). The set B here is the set of states in which the system
is down. Typically, this is an increasing set: if y ∈ B and y′ ≥ y, then y′ ∈ B.
Let A = {x0} be the set that contains only the state x0 = (0, . . . , 0) in which all
components are operational. Each transition of the CTMC corresponds to either
the failure of an operational component or the repair of a failed component. Failure
and repair rates may depend on the entire state.

Let ξ0 = 0, let 0 ≤ ξ1 ≤ ξ2 ≤ · · · be the jump times of this CTMC, and let
{Xj , j ≥ 0} be its discrete skeleton (or embedded discrete-time Markov chain),
defined by Xj = Y (ξj) for j ≥ 0. We also define ∆j = E[ξj+1 − ξj | Y (ξj)], the
expected sojourn time in state Xj , which equals the inverse of the jump rate out
of that state. The time until the first system failure is

τ̃B =
τB−1∑
j=0

(ξj+1 − ξj).

Suppose we want to estimate the mean time to failure (MTTF) from state x0,
defined as

E[τ̃B ] = E

τB−1∑
j=0

∆j

 .

Each return to state x0 is a regeneration point for this system. So, if we define
τ = min(τA, τB) and τ̃ =

∑τ−1
j=0 ∆j , a standard renewal argument (e.g., Keilson

1979) gives

E[τ̃B ] = E[τ̃ ] + E[τ̃B − τ̃ |τA < τB ]P[τA < τB ]
ACM Journal Name, Vol. V, No. N, Month 20YY.
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= E[τ̃ ] + E[τ̃B − τ̃ |Xτ = XτA
= x0]P[τA < τB ]

= E[τ̃ ] + E[τ̃B ](1− γ0)

and then

E[τ̃B ] = E[τ̃ ]/γ0.

If the system returns frequently to x0 and rarely reaches failure, E[τ̃ ] is usually easy
to estimate by standard simulation, but γ0 is difficult to estimate. Shahabuddin
et al. [1988] recommend to devote 10% of the computing budget to estimate the
numerator by standard Monte Carlo and 90% to estimate the denominator with IS,
using separate simulations. Shahabuddin [1994b] developed efficient IS schemes
for estimating γ0 in this context and gave conditions under which the estimator
has bounded relative error when γ0 → 0. Simulation of HRMS was also stud-
ied by Goyal et al. [1992], Nicola et al. [1993], Shahabuddin [1994a], Heidelberger
et al. [1994], Nakayama [1996], Nakayama and Shahabuddin [1998], Juneja and
Shahabuddin [2001], and Cancela et al. [2002], among others.

HRMS are used for instance to model fault-tolerant computer systems and de-
sign the configuration of their components (disks, processors, etc.) to make them
highly dependable. Typical measures of interest include the MTTF, the steady-
state availability, and the reliability (the probability that the system does not fail
before a given time horizon). Even with the assumption of exponential laws for
failures and repairs of components, analytical or numerical solution methods are
impractical due to the excessive number of states of the CTMC, and simulation
becomes the only viable technique of analysis.

Example 2. A similar problem occurs in a queueing system when we want to
estimate the expected time until the number of customers in a queue exceeds a given
value [Parekh and Walrand 1989; Chang et al. 1994; Heidelberger 1995; Shahabud-
din 1995]. For example, the customers could be packets in a telecommunication
network, where the queue represents the packets stored in a buffer at a given node
(or switch) and waiting for their turn to be transmitted, and the number to exceed
is the size of the buffer. The set A contains the single state where the system is
empty, B represents the states for which the buffer overflows, γ0 is the probability
that the buffer overflows before returning to empty, and E[τ̃B ] is the expected time
to overflow.

IS and splitting are the two primary techniques to deal with rare-event simu-
lation. IS changes the probability laws that drive the evolution of the system, to
increase the probability of the rare event, and multiplies the estimator by an appro-
priate likelihood ratio so that it has the correct expectation (e.g., remains unbiased
for γ0 in the above setting). A major difficulty in general is to find a good way to
change the probability laws. For the details, we refer the reader to Glynn and Igle-
hart [1989], Glynn [1994], Heidelberger [1995], Andradóttir et al. [1995], Asmussen
[2002], Bucklew [2004], and many other references given there.

In the splitting method, the probability laws of the system remain unchanged,
but an artificial drift toward the rare event is created by terminating the trajectories
that seem to go away from it and by splitting (cloning) those that are going in the
right direction. In some settings, an unbiased estimator is recovered by multiplying
ACM Journal Name, Vol. V, No. N, Month 20YY.



QMC with Splitting · 5

the original estimator by an appropriate factor. We give more details in the next
section. The method can be traced back to Kahn and Harris [1951] and has been
studied (sometimes under different names) by several authors, including Booth and
Hendricks [1984], Villén-Altamirano and Villén-Altamirano [1994], Melas [1997],
Garvels and Kroese [1998], Glasserman et al. [1998], Glasserman et al. [1999], Fox
[1999], Garvels [2000], Del Moral [2004], Cérou et al. [2005], Villén-Altamirano and
Villén-Altamirano [2006], and other references cited there.

In this paper, we concentrate mainly on the splitting method and examine how
it can be combined with randomized quasi-Monte Carlo (RQMC) to further re-
duce the variance. The array-RQMC method recently proposed by L’Ecuyer et al.
[2005], appears (at first sight) highly compatible with splitting, because both tech-
niques work with an array of Markov chains simulated in parallel and are designed
primarily for Markov chains that evolve for a large number of steps. Our aim is
to examine if and how they can be combined and assess the degree of improvement
obtained by their combination, as well as the difficulties that must be tackled to
obtain this additional gain. Along the way, we propose some improvements in the
implementation of the multilevel splitting algorithm. We also illustrate how IS can
be combined with RQMC and array-RQMC for some specific applications where
splitting is not relevant.

The remainder of the paper is organized as follows. In the next section, we re-
view the theory and practice of splitting in the setting where we want to estimate
γ0 = P[τB < τA]. We propose new variants, more efficient than the standard imple-
mentations. In Section 3, we describe the RQMC and array-RQMC methods and
how they can be implemented in our setting. In Section 4, we discuss the poten-
tial difficulties of the array-RQMC method in this context. Numerical illustrations
are given in Section 5 with several examples. We start with an Ornstein-Uhlenbeck
(mean-reverting) process for which B is the set of states that exceed a given thresh-
old. The second example is a tandem queue where B is the set of states where the
number of customers waiting at the second queue exceeds a given value. Then we
consider examples of highly-reliable Markovian systems similar to those examined
by Shahabuddin [1994b] and Shahabuddin [1994a]. A conclusion summarizes our
findings.

2. SPLITTING

2.1 Multilevel Splitting

It is customary to define the multilevel splitting algorithm via an importance func-
tion h : X → R that assigns a real number to each state of the chain [Garvels et al.
2002]. We shall assume that A = {x ∈ X : h(x) ≤ 0} and B = {x ∈ X : h(x) ≥ `}
for some constant ` > 0. In the multilevel splitting method, we partition the in-
terval [0, `) in m subintervals with boundaries 0 = `0 < `1 < · · · < `m = `. For
k = 1, . . . ,m, define Tk = inf{j > 0 : h(Xj) ≥ `k}, let Dk = {Tk < τA} de-
note the event that h(Xj) reaches level `k before reaching level 0, and define the
conditional probabilities pk = P[Dk | Dk−1] for k > 1, and p1 = P[D1]. Since
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Dm ⊂ Dm−1 ⊂ · · · ⊂ D1, we see immediately that

γ0 = P[Dm] =
m∏

k=1

pk. (2)

The basic idea of multilevel splitting is to estimate each probability pk “separately”,
by starting a large number of chains in states that are generated from the distri-
bution of XTk−1 conditional on the event Dk−1. This conditional distribution,
denoted by Gk−1, is called the (first-time) entrance distribution at threshold `k−1,
for k = 1, . . . ,m+1 (G0 is degenerate at x0). Conceptually, this estimation is done
in successive stages, as follows.

In the first stage, we start N0 independent chains from the initial state x0 and
simulate each of them until time min(τA, T1). Let R1 be the number of those chains
for which D1 occurs. Then p̂1 = R1/N0 is an obvious unbiased estimator of p1.
The empirical distribution Ĝ1 of these R1 entrance states XT1 can be viewed as an
estimate of the conditional distribution G1.

In the second stage, if R1 > 0, we start N1 chains from these R1 entrance states,
by cloning (splitting) some chains if we want N1 > R1, and continue the simulation
of these chains independently up to time min(τA, T2). Note that the initial state of
each of these N1 chains at the beginning of the second stage has distribution G1,
so for each of these chains, the event D2 has probability p2 and the entrance state
at the next level if D2 occurs has distribution G2. Then p̂2 = R2/N1 is an unbiased
estimator of p2, where R2 is the number of those chains for which D2 occurs. If
R1 = 0, then p̂k = 0 for all k ≥ 1 and the algorithm stops here.

This procedure is repeated at each stage. In stage k, ideally we would like to
generate Nk−1 states independently from the entrance distribution Gk−1. Or even
better, to generate a stratified sample from Gk−1. But we usually cannot do that,
because Gk−1 is unknown. Instead, we pick Nk−1 states out of the Rk−1 that are
available (by cloning if necessary), simulate independently from these states up to
time min(τA, Tk), and estimate pk by p̂k = Rk/Nk−1 where Rk is the number of
chains for which Dk occurs. If Rk = 0, we put p̂j = 0 for all j ≥ k and the algorithm
simply returns γ̂n = 0 right away (this could occur with non-negligible probability
if pkNk is not large enough.) The initial state of each of the Nk−1 chains at the
beginning of stage k has (unconditional) distribution Gk−1. Thus, for each of these
chains, the event Dk has probability pk and the entrance state at the next level if
Dk occurs has distribution Gk.

Even though the p̂k’s are not independent, it is easy to prove by induction on k
that the product p̂1 · · · p̂m = (R1/N0)(R2/N1) · · · (Rm/Nm−1) is an unbiased esti-
mator of γ0 [Garvels 2000, page 17]: If we assume that E[p̂1 · · · p̂k−1] = p1 · · · pk−1,
then

E[p̂1 · · · p̂k] = E[p̂1 · · · p̂k−1E[p̂k | N0, . . . , Nk−1, R1, . . . , Rk−1]]
= E[p̂1 · · · p̂k−1(Nk−1pk)/Nk−1]
= p1 · · · pk. (3)

Combining this with the fact that E[p̂1] = p1, the result follows. Splitting can
improve the efficiency by increasing the number of chains that reach the rare set
B.
ACM Journal Name, Vol. V, No. N, Month 20YY.



QMC with Splitting · 7

2.2 Fixed splitting vs fixed effort

There are many ways of doing the splitting [Garvels 2000]. For example, one may
clone each of the Rk chains that reached level k in ck copies, for a fixed positive
integer ck. Then, each Nk = ckRk is random. This is fixed splitting. Often, we want
the expected number of splits of each chain to be ck, where ck is not necessarily an
integer; say ck = bckc+ δ where 0 ≤ δ < 1. In this case, we assume that the actual
number of splits is bckc+ 1 with probability δ and bckc with probability 1− δ.

In the fixed effort method, in contrast, we fix each value of Nk a priori and make
just the right amount of splitting to reach this target value. This can be achieved
by random assignment : draw the Nk starting states at random, with replacement,
from the Rk available states. This is equivalent to sampling from the empirical
distribution Ĝk of these Rk states. In a fixed assignment, on the other hand,
we would split each of the Rk states approximately the same number of times as
follows. Let ck = bNk/Rkc and dk = Nk mod Rk. Select dk of the Rk states at
random, without replacement. Each selected state is split ck + 1 times and the
other states are split ck times. The fixed assignment gives a smaller variance than
the random assignment because it amounts to using stratified sampling over the
empirical distribution Gk at level k.

These variants are all unbiased, but they differ in terms of variance. Garvels and
Kroese [1998] conclude from their analysis and empirical experiments that fixed
effort performs better, mainly because it reduces the variance of the number of
chains that are simulated at each stage. In the next subsection, we show that with
optimal splitting factors, this is not always true.

The probability γ0 can also be seen as a normalization constant in Feynman-Kac
formulas. To estimate this constant, Del Moral [2004] proposes and studies approx-
imation algorithms based on interacting particle systems that exploits decompo-
sition (2). These algorithms are essentially equivalent to the presently described
fixed-effort implementation with random assignment. In this type of system, parti-
cles that did not reach the threshold are killed and replaced by clones of randomly
selected particles among those that have succeeded. This redistributes the effort
on most promising particles while keeping the total number constant. Cérou et al.
[2005] derive limit theorems for the corresponding estimators.

2.3 Variance analysis for a simplified setting

For a very crude variance analysis, consider an idealized fixed-effort setting where

N0 = N1 = · · · = Nm−1 = n (4)

and where the p̂k’s are independent binomial random variables with parameters n

and pk = p = γ
1/m
0 . Then, for m > 1,

Var[p̂1 · · · p̂m] =
m∏

k=1

E[p̂2
k]− γ2

0 =
m∏

k=1

(
p2

k +
pk(1− pk)

n

)
− γ2

0

=
(

p2 +
p(1− p)

n

)m

− p2m

=
mp2m−1(1− p)

n
+

m(m− 1)p2m−2(1− p)2

2n2
+ · · · +

(p(1− p))m

nm
.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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If we assume that

n � (m− 1)(1− p)/p, (5)

the dominant term in the last expression is the first one, mp2m−1(1 − p)/n ≈
mγ

2−1/m
0 /n. The MC variance, on the other hand, is γ0(1 − γ0)/n ≈ γ0/n. To

illustrate the huge potential variance reduction, suppose γ0 = 10−20, m = 20,
p = 1/10, and n = 1000. Then the MC variance is 10−23 whereas mp2m−1(1 −
p)/n ≈ 1.8 × 10−41. This oversimplified setting is not realistic, because the p̂k

are generally not independent and it is difficult to have pk = γ
1/m
0 for all i. But it

nevertheless gives an idea of the order of magnitude of potential variance reduction
that can be achieved.

The amount of work (or CPU time, or number of steps simulated) at each stage
is proportional to n, so the total work is proportional to nm. Most of this work
is to simulate the n chains down to level 0 at each stage. Thus, the efficiency of
the splitting estimator under the simplified setting is approximately proportional to
n/[γ2−1/m

0 nm2] = γ
−2+1/m
0 /m2 when (5) holds. By differentiating with respect to

m, we find that this expression is maximized by taking m = − ln(γ0)/2 (we neglect
the fact that m must be an integer). This gives pm = γ0 = e−2m, so p = e−2.
Garvels and Kroese [1998] have obtained this result. The squared relative error
in this case is (approximately) γ

2−1/m
0 (m/n)γ−2

0 = e2m/n = −e2 ln(γ0)/(2n) and
the work-normalized relative error is mγ

−1/(2m)
0 = −(e/2) ln(γ0), again under the

condition (5).
When γ0 → 0 for fixed p, we have m → ∞, so (5) does not hold. Then, the

relative error and its work-normalized version both increase toward infinity at a
logarithmic rate. This agrees with Garvels [2000, page 20]. With γ̃n = p̂1 · · · p̂m,
the limit in (1) is

lim
γ0→0+

log(p2 + p(1− p)/n)m

log γ0
= lim

γ0→0+

− log(p2 + p(1− p)/n)
− log p

< 2.

Thus, this splitting estimator is not quite asymptotically efficient, but almost (when
n is very large).

Consider now a fixed-splitting setting, assuming that N0 = n, pk = p = γ
1/m
0 for

all k, and that the constant splitting factor at each stage is c = 1/p; i.e., Nk = Rk/p.
Then, the process {Nk, k ≥ 1} is a branching process and the estimator becomes

p̂1 · · · p̂m =
R1

N0

R2

N1
· · · Rm

Nm−1
=

Rmpm−1

n
.

From standard branching process theory [Harris 1963], we have that

Var[p̂1 · · · p̂m] = m(1− p)p2m−1/n.

If p is fixed and m →∞, then the squared relative error m(1−p)/(np) is unbounded
here as well. However, the limit in (1) becomes

lim
γ0→0+

log(m(1− p)γ2
0/(np) + γ2

0)
log γ0

= lim
γ0→0+

−2m log p− log(1 + m(1− p)/(np))
−m log p

= 2,

so the splitting estimator is asymptotically efficient [Glasserman et al. 1999]. This
implies that fixed splitting is asymptotically better in this case.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Glasserman et al. [1999] study the fixed splitting framework with splitting factor
ck ≡ c, for a countable-state space Markov chain. They assume that the probability
transition matrix Pk for the first-entrance state at level k given the first-entrance
state at level k−1 converges to a matrix P with spectral radius ρ < 1. This implies
that pk → ρ when k →∞. Then they use branching process theory to prove that the
multilevel splitting estimator (in their setting) is work-normalized asymptotically
efficient if and only if c = 1/ρ. Glasserman et al. [1998] show that the condition
c = 1/ρ is not sufficient for asymptotic efficiency and provide additional necessary
conditions in a general multidimensional setting. Their results highlight the crucial
importance of choosing a good importance function h.

Even though fixed splitting is asymptotically better under ideal conditions, its
efficiency is extremely sensitive to the choice of splitting factors. If the splitting
factors are too high, the number of chains (and the amount of work) explodes,
whereas if they are too low, the variance is very large because very few chains reach
B. Since the optimal splitting factors are unknown in real-life applications, the
more robust fixed-effort approach is usually preferable. Fixed effort also has better
compatibility with RQMC than fixed splitting (see Section 3).

2.4 Implementation issues

One drawback of the fixed-effort approach is that it requires more memory than the
fixed splitting version, because it must use a breadth-first implementation: at each
stage k all the chains must be simulated until they reach either A or level `k before
we know the splitting factor at that level. The states of all the chains that reach `k

must be saved; this may require too much memory when the Nk’s are large. With
fixed splitting, we can adopt a depth-first strategy, where each chain is simulated
entirely until it hits ` or A, then its most recent clones (created at the highest level
that it has reached) are simulated entirely, then those at the next highest level, and
so on. This procedure is applied recursively. At most one state per level must be
memorized with this approach. This is feasible because the amount of splitting at
each level is fixed a priori.

An important part of the work in multilevel splitting is due to the fact that all
the chains considered in stage k (from level `k−1) and which do not reach `k must
be simulated until they get down to A. When `k−1 is large, this can take significant
time. Because of this, the expected amount of work increases with the number of
thresholds. One (heuristic) way of reducing this work in exchange for a small bias
is to truncate the chains that reach level `k−β downward after they have reached
`k−1, for some fixed integer β ≥ 2, and assume that all these chains will go down
to A. The integer β must be taken large enough so that the probability that a
chain starting at level `k−β will get back up to `k is very small. The larger this
probability, the larger the bias of the final estimator. In Section 2.7, we discuss
unbiased alternatives, based on variants of the Russian roulette principle.

2.5 The RESTART Algorithm

The RESTART method [Villén-Altamirano and Villén-Altamirano 1994; 2006] is
a variant of splitting where any chain is split by a fixed factor when it hits a level
upward, and one of the copies is tagged as the original for that level. When any
of those copies hits that same level downward, if it is the original it just continues
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its path, otherwise it is killed immediately. This rule applies recursively, and the
method is implemented in a depth-first fashion, as follows: whenever there is a
split, all the copies are simulated completely, one after the other, then simulation
continues for the original chain. Unbiasedness is proved by Garvels [2000] and
Villén-Altamirano and Villén-Altamirano [2002]. The reason for killing most of
the paths that go downward is to reduce the work. The number of paths that are
simulated down to A never exceeds N0. On the other hand, the number of chains
that reach a given level is more variable with this method than with the fixed-
effort and fixed-assignment multilevel splitting algorithm described previously. As a
result, the final estimator of γ0 has a larger variance [Garvels 2000]. Another source
of additional variance is that the resplits tend to share a longer common history
and to be more positively correlated. This source of variance can be important
when the probability of reaching B from a given level varies significantly with the
entrance state at that level [Garvels 2000]. In terms of overall efficiency, none of the
two methods is universally better; RESTART wins in some cases and splitting wins
in other cases. Villén-Altamirano and Villén-Altamirano [2002] provide a detailed
variance analysis of RESTART.

The RESTART algorithm can also be implemented with a breadth first approach,
by advancing all the chains by one step at every step of the algorithm. Each chain
has a tag that indicates its level of creation. For the original chains that started
at level 0, this tag indicates 0, otherwise it is the level where it was initiated by
a split. When a chain goes down to its level of creation, it is killed. Whenever a
chain reaches a level from below, it is split and the new clones are tagged with this
level. The algorithm stops when all the chains have been killed or have reached B.

2.6 Choice of the Importance Function and Optimal Parameters

Key issues in multilevel splitting are the choices of the importance function h, levels
`k, and splitting factors. To discuss this, we introduce some more notation. Let
Xk ⊂ X be the support of the entrance distribution Gk, i.e., the states in which
the chain can possibly be when hitting level `k for the first time. Let

γ(x) = P[τB < τA | τ > j, Xj = x],

the probability of reaching B before A if the chain is currently in state x, and
pk(x) = P[Dk | Dk−1, XTk−1 = x], the probability of reaching level k before hitting
A if the chain has just entered level k − 1 in state x, for x ∈ Xk−1. Note that
pk =

∫
x∈Xk−1

pk(x)dGk−1(x) and γ0 = γ(x0).

One-dimensional case: selecting the levels. If the Markov chain has a one-dimen-
sional state space X ⊂ R, γ(x) is increasing in x, and if A = (−∞, 0] and B = [`,∞)
for some constant `, then we could simply choose h(x) = x (or any strictly increasing
function). In this case, the kth level is attained when the state reaches the value
`k. This value need not be reached exactly: in general, the chain can jump directly
from a smaller value to a value larger than `k, perhaps even larger than `k+1. So
even in the one-dimensional case, the entrance state x at a given level is not unique
in general and the probability pk(x) of reaching the next level depends on this
(random) entrance state. It remains to choose the levels `k.

We saw earlier that in a fixed effort setting and under simplifying assumptions,
ACM Journal Name, Vol. V, No. N, Month 20YY.
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it is optimal to have pk ≡ p = e−2 for all k. This gives m = − ln(γ0)/2 levels.
Note that to obtain equal pk’s, it is typically necessary to take unequal distances
between the successive levels `k, i.e., `k − `k−1 must depend on k.

Suppose now that we use fixed splitting with ck = 1/pk = e2 for each k. If we
assume (very crudely) that each chain is split by a factor of e2 at each stage, the
total number of copies of a single initial chain that have a chance to reach B is

e2m−2 = e− ln(γ0)−2 = e−2γ−1
0 . (6)

Since each one reaches B with probability γ0, this crude argument indicates that
the expected number of chains that reach B is approximately equal to p = e−2

times the initial number of chains at stage 0, exactly as in the fixed-effort case.
However, the variance generally differs.

Cérou and Guyader [2005] determine the thresholds adaptively for the splitting
with fixed effort in dimension 1. They first simulate n chains (trajectories) until
these chains reach A or B. Then they sort the chains according to the maximum
value of the importance function h that each chain has reached. The k trajectories
with the largest values are kept, while the n − k others are re-simulated, starting
from the state at which the highest value of the importance function was obtained
for the (n− k)-th largest ones. They proceed like this until n− k trajectories have
reached B. Their estimator is proved to be consistent, but is biased.

Multidimensional case: defining the importance function. In the case of a multi-
dimensional state space, the choice of h is much more difficult. Note that h and the
`k’s jointly determine the probabilities pk(x) and pk. Garvels et al. [2002] show by
induction on k that for any fixed p1, . . . , pm, h should be defined so that pk(x) = pk

(independent of x) for all x ∈ Xk−1 and all k. This rule minimizes the residual vari-
ance of the estimator from stage k onward. With an h that satisfies this condition,
the optimal levels and splitting factors are the same as in the one-dimensional case:
m = −(1/2) ln γ0 levels, pk ≈ e−2 and E[Nk] = N0 for each k. A simple choice of h
and `k’s that satisfies these conditions is

h(x) = h∗(x) def= γ(x) and `k = e−2(m−k) = γ0e
2k.

Garvels et al. [2002] gave the following (equivalent) alternative choice: `k = k for
each k and

h(x) = h∗∗(x) def=
ln(γ(x)/γ0)

2
= m +

ln(γ(x))
2

for all x ∈ X . However, these levels are optimal only if we assume that the chain
can reach `k only on the set {x : γ(x) = e−2(m−k)}, an optimistic assumption that
rarely holds in practice, especially in the multidimensional case.

Garvels et al. [2002] also show how to get a first estimate of γ(x) beforehand, in
simple situations where the Markov chain has a finite state space, by simulating
the chain backward in time. They construct an approximation of h∗∗ from this
estimate and then use it in their splitting algorithm. They apply their method to
a tandem queue with two or three node and obtain good results. However, this
method appears to have limited applicability for large and complicated models.

Booth and Hendricks [1984] propose adaptive methods that learn the importance
function as follows. In their setting, the state space is partitioned in a finite number
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of regions and the importance function h is assumed to be constant in each region.
This importance function is used to determine the expected splitting factors and
Russian roulette probabilities (see Section 2.8) when a chain jumps from one region
to another. They estimate the “average” value of γ(x) in each region by the
fraction of chains that reach B among those that have entered this region. These
estimates are taken as importance functions in further simulations used to improve
the estimates, and so on.

Constructing the functions h∗ or h∗∗ essentially requires the knowledge of the
probability γ(x) for all x. But if we knew these probabilities, there would be no
need for simulation! This is very similar (and related) to the issue of constructing
the optimal change of measure in importance sampling [Glasserman et al. 1998].
In general, finding an optimal h, or an h for which pk(x) is independent of x, can
be extremely difficult or even impossible. When pk(x) depends on x, selecting the
thresholds so that pk ≈ e−2 is not necessarily optimal. More importantly, with
a bad choice of h, splitting may even increase the variance, as illustrated by the
next example, taken from Glasserman et al. [1998] and Glasserman et al. [1999] and
studied by several other authors.

For RESTART, Villén-Altamirano et al. [1994] concluded from a crude analysis
that pk ≈ e−2 was approximately optimal. However, their more careful analysis in
Villén-Altamirano and Villén-Altamirano [2002] indicates that the pk’s should be
as small as possible. Since the splitting factor at each level must be an integer,
they recommend pk = 1/2 and a splitting factor of ck = 2.

Example 3. Consider an open tandem Jackson network with two queues, arrival
rate 1, and service rate µj at queue j for j = 1, 2. Let Xj = (X1,j , X2,j) denote
the number of customers at each of the two queues immediately after the jth event
(arrival or end of service). We have A = {(0, 0)} and B = {(x1, x2) : x2 ≥ `∗}
for some large integer `∗. A naive choice of importance function here would be
h(x1, x2) = x2. This seems natural at first sight because the set B is defined in
terms of x2 only. With this choice, the entrance distribution at level k turns out
to be concentrated on pairs (x1, x2) with small values of x1. To see why, suppose
that x2 = `k′ > 0 for some integer k′ and that we are in state (x1, x2 − 1) where
x1 > 0 is small. The possible transitions are to states (x1 + 1, x2 − 1), (x1, x2 − 2),
and (x1− 1, x2), with probabilities proportional to 1, µ2, and µ1, respectively. But
the chains that go to state (x1 − 1, x2) are cloned whereas the other ones are not,
and this tends to increase the population of chains with a small x1.

Suppose now that µ1 < µ2 (the first queue is the bottleneck). In this case, the
most likely paths to overflow are those where the first queue builds up to a large
level and then the second queue builds up from the transfer of customers from the
first queue [Heidelberger 1995]. The importance function h(x1, x2) = x2 does not
favor these types of paths; it rather favors the paths where x1 remains small and
these paths have a very high likelihood of returning to (0, 0) before overflow. As
a result, splitting with this h may give an even larger variance than no splitting
at all. Garvels et al. [2002] approximate h∗∗ for this particular example; this h∗∗

increases in both x1 and x2.
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2.7 Unbiased Truncation

We pointed out earlier that a large fraction of the work in multilevel splitting is
to simulate the chains down to level zero at each stage. Truncating the chains
whenever they fall below some level `k−β in stage k, as explained earlier, reduces
the work but introduces a bias. A large β may give negligible bias, but also a
small work reduction. In what follows, we propose and examine unbiased trunca-
tion techniques, based on the Russian roulette principle [Kahn and Harris 1951;
Hammersley and Handscomb 1964] and derandomized variants of it.

We use the following notation: Given two functions f : R → [0,∞) and g : R →
[0,∞), we say that f is in O(g(x)) [resp., in O(g(x)), in Θ(g(x))] if f(x) ≤ c2g(x)
[resp., c1g(x) ≤ f(x), c1g(x) ≤ f(x) ≤ c2g(x)] when x → ∞, for some positive
constants c1 and c2.

If A and B are fixed, m levels are placed optimally between them, and we use
fixed-effort with n chains at each stage, then the work per stage in multilevel
splitting is in Θ(n) and the total work is in Θ(nm). If B = [`,∞), then the work
per stage and the total work also increase with `, in a way that depends on the
Markov chain model. The increase is not necessarily linear in `, because the chain
may move toward A much faster (on average) in some areas of the state space
than in other areas. In any case, the total work is at least in O(nm). The total
work remains in O(nm) with the proposed truncation methods, but with a smaller
hidden constant.

Keeping a few representatives. A simple idea that may come to mind to remove
the truncation bias is to keep a small number of representatives for all the chains
that reach `k−β in stage k, for some integer β ≥ 2. (Recall that in stage k, we start
from `k−1 and want to reach `k.) We can select a small integer r ≥ 1. If Mk chains
reach level `k−β downward in stage k, we select r′ = min(Mk, r) of those chains
at random, uniformly over the Mk chains. The selected chains are simulated until
they reach either `k or 0, and the other ones are killed. Each of these r′ selected
chains represents Mk/r′ chains, so it is given a weight of Mk/r′. If it reaches level
`k, we clone it immediately in bMk/r′c+1 copies with probability δ and in bMk/r′c
copies with probability 1− δ, where δ = Mk/r′−bMk/r′c. These cloned chains are
added to the chains that have reached level `k without going down to `k−β , and Rk

is the total number of all those chains, for k = 1, . . . ,m. The final estimator can
defined exactly as before: γ̂n = (R1/N0)(R2/N1) · · · (Rm/Nm−1). This estimator is
unbiased, but it has a larger variance than the original one, because fewer chains
are simulated from level `k−β .

One practical difficulty in the implementation is to select the r′ chains at random,
because Mk is unknown until all the chains have reached either `k or `k−β . One
solution is to halt temporarily all the chains that hit `k−β until we know Mk. But
this strategy is not compatible with the array-RQMC method discussed in Section 3.
A solution that does not stop the chains can proceed as follows. Keep an index to
the chains that reach level `k−β , implemented as an array. Whenever a new chain
reaches level `k−β for the first time in this stage, if there are already c chains in the
index, placed at positions 0, . . . , c−1, we generate a random integer I in {0, . . . , c}.
The chain in position I is moved to position c and the new chain is placed at
position I. There are now c+1 chains in the index. In the end, we keep only the r′
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chains that are in positions {0, . . . , r′−1}; they are the first r′ elements of a random
permutation of the Mk chains. The chains that are in positions {r, r +1, . . .} of the
index can in fact be killed at any time, and their contributions must be removed
if they have already hit `k, but this killing should not affect the counter c. There
is no need to know the value of Mk beforehand, i.e., we do not have to wait until
all the Mk chains have reached level `k−β before selecting the representatives. On
the other hand, a lot of work is often wasted with this second approach, because
chains can be simulated for several steps after they hit `k−β before being killed. If
r is large, not much work is wasted but not much work is saved either. If r is small
(e.g., r = 1 in the extreme case), then each representative has a large weight and
this increases the variance; it becomes a rare event that a representative reaches
`k. Thus, even though the bias has been removed in theory, the contribution of
the representative chains to the estimator has itself a large relative error. If we
replicate the splitting scheme a few times with a large enough β, it is likely that
none of the representatives will contribute, in which case the estimator is exactly
the same as with (biased) truncation alone.

To reduce the variance contribution of the representatives, we could define a hier-
archical version of this method: At each level `k−j , for j ≥ β, we select a maximum
of rk,j representatives at random among the chains that have reached this level,
where 1 ≤ rk,k−1 ≤ rk,k−2 ≤ · · · ≤ rk,β . With good choices of β and the rk,j , and
careful management of the weights, this method provides an unbiased estimator,
conceivably with smaller variance than the previous one, because there is more
variety in the trajectories. A major drawback, however, is that its implementa-
tion requires very complicated bookkeeping, and combining it with array-RQMC is
practically a non-starter.

We now introduce variants of this idea that are much easier to implement. In
all these variants, we use R̃k to denote the sum of weights of all the chains that
reach level `k, before the cloning (when they reach that level). These R̃k are not
necessarily integers. There are two types of cloning at the end of a stage k: (1) a
chain with weight w is cloned into a random number of copies with expectation w
(type-1 cloning) and (2) the chains are then cloned again (if needed) so that their
total number reaches the target value Nk (type-2 cloning). We use Rk to denote
the total number of chains after the cloning of type 1, but before the cloning of type
2. Thus, each Rk is a random integer, E[Rk | R̃k] = R̃k, and Var[Rk] ≥ Var[R̃k].
The final estimator can be defined either as before:

γ̂n = (R1/N0)(R2/N1) · · · (Rm/Nm−1),

or by

γ̂n = (R̃1/N0)(R̃2/N1) · · · (R̃m/Nm−1).

This second estimator is the conditional expectation of the first one, conditional
on (R̃1, . . . , R̃m), so it necessarily has smaller (or equal) variance. For this reason,
this is the one we recommend and use.

Probabilistic truncation. The following simplified version of the preceding method
requires much less bookkeeping. Instead of keeping representatives, just kill the
chains at random, with some probability, independently of each other. For stage
k, we select real numbers rk,β , . . . , rk,k−1 in [1,∞). The first time a chain reaches
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level `k−j from above during that stage, for j ≥ β, it is killed with probability
1 − 1/rk,j . If it survives, its weight is multiplied by rk,j . (This is a version of
Russian roulette.) When a chain of weight w > 1 reaches level `k, it is cloned into
w − 1 additional copies and each copy is given weight 1 (if w is not an integer, we
make bwc additional copies with probability δ = w − bwc and bw − 1c additional
copies with probability 1 − δ). Now, the number of representatives kept at any
given stage is random; it has a binomial distribution. Without loss of generality,
we can now assume that β = 2, because selecting a larger β is equivalent to taking
rk,j = 1 for j ≤ β. We will do that for the remainder of the paper.

Periodic truncation. To reduce the variability of the number of selected repre-
sentatives at each level `k−j , we may decide to retain every rk,j-th chain that
down-crosses that level; e.g., if rk,j = 3, we keep the third, sixth, ninth, etc. This
would generally give a biased estimator, because the probability that a chain is
killed would then depend on its sample path up to the time when it crosses the
level (for instance, the first chain that down-crosses the level would always be killed
if rk,j > 1). A simple trick to remove that bias is to modify the method as follows:
generate a random integer Dk,j uniformly in {1, . . . , rk,j}, retain the (i rk,j +Dk,j)-
th chain that down-crosses level `k−j for i = 0, 1, 2, . . ., and kill the other ones.
We assume that the random variables Dk,2, . . . , Dk,k−1 are independent. Then,
any chain that down-crosses the level has the same probability 1− 1/rk,j of being
killed, independently of its trajectory above that level. This is true for any posi-
tive integer rk,j . Moreover, the proportion of chains that survive has less variance
than for the probabilistic truncation (the killing indicators are no longer indepen-
dent across the chains). The chains that reach `k are cloned in proportion to their
weight, exactly as in the probabilistic truncation.

Tag-based truncation. In the periodic truncation method, the level at which a
chain is killed is determined only when the chain reaches that level. An alternative
is to fix all these levels right at the beginning of the stage. We first select positive
integers rk,2, . . . , rk,k−1. Then each chain is tagged to the level `k−j with probability
qk,j = (rk,j − 1)/(rk,2 · · · rk,j) for j = 2, . . . , k − 1, and to level `0 with probability
1 − qk,k−1 − · · · − qk,2 = 1/(rk,2 · · · rk,k−1). Thus, all the chains have the same
probability of receiving any given level and the probability of receiving level zero
is positive. If the tags are assigned randomly and independently across the chains,
then this method is equivalent to probabilistic truncation. But if the integers
rk,2, . . . , rk,k−1 are chosen so that their product divides (or equals) Nk, the number
of chains at the beginning of stage k, then the tags can also be assigned so that
the proportion of chains tagged to level `k−j is exactly qk,j , while the probability
of receiving a given tag is the same for all chains. The reader can verify that the
following scheme gives one way of achieving this: Put the Nk chains in a list (in any
order), generate a random integer D uniformly in {0, . . . , Nk − 1}, and assign the
tag k− j∗(i, D) to the i-th chain in the list, for all i, where j∗(i, D) is the smallest
integer j in {2, . . . , k} such that rk,2 · · · rk,j does not divide (D + i) mod Nk (when
(D + i) mod Nk = 0, we put j∗(i, D) = k). After the tags are assigned, the chains
can be simulated one by one for that stage. Whenever a chain down-crosses for the
first time (in this stage) a level `k−j higher than its tag, its weight is multiplied by
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rk,j . If it down-crosses the level of its tag, it is killed immediately. The chains that
reach `k are cloned in proportion to their weight, as before.

Unbiasedness. To prove that the above truncation methods are all unbiased, we
will argue that each of them satisfies the assumptions of the following proposition.

Proposition 2.1. Suppose there are real numbers rk,2, . . . , rk,k−1 in [1,∞) such
that for j = 2, . . . , k − 1, each chain has a probability 1 − 1/rk,j of being killed at
its first down-crossing of level `k−j, independently of its sample path up to that
moment, and its weight is multiplied by rk,j if it survives. Then the truncated
estimator remains unbiased.

Proof. We use a similar argument as in Booth and Pederson [1992, Section V].
We already know that the multilevel splitting estimator is unbiased, so it suffices
to show that the truncation does not change the expectation. In fact, ordinary
multilevel splitting is a special case of the scheme described in the proposition
statement, with rk,j = 1 for all j, at all levels. So if we can show that the expectation
of the estimator with truncation does not depend on the rk,j ’s, the result will follow.
We will do that by concentrating on a given stage k. The same argument applies
to any of the stages, so we will be able to conclude that we can change the rk,j ’s
at any of the stages without introducing a bias.

Consider a chain that down-crosses `k−j for the first time in stage k, for j ≥ 2, in
the setting of the proposition statement. Let Ẽk,j be the expected contribution of
that chain to the final estimator γ̂n = p̂1 · · · p̂m at this down-crossing moment, and
let Ẽk be its expected contribution at the time when it hits `k if it does (otherwise,
Ẽk = 0). If the chain has weight W when it hits `k, then its expected contribution
at that epoch is Ẽk = WEk where Ek is the expected contribution of each of its
copies after the cloning. Then, since the weight of a chain has no influence on its
sample path until it reaches `k, the expected contribution of a chain of weight W is
W times the expected contribution of a chain of weight 1 in the same state. Note
that Ẽk,j , Ẽk, and Ek are random variables (they are conditional expectations).

When a chain of weight W down-crosses `k−j for the first time, its expected
contribution is the probability that it survives, times its expected contribution if
it does. If we denote by Ek,j the realization of Ẽk,j when W = rk,j = 1, recalling
that the weight is multiplied by rk,j if the chain survives, we obtain

Ẽk,j = (1/rk,j)(rk,jW )Ek,j = WEk,j ,

which does not depend on rk,j . Since this holds for all j ≥ 2, the expected con-
tribution depends on none of the rk,j ’s. (Note that we necessarily have W = 1 for
j = 2.) This completes the proof.

It remains to verify that the three proposed truncation methods satisfy the con-
ditions of the proposition. For the probabilistic truncation, this is clear from its
definition. For the periodic and tag-based truncation, if we look at a single chain
when it down-crosses level `k−j for the first time and condition on its sample path
up to that time (and no other information), the conditional probability that this
chains survives this down-crossing is 1/rk,j , so the conditions are satisfied.
ACM Journal Name, Vol. V, No. N, Month 20YY.



QMC with Splitting · 17

Getting rid of the weights. With the unbiased truncation methods discussed so
far, the surviving chains have different weights. The variance of these weights
may contribute significantly to the variance of the final estimator. For example, if
k is large, the event that a chain reaches `k (from `k−1) after going down to `1 is
usually a rare event, and when it occurs the corresponding chain has a large weight,
so this may have a non-negligible impact on the variance. This can be addressed by
resplitting the chains within the stage when they up-cross some levels, instead of
increasing their weights at down-crossings. We now explain how the probabilistic
and tag-based truncation methods can be modified to incorporate this idea. In these
methods, the weights of all chains are always 1, and whenever a chain down-crosses
`k−j (not only the first time), for j ≥ 2, it can get killed.

Probabilistic truncation and resplitting within each stage. The probabilistic trun-
cation method can be modified as follows. During stage k, whenever a chain reaches
a level `k−j from below, it is split in rk,j identical copies that start evolving in-
dependently from that point onward (if rk,j is not an integer, we split the chain
in brk,j + 1c copies with probability δ = rk,j − brk,jc and in brk,jc copies with
probability 1 − δ). Whenever a chain down-crosses `k−j (not only the first time),
for j ≥ 2, it is killed with probability 1− 1/rk,j . All chains always have weight 1.

Tag-based truncation with resplits. This method is equivalent to applying RES-
TART separately within each stage of the multistage splitting algorithm. It modifies
the tag-based truncation as follows: Whenever a chain up-crosses level `k−j for
j ≥ 2, it is split in rk,j copies. One of these rk,j copies is identified as the original
and keeps its current tag, while the other rk,j − 1 copies are tagged to the level
`k−j where the split occurs.

Unbiasedness. We will show that the proposed truncation methods with resplit
are covered by the following proposition.

Proposition 2.2. Suppose there are positive real numbers rk,2, . . . , rk,k−1 such
that for j = 2, . . . , k − 1, each chain is killed with probability 1 − 1/rk,j whenever
it down-crosses level `k−j, independently of its sample path up to the time when
it reached that level, and that this chain is split into C chains when it up-crosses
that same level, where C is a random variable with mean rk,j, independent of the
history so far. Then the estimator with probabilistic truncation and resplits (without
weights) is unbiased for γ0.

Proof. We extend the proof of Proposition 2.1 to cover resplits. Again, it
suffices to show that none of the expected contributions depends on the values of
rk,j used in the future steps, in stage k.

Consider a chain that down-crosses `k−j in stage k. Its expected contribution
to the final estimator, at that time, is Ẽk−j = (1/rk,j)Ek−j , where Ek−j is its
expected contribution if it survives (a random variable). Let E

(c)
k−j be its expected

contribution Ek−j if we assume that there is no resplit at that level (i.e., if rk,j = 1).
Then, Ek−j = rk,jE

(c)
k−j , and therefore Ẽk−j = E

(c)
k−j , which is independent of

rk,j .
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The probabilistic truncation with resplits obviously satisfies the assumptions of
Proposition 2.2. The tag-based truncation with resplits does not seem to satisfy
these assumptions at first sight, but it does if we see things from the right perspec-
tive. The trick is to hide the tags. Indeed, when a chain down-crosses a level `k−j

for the first time, the probability that it is tagged to that level and gets killed is
1 − 1/rk,j . Otherwise, if it is not the first time, then this chain is one of the rk,j

copies made when a chain up-crossed that level earlier. This chain will survive the
down-crossing if and only if it is not tagged to level `k−j , if and only if it was the
original when these copies were made, and this happens with probability 1/rk,j .

We could also consider periodic truncation with resplits, but this method does not
satisfy the assumptions of Proposition 2.2 and we have no proof that it is unbiased.

Comparison, implementation, and choice of the rk,j’s. The resplit versions of
the methods are expected to give a smaller variance but require more work. So
there is no universal winner if we think of maximizing the efficiency. Another
disadvantage of this resplit strategy is that the number of chains alive at any given
time during stage k will now have more variance and may exceed Nk−1. In a
worst-case situation, a chain may go down and up many times across several levels
without being killed, giving rise to a flurry of siblings along the way. Fortunately,
this type of bad behavior has an extremely small probability and poses no problem
when the splitting parameters are well chosen. In all the experiments that we have
run, the number of chains alive simultaneously during any given stage k has rarely
exceeded Nk−1. In our implementation, whenever the number of chains was going
to exceed Nk−1, we used weights instead of splitting, just for the splits that would
have made the number of chains too large. We did that because our chains were
stored in an array of size n = Nk−1 and we did not want their number to exceed
n. This type of implementation is needed when we combine the splitting with
array-RQMC (see Section 4).

We have a lot of freedom for the choice of the truncation and resplit parameters
rk,j . We can also select different sets of values at the different stages of the multilevel
splitting algorithm. Empirically, we found that starting the truncation too soon
was counterproductive; it was better to take rj,k = 1 for j ≤ 2. For j ≥ 3, it
appears sensible to take rk,j = 1/p̂k−j = Nk−j−1/Rk−j , the actual splitting factor
used at level `k−j of the splitting algorithm. Another possibility is rk,j = γ̂

−1/(k−1)
(k−1) ,

where γ̂(k−1) = p̂1p̂2 . . . p̂k−1. We tried these two choices in our experiments and
they both worked well.

2.8 Getting Rid of the Levels

In some versions of the splitting and Russian roulette technique, there are no levels
(or thresholds), but only an importance function (some authors call it branching
function). For instance, Ermakov and Melas [1995] and Melas [1997] study a general
setting where a chain can be split or killed at any transition. If the transition is
from x to y and if α = h(y)/h(x) ≥ 1, then the chain is split in C copies where
E[C] = α, whereas if α < 1 it is killed with probability 1 − α (this is Russian
roulette). In case of a split, the C − 1 new copies are started from state x and
new transitions are generated (independently) for those chains. Their method is
developed to estimate the average cost per unit of time in a regenerative process,
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where a state-dependent cost is incurred at each step. In the simulation, each cost
incurred in a given state x is divided by h(x). We may view 1/h(x) as the weight
of the chain at that point. At the end of a regenerative cycle, the total weighted
cost accumulated by the chain over its cycle is the observation associated with this
cycle. The expected cost per cycle is estimated by averaging the observations over
all simulated cycles. The expected length of a cycle is estimated in the same way,
just replacing costs by lengths. The authors show that their method is consistent
and propose an adaptive algorithm that estimates the optimal h.

This method can be applied to a finite-horizon simulation as well. In our setting,
it suffices to replace the regeneration time by the time when the chain reaches
A or B, and to forget about the length of the cycle. When a chain reaches B,
it contributes its weight 1/h(XτB

) to the estimator. For a very crude analysis,
suppose we take h(x) = γ(x) and that there is a split in two every time the function
h doubles its value. Here, h(y)/h(x) = γ(y)/γ(x), so a chain that reaches the set B
would have split in two approximately − log2 γ0 times. This gives a “potential” of
2− log2 γ0 = 1/γ0 copies that can possibly reach B for each initial chain at level 0,
the same number as for the multilevel splitting and RESTART; see Equation (6).
This argument suggests that an optimal h in this case should be approximately
proportional to γ(x).

In general, splitting and Russian roulette can be implemented by maintaining a
weight for each chain. Initially, each chain has weight 1. Whenever a chain of weight
w is split in C copies, the weight of all the copies is set to either w/C or w/E[C].
Booth [1985] shows that using w/E[C] is usually better. When Russian roulette is
applied, the chain is killed with some probability α < 1; if it survives, its weight is
multiplied by 1/(1 − α). The values of C and α at each step can be deterministic
or random, and may depend on the past history of the chain. Whenever a cost is
incurred, it must be multiplied by the weight of the chain. Unbiasedness for this
general setting is proved (under mild conditions) by Booth and Pederson [1992],
for example.

2.9 Weight Windows

Particle transport simulations in nuclear physics often combine splitting and Russian
roulette with importance sampling. Then, the weight of each chain must be mul-
tiplied by the likelihood ratio accumulated so far. The weight is redefined as this
product. In the context of rare events, it is frequently the case that the final weight
of a chain is occasionally large and usually very small. This gives rise to a large
variance and a highly-skewed distribution, for which variance estimation is difficult.

To reduce the variance of the weights, Booth [1982] introduced the idea of weight
windows, which we define as follows (see also Booth and Hendricks [1984] and Fox
[1999]). Define the weighted importance of a chain as the product of its weight w
and the value of the importance function h(x) at its current state. Select three real
numbers 0 < amin < a < amax. Whenever the weighted importance ω = w h(x) of a
chain falls below amin, we apply Russian roulette, killing the chain with probability
1−ω/a. If the chain survives, its weight is set to a/h(x). If the weighted importance
ω rises above amax, we split the chain in c = dω/amaxe copies and give weight w/c to
each copy. The estimator of γ0 = P[τB < τA] is the sum of weights of all the chains
that reach the set B before reaching A. The importance function h∗(x) = γ(x)
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should be approximately optimal in this case. The basic motivation is simple: if
the weight window is reasonably narrow, all the chains that reach B would have
approximately the same weight, so the only significant source of variance would
be the number of chains that reach B [Booth and Hendricks 1984]. If we take
a = (amin + amax)/2 ≈ µ, then this number has expectation n (approximately),
where n is the initial number of chains.

In the original proposal of Booth [1982] and Booth and Hendricks [1984], the
windows are on the weights, not on the weighted importance. The state space
is partitioned in a finite number of regions (say, up to 100 regions), the impor-
tance function is assumed constant in each region, and each region has a different
weight window, inversely proportional to the value of the importance function in
that region. Such weight windows are used extensively in the Los Alamos particle
transport simulation programs. Our formulation is essentially equivalent, except
that we do not assume a finite partition of the state space.

Fox [1999, Chapter 10] discusses the use of weight windows for splitting and
Russian roulette, but does not mention the use of an importance function. Weight
windows without an importance function could be fine when a good change of
measure (importance sampling) is already applied to drive the system toward the
set B. Then, the role of splitting and Russian roulette is only to “equalize” the
contributions of the chains that reach B and kill most of those whose anticipated
contribution is deemed negligible, to save work. This type of splitting, based only
on weights and without an importance function, gives no special encouragement to
the chains that go toward B. If we use it alone, the event {τB < τA} will remain a
rare event.

If there is no importance sampling, the multilevel splitting techniques described
earlier (except those with truncation and no resplits, in Section 2.7) have the ad-
vantage of not requiring explicit (random) weights. All the chains that reach level
`k have the same weight when they reach that level for the first time. So there is
no need for weight windows in that context.

3. RQMC AND ARRAY-RQMC FOR SIMULATING MARKOV CHAINS

Monte Carlo for a Stochastic Recurrence. It is convenient to write our Markov
chain {Xj , j ≥ 0} as a stochastic recurrence of the form

Xj+1 = ϕj(Xj ,Uj) (7)

where the Uj ’s are independent random vectors uniformly distributed over [0, 1)d

and X0 = x0. If random numbers are required for splitting and Russian roulette
decisions in step j, these random numbers are assumed to be part of Uj . When sim-
ulating this Markov chain, these Uj are “realized” by a random number generator.
To simulate the chain until it reaches A or B, we need a vector of τd independent
random numbers uniformly distributed over [0, 1).

Let s (an integer) be an upper bound on τd, over all possible sample paths. If
no such upper bound exists, take s = ∞. The random variable Y = I[τB < τA],
where I denotes the indicator function, can be written as Y = f(U1, . . . , Us) for
some function f , where the Ul’s are independent U(0, 1) random variables and
Uj = (U(j−1)d+1, . . . , Ujd) for each j. The standard Monte Carlo (MC) method
generates n independent random points Vi = (Ui,1, . . . , Ui,s) uniformly distributed
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in the s-dimensional unit cube [0, 1)s, for i = 1, . . . , n, computes Yi = f(Vi) for
each i, and estimates µ by the average Ȳn of these n numbers. (In practice, only
the coordinates of Vi that are needed are actually generated.)

Classical RQMC. The aim of the classical RQMC method [Owen 1998; L’Ecuyer
and Lemieux 2002, and references therein] is to induce “negative dependence”
between the Vi’s to reduce the variance of the average Ȳn. This is the same
general idea as generalized antithetic variates [Wilson 1983]. The (random) set
Pn = {V1, . . . ,Vn} is called an RQMC point set if (a) each Vi has the uniform
distribution over [0, 1)s and (b) Pn covers [0, 1)s “more uniformly” than a set of
independent random points, with probability 1. The precise meaning of “more uni-
formly” is left open voluntarily; to complete the definition, we must adopt a specific
measure of uniformity and a wide variety of such measures are available [Nieder-
reiter 1992; L’Ecuyer and Lemieux 2002]. Examples of RQMC point sets include
randomly shifted lattice rules, scrambled digital nets, digital nets with a random
digital shift, Latin hypercube samples, etc. [Owen 1998; L’Ecuyer and Lemieux
2002]. Now that the Yi’s are dependent, we cannot estimate their variance by their
sample variance. But we can replicate this entire scheme R times, independently
(e.g., with independent randomizations of the same point set) and estimate the
variance of Ȳn by the sample variance of its R copies. This RQMC approach can
be quite efficient when s is small or when f has low effective dimension in some
sense [Owen 1998; L’Ecuyer and Lemieux 2002]. In some contexts, however, the
effective dimension is large. In our setting, there is usually no finite upper bound
on the stopping time τ , so we must take s = ∞.

Array-RQMC. L’Ecuyer et al. [2006] recently proposed a different RQMC method
for Markov chains, based on an earlier (deterministic) QMC algorithm of Lécot and
Tuffin [2004]. They call it array-RQMC. It simulates n copies of the chain in paral-
lel, using a randomized highly-uniform point set to generate the next state of these
n chains at each step, and reorders the chains after each step. This reordering is
made according to the value of an importance function v : X → R at the current
state of each chain. When splitting is combined with array-RQMC, this function v
is not necessarily the same as the importance function h used for the splitting; so
here we call v the sorting function, to avoid confusion.

Thus, the method operates as follows. At step 1, we select an RQMC point set
Pn,1 = {u0,1, . . . ,un−1,1} in [0, 1)d, and define

Xi,1 = ϕ1(x0,ui,1) for i = 0, . . . , n− 1.

After this step, we expect that the empirical distribution of X0,1, . . . , Xn−1,1 is a
better approximation of the distribution F1 of X1 than with independent random
points instead of Pn,1. In case where the initial state of the chain should be gener-
ated from some initial distribution instead of being fixed, we can simply view Xi,1

as the random initial state.
At step j, we take an RQMC point set Pn,j = {u0,j , . . . ,un−1,j} in [0, 1)d con-

structed so that the (d + 1)-dimensional modified RQMC point set P ′
n,j = {u′i,j =

((i + 0.5)/n,ui,j), 0 ≤ i < n} is “highly uniform” in [0, 1)d+1, in a sense that we
leave open (as in the definition of RQMC point set). This P ′

n,j can be defined by
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taking a (d + 1)-dimensional RQMC point set, sorting the points by order of their
first coordinate, and replacing the first coordinate of the ith point by (i + 0.5)/n
for each i. Usually, Pn,j is obtained by re-randomizing the same point set at all
steps j. Let X(0),j−1, . . . , X(n−1),j−1 be the states of the chains immediately before
step j, sorted by increasing order of v(Xi,j−1). When a chain reaches its stopping
time, we put it in a special state x for which v(x) = ∞. For i = 0, . . . , n − 1, we
define Xi,j = ϕj(X(i),j−1,ui,j) if v(X(i),j−1) < ∞ and Xi,j = X(i),j−1 otherwise.
Then these states are sorted by increasing value of v(Xi,j) and we go to step j + 1.
The intuitive motivation of the method is that we expect the empirical distribution
of X(0),j , . . . , X(n−1),j to better approximate the theoretical distribution Fj of Xj

than if we were simulating everything with independent uniform random numbers.
So, if an estimator is the average of state-dependent costs, averaged over the steps
j and over the n chains, we expect (heuristically) the variance to be smaller with
array-RQMC than with independent random numbers.

L’Ecuyer et al. [2005] prove that the array-RQMC estimator is unbiased, and
provide a worst-case bound of O(n−1/2) for the variance, in the case of a one-
dimensional state space and under some conditions. For a special case of the
method that corresponds essentially to stratification, again with a one-dimensional
state space, they show that the variance converges to 0 as O(n−3/2). An unbi-
ased variance estimate can be obtained by replicating the entire scheme R times
independently, as for classical RQMC. For additional justifications and details, and
illustrations of the degrees of improvement that are obtained in practice, we refer
the reader to L’Ecuyer et al. [2005].

4. COMBINING SPLITTING WITH RQMC AND ARRAY-RQMC

Our primary interest in this paper is the combination of splitting or IS with RQMC
or array-RQMC, with a special attention to the splitting/array-RQMC combina-
tion. We now explain how multilevel splitting can be combined first with classical
RQMC, then with array-RQMC.

Classical RQMC for fixed-effort multilevel splitting, without resplits within a
stage. We can apply the classical RQMC method at each stage of the multilevel
splitting, as follows, assuming that there are no resplits during the stage. At the
beginning of stage k, we select an infinite-dimensional RQMC point set PNk−1 of
cardinality Nk−1 (in the sense given in Section 3), and randomize it. Each of the
Nk−1 chains is simulated by using the successive coordinates of one point of PNk−1 ,
until it reaches `k or `0 or gets killed. This is usually implemented by simulating
one chain at a time, doing the entire trajectory of the chain before going to the next
one. If there is no truncation during that stage, these successive coordinates are
used to determine the successive transitions of the chain as explained in Section 3.
The RQMC point set is taken as infinite-dimensional because there is usually no
upper bound on the number of steps before reaching `k or `0. This limits the range
of choices for this point set; for example, Sobol’ point sets, a particular class of
digital nets, are ruled out. If we use truncation and weights within the stage, as
in Section 2.7, then we also need random numbers to determine the truncation
decisions. These additional random numbers can be taken either (a) from the suc-
cessive coordinates of the RQMC point as well, or (b) from an independent RQMC
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point set, or (c) from an independent stream of random numbers. None of these
approaches universally dominates the others; it depends on the model. In all
cases, the successive random numbers used for any given chain are independent
uniform random variables over [0, 1), so the expected contribution of each chain to
the estimator is the same as with MC, which shows that the method is unbiased.
For the experiments reported in Section 5, we have used (c).

Combining array-RQMC with splitting. The basic idea here is to take one of the
several variants of splitting discussed in Section 2, implement it in a breath-first
fashion, and simulate all the chains in parallel, one step at a time, using array-
RQMC. For multilevel splitting, the array-RQMC is applied separately for each
stage to estimate the corresponding probability pk. Whenever a chain reaches the
next level, it is put in a “special state” and waits there until the stage is over. At
the end of the stage, we split the chains that have reached the target level `k and
restart the array-RQMC algorithm from there.

Hurdles. A first difficulty appears immediately: with splitting, the number of
chains alive at any given step is random, so it cannot be taken always equal to
a given constant n as in the plain vanilla array-RQMC algorithm. Moreover, for
several splitting variants (such as multilevel fixed-splitting,

RESTART, and splitting without levels as in Section 2.8), if we start with n
chains, the number of simultaneous chains at a later step could grow eventually
much larger than n. What do we do with array-RQMC in this case? In principle,
we could use an RQMC point set Pn with different cardinality n at each step, equal
to the number of chains alive at that step. But creating those different RQMC
point sets would introduce significant overhead (as opposed to creating a single
one of cardinality n and reusing it with an independent randomization at each
step), because the creation usually involves a one-time setup which is much more
computationally expensive than enumerating the points. Multilevel splitting with
fixed effort appears to be the variant best adapted to array-RQMC, because (at
least in its basic version) the number of chains never exceeds the selected constant
Nk at each stage k. This constant can be taken always equal to n. If we combine the
fixed-effort multilevel splitting with any of the “resplit-type” unbiased truncation
methods discussed in Section 2.7, the difficulty of an unbounded number of chains
pops up again because of the resplitting within each stage. One possibility is to
temporarily cut off the splitting when there are n chains alive and increase the
weight of chains instead of splitting them, as discussed earlier. When the number
of chains becomes less than n, splitting is resumed (the number of copies to make
in a resplit is multiplied by the weight of a chain).

Array-RQMC for fixed-effort multilevel splitting, without truncation. This basic
case is the one for which array-RQMC is easiest to implement. The combined
method operates as follows. Let X(k) denote the Markov chain {Xj , j ≥ 0} between
times Tk−1 and min(τA, Tk). We start stage 1 with N0 chains. We estimate p1 by
using the array-RQMC algorithm for the Markov chain X(1): The N0 chains are
simulated in parallel according to (7) and sorted after each time step. Each chain
evolves until the stopping time min(T1, τA). If R1 is the number of chains for
which D1 occurs, R1/N0 is an unbiased estimator of p1. The states of these R1
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chains are stored and their empirical distribution can be viewed an estimator of the
distribution G1 of XT1 .

At the second stage, N1 chains are started from those R1 states according to the
fixed-effort splitting policy, and are simulated in parallel using the same array-
RQMC procedure on X(2), each chain being simulated until its stopping time
min(T2, τA). The probability p2 is estimated by R2/N1 where R2 is the number of
chains for which D2 occurs. These R2 chains are then split again, and so on, until
all the probabilities p3, · · · , pm have been estimated.

The algorithm is given in Figure 1. It basically consists in adding a loop to
the algorithm of L’Ecuyer et al. [2005] for the estimation of the probability pk of
reaching each successive level. In this algorithm, X

(k)
i,j represents the state of the

ith chain at step j, in stage k. For simplicity, we consider a single replication.
This entire procedure must be repeated R times with independent randomizations
to estimate the variance and compute a confidence interval on γ0. As in L’Ecuyer
et al. [2006], it can be readily verified that the estimator of each pk is unbiased,
and we have:

Proposition 4.1. The estimator γ̃n in Figure 1 has expectation γ0.

Proof. The randomization of the point set before each step ensures that the
sample path of any chain, considered separately, is determined by a sequence of
independent random numbers uniformly distributed in [0, 1). Therefore, each chain
taken individually has exactly the same probability law as with splitting with MC,
and has the same expected contribution to the estimator. Combining this with (3),
which says that the splitting estimator is unbiased, we get the result.

Unbiased truncation and potential difficulties. The truncation methods of Sec-
tion 2.7, without the resplits, are easy to incorporate to the algorithm of Figure 1.
Each chain now has a weight and when a chain is killed it is put into a state x with
v(x) = ∞. The number of chains considered by the inner loop would then decrease
with j faster than without truncation. In the case of resplits, we must make sure
that the number of chains alive never exceeds Nk−1 in stage k. A solution to this
problem was given previously. There are other possibilities, such as enlarging the
RQMC point set when needed, using independent random numbers for the extra
chains, etc.

The algorithm of Figure 1 is rather simple in principle. However, several practical
issues must be addressed for the combination of splitting and array-RQMC to be
really effective. Some of these difficulties are discussed in the following remarks.

(1) Recall that in a given stage, the number of time steps before reaching the
next level or coming back to A is random, can be large, and may have large
variability, especially when k is large, because the chain then starts far from A
and requires a large number of steps to come back to A. For the array-RQMC
method, this causes the number of points used in successive steps to decrease
with the step number during that stage, thus reducing the RQMC efficiency
because only a few points from the RQMC point set are used in the later steps.

(2) In the case of random resplits and roulette, we need additional random numbers.
If we use separate independent random numbers for that, this would add a vari-
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Initialization.
For k = 1, . . . ,m, select a d-dimensional RQMC point set P

(k)
Nk−1

constructed

so that the corresponding P
′(k)
Nk−1

is a modified RQMC point set;
Select the m thresholds 0 = `0 < `1 < · · · < `m = `;
Initialize the N0 chains according to the initial state distribution;

Estimate each pk.
For (k = 1; k <= m; k++)

Simulate in parallel Nk−1 copies of the chain, as follows:
If k > 1, split the Rk−1 available chains to get Nk−1 chains

according to the splitting policy;
For (j = 1; v(X(k)

0,j−1) < ∞; j++)

Sort (and renumber) the chains by increasing order of v(X(k)
i,j−1);

Randomize Pk,Nk−1 afresh;
For (i = 0; i < Nk−1 and X

(k)
i,j−1 < ∞; i++)

X
(k)
i,j = ϕj(X

(k)
i,j−1,ui);

Output.
Return γ̃n =

∏m
k=1 Rk/Nk−1 as an estimator of γ0.

Fig. 1. Fixed-effort multilevel splitting (basic version) combined with array-RQMC

ance component and may dilute the gain obtained by array-RQMC. Another
possibility is to add dimensions to the RQMC point set and use the additional
coordinates for the splitting and roulette decisions. But in general, increas-
ing the dimension tends to reduce the effectiveness of RQMC. This favors the
methods where the splitting and roulette decisions are more deterministic, i.e.,
the tag-based and periodic approaches, as opposed to probabilistic truncation
and resplit.

(3) For fixed γ0 and m and fixed levels `k, the empirical distribution of the entrance
states in Dk tends to deteriorate (as an approximation of the exact distribution)
as k increases, due the fact that it is derived from the empirical distribution at
the previous level, so the approximation error accumulates from level to level.
As a result, the variance reduction from array-RQMC is expected to decrease
with k. Likewise, if γ0 = pm for fixed p, the performance may deteriorate as a
function of m.

(4) In the case of multidimensional state spaces, good choices of the importance
function for splitting and of the sorting function for array-RQMC are crucial,
and are definitely non-trivial to obtain in general. This is already the pri-
mary difficulty for either splitting or array-RQMC applied alone [Booth and
Hendricks 1984; Garvels et al. 2002; L’Ecuyer et al. 2005].

(5) We saw earlier that under a number of conditions and approximations, splitting
efficiency is maximized by taking (− ln γ0)/2 levels and selecting the thresh-
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olds so that pk = e−2 for all k. For RESTART, a careful analysis by Villén-
Altamirano and Villén-Altamirano [2002] shows that the ck’s should be as small
as possible instead and the authors recommend pk = 1/2. These optimal val-
ues largely depend on what variant of the splitting is used. In general, it is
preferable to have fewer levels (smaller pk’s) when there is no truncation (all
the chains must reach the next level or A). The truncation (or roulette) tech-
niques permit one to use a larger number of levels without increasing too much
the total amount of work. In a fixed-effort context, the number of chains is
rebalanced more frequently when there is a larger number of levels. This fre-
quent rebalancing is expected to help the array-RQMC method, because the
number of chains will stay closer to the number of points in the RQMC point
set. Our empirical investigations indicate that the optimal number m of levels
for array-RQMC with fixed splitting tends to be larger than (− ln γ0)/2, but
this depends very much on the problem. Fortunately, crude approximations
may suffice because the variance is often not very sensitive to small changes in
m.

(6) RQMC has been proved to be asymptotically more effective than MC only
when the integrand is a smooth function [Owen 1998; L’Ecuyer and Lemieux
2002]. But here, we estimate the probability pk of reaching the next level by an
average of indicator functions, for each k. Indicator functions are definitely not
smooth, so it is unclear a priori if array-RQMC can bring any improvement,
even asymptotically. Proofs that the variance converges faster with RQMC
than with MC are available only for narrow special cases for classical RQMC;
for array-RQMC combined with splitting, the task is certainly not easier. This
is a case where empirical experiments have the last word so far.

In the next section, we see that despite these difficulties, the combination can
still bring significant variance reductions, at least in some situations.

5. EXAMPLES

Most of the following examples are toy problems, used to illustrate and evaluate
the performance of various splitting and importance sampling methods and their
combination with RQMC and array-RQMC.

When using splitting, we compare the different methods in terms of the variance
per chain, Vn = nVar[γ̂n], where n is the number of chains at each level, and the
work-normalized variance per chain, Wn = SnVar[γ̂n], where Sn is the expected
total number of simulated steps of the n Markov chains. If Sn is seen as the
computing cost of the estimator, then 1/Wn is the usual measure of efficiency.
For standard MC without splitting, and for the splitting variants where the chains
remain independent (e.g., fixed splitting without truncation and resplits), Vn and
Wn do not depend on n. But for the other methods, we also want to see how
Vn and Wn behave as a function of n. If the RQMC and array-RQMC are really
effective, for example, then Vn and Wn should decrease with n. We make no
direct comparison with standard MC without splitting or IS, because this direct
MC approach is not viable for our examples. Here we are only interested in the
additional efficiency gains obtained by the truncation and RQMC methods. To
measure the efficiency, we could also have measured the computing effort by the
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total CPU time instead of Sn. However, the latter depends very much on the
programming, compiler, and computer.

In our first example, we compare multilevel splitting with the fixed-splitting and
fixed-effort strategies. For fixed splitting, we selected the splitting factors ck so
that ck ≈ 1/pk for all k. For the remainder of our experiments we use only fixed
effort, because fixed splitting does not combine well with RQMC methods. We
will test the work-saving truncation and resplit techniques of Section 2.7 (with
rk,1 = rk,2 = 1, and rk,j = γ̂

−1/(k−1)
(k−1) for j ≥ 3, at all stages k), as well as the

combination of splitting with RQMC methods. For all the splitting methods, the
variance was estimated by making R = 100 independent replications of the entire
procedure and taking the sample variance of the R estimators of the mean.

For classical RQMC, the point sets were infinite-dimensional Korobov lattice
rules taken from Table 1 of L’Ecuyer and Lemieux [2000], to which we applied a
random shift modulo 1 followed by the baker’s transformation [Hickernell 2002].
This transformation maps each coordinate u to 2u if u < 1/2 and to 2(1 − u) if
u ≥ 1/2; it produces a point set with “locally antithetic” properties [Hickernell
2002]. This method will be denoted Classical-Korobov-Baker in our tables. Again,
we use infinite-dimensional point sets because the number of steps of each chain is
random and unbounded.

For array-RQMC, we need to define a sorting function v, whose role is to dis-
tinguish the different states at any given step j of the chains within a stage k.
One possibility is to just take v equal to h and this is what we do for our exam-
ples, even though there may be better choices. We use two different types of point
sets for array-RQMC: (a) a two-dimensional Korobov lattice rule whose number of
points n is a power of two and the parameter a is an odd integer such that a/n is
near the golden ratio, with its first coordinate skipped, randomized by a random
shift modulo 1 followed by the baker’s transformation (we label this method Array-
Korobov-Baker in the tables); (b) the first n points of a Sobol sequence randomized
by a left (upper triangular) matrix scrambling followed by a random digital shift
[L’Ecuyer and Lemieux 2002; Owen 2003], where the points are enumerated by
order of their Gray code (Array-Sobol).

In our last set of examples, in Section 5.3, we will explain why splitting is not
appropriate for certain reliability models and will experiment with the combination
of IS with RQMC methods.

5.1 An Ornstein-Uhlenbeck Process

A continuous-time Ornstein-Uhlenbeck stochastic process {R(t), t ≥ 0} obeys the
stochastic differential equation

dR(t) = a(b−R(t))dt + σdW (t)

where a > 0, b, and σ > 0 are constants, and {W (t), t ≥ 0} is a standard Brownian
motion [Taylor and Karlin 1998]. This model is also known as the Vasicek model
for the evolution of short-term interest rates [Vasicek 1977]. In that context, b can
be viewed as a long-term interest rate level toward which the process is attracted
with strength a(b − R(t)). This process is mean-reverting, in the sense that it is
attracted downward when it is high and attracted upward when it is low. The
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constant σ indicates the strength of the noise.
Suppose the process is observed at times tj = jδ for j = 0, 1, . . . and let Xj =

R(tj). Let A = (−∞, b], B = [`,∞) for some constant `, and x0 ≥ b. We want to
estimate the probability that the process exceeds level ` at one of the observation
times before it returns below b, when started from R(0) = x0. Without loss of
generality, we take b = 0. In terms of the transition function described earlier, we
have

ϕj(xj , Uj) = xje
−aδ + σ

(
1− e−2aδ/(2a)

)1/2
Φ−1(Uj)

where Φ is the standard normal distribution function and Uj is uniformly distrib-
uted over [0, 1).

A simple choice of importance function h in this case is the identity and we
can combine it with equidistant thresholds. This choice is good enough to make
splitting work, but it is certainly not optimal. In fact, the attraction of the process
toward its mean is much stronger when it is farther away. So with equidistant
thresholds, the probabilities pk decrease with k, and it turns out that if p1 <
1/2, for example, pk becomes much too small when k is large. Therefore, if h is
the identity, the thresholds should be placed closer to each other as k increases.
Empirical experiments indicated that the following rule gives good results: first set
`k = `

√
k/m for k = 1, . . . ,m, let k∗ be the largest k for which `k < 2, and reset

`k = `k∗(k/k∗) for k = 1, . . . , k∗ − 1. The latter is a correction that makes the first
thresholds approximately equidistant. With this choice, our experiments indicated
that the pk’s were roughly independent of k, except for the small values of k, where
they varied a bit more. This is the choice we have used for the results reported in
this section.

If we were considering the continuous-time process, the entrance distribution Gk

at each level `k would be degenerate at `k. But because of the time discretiza-
tion, the entrance distribution has positive support over the entire interval [`k,∞),
which means that a chain can cross an arbitrary number of thresholds in a single
jump. One must be careful about this in the implementation. In this setting, the
simulation starts from a fixed state only at the first level. The simulation in stage
k determines p̂k and the empirical distribution Ĝk+1, which becomes the initial
distribution for the simulation in stage k + 1. Our proofs of unbiasedness for the
variants of multilevel splitting cover the case where the chain can cross several levels
at a time.

Example 4. The results given here correspond to a discretely observed Ornstein-
Uhlenbeck process with parameters a = 0.1, b = 0, σ = 0.3, x0 = 0.1, and
δ = 0.1. We want to estimate the probability that the discrete-time process
{Xj = R(tj), j > 0} exceeds ` = 4 before getting below 0.

Savings from unbiased truncation. We first want to assess the gain provided by
the truncation and resplit methods of Section 2.7, and see how this gain evolves
when we change m and/or `. Table I gives our estimates of Vn and Wn for some
values of n, for MC with m = 14. In this (and other) tables, “Fixed splitting” and
“Fixed effort” denote the corresponding multilevel splitting methods of Section 2.4,
with MC and no truncation or resplits. The three “weight” lines correspond to the
work-saving probabilistic truncation, periodic truncation, and tag-based truncation
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methods described in Section 2.7, with weights and no resplits. The lines “Prob.
resplit” and “Tag-based resplit” refer to probabilistic truncation with resplits and
tag-based truncation with resplits, respectively (see Section 2.7).

To facilitate the reading, these estimates are rescaled as Ṽn = 1016 × V̂n and
W̃n = 1013 × Ŵn, where V̂n and Ŵn are the empirical versions of Vn and Wn.
We do not give Ṽn for fixed splitting, because the number of chains at each step
is random and not always equal to n. The table also gives the estimates (sample
averages) γ̂n and Ŝn of γ0 and Sn for n = 216. The estimates of γ0 are rescaled as
γ̃n = γ̂n × 108. They agree quite well across the methods. The expected number
of simulated steps, Sn, depends on whether or not we truncate and resplit, but is
otherwise essentially independent of the method. The estimator Ŝn also appears to
have small relative error.

The variance estimators, on the other hand, are quite noisy. This can be seen by
looking at how Ṽn behaves as a function of n for any given method. We also repli-
cated some of the experiments a few times to see how the variance estimates varied,
and they sometimes changed by more than 20%. To get a sense of the anticipated
variability of the variance estimators, observe that if we assume normality of the
R = 100 observations and use the chi-square distribution to compute a confidence
interval on the variance (the classical procedure), with find that the error on the
variance is (roughly) less than 10% with probability 0.95. But if we depart from
the normality assumption, the error can be larger. Here, it seems to be somewhat
larger, but no more than twice larger.

Without RQMC, fixed effort and fixed splitting turn out to have comparable
efficiencies for this example. We nevertheless concentrate on fixed effort in what
follows, because of its better compatibility with RQMC. Comparing the truncation
methods, we expect truncation without resplits to give more variance than the
version with resplits and also more variance than splitting without truncation.
The results agree with this. The difference between the resplit versions and the
standard splitting without truncation is lost in the noise. The truncation methods
clearly increase the efficiency, by reducing the work. The versions without resplits
reduce the work Sn by a factor of 4.3 while the versions with resplits reduce it by
3.5. Both versions reduce the work-normalized variance Wn approximately by a
factor of 3.

Clearly, the benefit of truncation should increase with `. For ` = 6, for example,
we have γ0 ≈ 4.2× 10−18. By taking m = 30 and using our heuristic to determine
the levels, we obtain pk’s of approximately the same size as with ` = 4 and m = 14.
Our numerical experiments in this case gave a reduction of Sn by a factor of 10
without resplits and a factor of 8 with resplits. Our estimator Ŵn was reduced
by almost the same factors. Fixed effort and fixed splitting also had comparable
efficiencies when no truncation and no RQMC was used.

We performed additional experiments to assess the impact of certain parameters
such as the choice of levels `k (assuming that h is the identity function) and the
parameters rk,j for the truncation. For ` = 4 and m = 14, the empirical variance
was only slightly smaller when the levels were chosen via our heuristic than with
equidistant levels. For the truncation, taking rk,1 = rk,2 = 1 and rk,j = γ̂

−1/(k−1)
(k−1)

gave the best results. With rk,2 > 1, the variance is often significantly larger and,
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Table I. Estimates of Vn and Wn for MC simulation with n chains, for ` = 4 and m = 14 levels.

The estimators are rescaled as Ṽn = 1016 × V̂n, W̃n = 1013 × Ŵn, and γ̃n = γ̂n × 108.

n = 210 n = 212 n = 214 n = 216

Ṽn W̃n Ṽn W̃n Ṽn W̃n Ṽn W̃n γ̃n Ŝn

Fixed splitting 197 203 183 219 1.59 9.59× 107

Fixed effort 126 239 97 184 100 187 85 167 1.59 12.4× 107

Prob. weight 126 56 107 56 138 61 146 65 1.58 2.92× 107

Periodic weight 207 92 133 70 114 51 180 79 1.59 2.92× 107

Tag-based weight 133 59 120 63 106 47 122 54 1.59 2.92× 107

Prob. resplit 126 66 97 43 111 58 75 39 1.59 3.46× 107

Tag-based resplit 111 58 97 42 90 47 117 62 1.59 3.46× 107

more dangerously, is underestimated with a high probability because it contains
a rare heavy contribution. We also tried rk,j = p̂k−j = Rk,j/Nk−j−1 instead of
rk,j = γ̂

−1/(k−1)
(k−1) and none of the two choices dominated the other.

Classical RQMC. Table II shows our estimates of Vn and Wn for classical RQMC
using the randomized infinite-dimensional Korobov point sets. The line “Splitting”
represents fixed-effort splitting with classical RQMC and no truncation. Compared
with MC, the classical RQMC reduces the variance roughly by a factor of 2 to 3
and requires about the same amount of work, regardless of n.

Table II. Estimates of Vn and Wn with classical RQMC, for ` = 4 and m = 14 levels.
n = 1021 n = 4093 n = 16381 n = 65521

Ṽn W̃n Ṽn W̃n Ṽn W̃n Ṽn W̃n

Splitting 46 88 33 63 28 54 30 57

Prob. weight 80 36 77 34 86 38 96 43
Periodic weight 53 24 56 25 67 30 46 20

Tag-based weight 72 32 105 47 57 25 61 27

Array-RQMC. Table III gives our variance estimates for the combination of split-
ting with array-RQMC, using randomized Sobol’ nets. For the sorting function, we
simply use v(x) = h(x) = x. With truncation, the variance is about 12 times
smaller with the resplits than without. One of the reasons is probably that without
resplits, the chains have different weights and the sorting function does not take
that into account. The truncation provides the same work reduction factor as for
MC. The combination of array-RQMC with truncation and resplits provides a sig-
nificant efficiency improvement, by a factor of about 200 to 250 for n = 216. This
factor increases with n, which means that the variance decreases at a slightly faster
rate than for MC. We performed a similar experiment with Korobov lattices, with
the baker’s transformation and a random shift, and the results were similar.

Changing m and `. Table IV reports some experiments on the sensitivity to the
choice of m, for ` = 4 and n = 214. No truncation and resplit was used in the
splitting variants. We see that reducing m decreases the simulation effort, but also
increases the variance, and that both m = 14 and m = 21 appear like a good choices
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Table III. Estimates of Vn and Wn for array-RQMC with Sobol’ nets, for ` = 4 and m = 14 levels.

n = 210 n = 212 n = 214 n = 216

Ṽn W̃n Ṽn W̃n Ṽn W̃n Ṽn W̃n

Splitting, with MC 126 239 97 184 100 187 85 167

Splitting 7.6 14 4.4 8.3 2.1 3.9 0.9 1.7

Prob. weight 30 13 23 10 30 13 25 11

Periodic weight 38 17 19 9 23 10 18 8
Tag-based weight 42 19 18 8 24 10 19 9

Prob. resplit 9.1 4.8 4.8 2.6 2.2 1.2 1.1 0.6
Tag-based resplit 11.0 5.9 4.1 2.2 2.6 1.4 1.3 0.7

in this case (in terms of Wn). If we assume that γ0 = pm for some p, recalling that
γ0 ≈ 1.6× 10−8, we get

p ≈ 0.28 for m = 14 and p ≈ 0.43 for m = 21. These values are larger than the
optimal value p = e−2 ≈ 0.135 given in Section 2.3 under a simplified setting.

Table IV. Sensitivity of Vn ad Wn to the choice of m, for ` = 4 and n = 214.
m = 7 m = 14 m = 21

Sn ≈ 1.90× 107 Sn ≈ 3.11× 107 Sn ≈ 3.71× 107

Ṽn W̃n Ṽn W̃n Ṽn W̃n

Splitting with MC 247 287 100 187 78 176

Classical RQMC 80 92 28 54 20 46
Array-RQMC-Sobol 7.5 8.7 2.1 3.9 1.8 4.0

5.2 A Tandem Queue

Example 5. We return to Example 3. As in Parekh and Walrand [1989],
Glasserman et al. [1999], and Garvels [2000], among others, we consider an open tan-
dem Jackson queueing network with two queues. The arrival rate at the first queue
is λ = 1 while the mean service time is ρi = 1/µi at queue i, for i = 1, 2. The events
are the arrivals and service completions (at any queue) and Xj = (X1,j , X2,j) is the
number of customers in each of the two queues immediately after the jth event. We
have A = {(0, 0)}, the state where the system is empty, and B = {(x1, x2) : x2 ≥ `}
for some fixed threshold `, i.e., B is the set of states for which the length of the
second queue is at least `.

The choice of importance function h is a key issue for this example, especially
when the bottleneck is at the first queue, i.e., if ρ1 > ρ2 [Glasserman et al. 1998;
Garvels et al. 2002]. We shall concentrate on the case ρ1 < ρ2. We consider the
following choices of h:

h1(x1, x2) = x2; (8)
h2(x1, x2) = (x2 + min(0, x2 + x1 − `))/2; (9)
h3(x1, x2) = x2 + min(x1, `− x2 − 1)× (1− x2/`). (10)

The function h1 is a naive choice based on the idea that the set B is defined in
terms of x2 only. The second choice, h2, counts ` minus half the minimal number
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of steps required to reach B from the current state. (To reach B, we need at
least ` −min(0, x2 + x1 − `) arrivals at the first queue and ` − x2 transfers to the
second queue.) The third choice, h3, is adapted from Villén-Altamirano [2006], who
recommends h(x1, x2) = x2 + x1 when ρ1 < ρ2. This h was modified as follows.
We define h3(x) = x1 + x2 when x1 + x2 ≤ ` − 1 and h3(x) = ` when x2 ≥ `. In
between, i.e., in the area where ` − x1 − 1 ≤ x2 ≤ `, we interpolate linearly in x2

for any fixed x1. This gives the function in (10).
For the sorting function, we simply take v = h.
We did a numerical experiment with ρ1 = 1/4, ρ2 = 1/2, and ` = 30, with

our three choices of h. With h1, V̂n and Ŵn were significantly higher than for h2

and h3, and none of the RQMC method provided any clear variance reduction,
so we discard h1. Tables V and VI summarize the results for h2 and h3, in the
same format as for the previous tables. The estimators of Vn and Wn are rescaled
as Ṽn = 1018 × V̂n and W̃n = 1015 × Ŵn. The estimate of γ0 is in the interval
1.29× 10−9 ± 10−11 for all the methods.

Table V. Estimates of Vn and Wn for splitting using h2, for the tandem queue with ` = 30, and
m = 15 levels. The estimators are rescaled as Ṽn = 1018 × V̂n and W̃n = 1015 × Ŵn.

n = 210 n = 212 n = 214 n = 216

Ṽn W̃n Ṽn W̃n Ṽn W̃n Ṽn W̃n

Splitting, no-RQMC 109 120 89 98 124 137 113 125
Prob. weight 178 67 99 37 119 45 123 47

Periodic weight 99 37 118 45 107 41 119 45

Tag-based weight 126 48 133 50 109 41 109 41
Prob. resplit 104 45 138 60 96 42 111 48

Tag-based resplit 99 43 116 50 102 44 84 36

Classical RQMC 39 43 45 47 54 59 56 61

Array-Sobol 14 16 19 20 25 27 22 24
Array-Korobov-Baker 26 28 24 26 17 18 21 23

Array-Sobol, Prob. weight 28 11 31 12 27 10 28 11
Array-Korobov-Baker, Prob. weight 31 12 31 12 21 8.0 10 7.7

Array-Sobol, Periodic weight 29 11 43 16 28 10 23 8.7
Array-Korobov-Baker, Periodic weight 33 13 23 8.8 20 7.5 28 11
Array-Sobol, Tag-based weight 31 12 27 10 34 13 24 9.0

Array-Korobov-Baker, Tag-based weight 40 15 33 13 40 15 32 12

Array-Sobol, Prob. resplit 24 10 25 11 19 8.2 14 5.9

Array-Korobov-Baker, Prob. resplit 21 9.2 22 9.5 18 7.6 20 8.6
Array-Sobol, Tag-based resplit 21 9.2 60 26 17 7.4 18 7.8

Array-Korobov-Baker, Tag-based resplit 17 7.3 23 9.9 16 7.0 17 7.5

Without RQMC, h3 gives estimators with almost the same variance as h2 (just a
little better). The truncation and resplit methods improve the efficiency (roughly)
by a factor of 3, as in the previous example. We have slightly more variance
reduction with the resplits than without, but also slightly more work, and the
efficiency remains about the same.

Classical RQMC improves the Vn and Wn approximately by a factor of 2 with
h2 and 2.5 with h3.
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Table VI. Estimates of Vn and Wn for splitting using h3, for the tandem queue with ` = 30, and

m = 15 levels.

n = 210 n = 212 n = 214 n = 216

Ṽn W̃n Ṽn W̃n Ṽn W̃n Ṽn W̃n

Splitting, no-RQMC 93 103 110 121 93 102 107 118
Prob. weight 90 34 93 35 94 36 109 41
Periodic weight 147 55 97 37 130 49 82 31

Tag-based weight 99 37 94 35 105 40 108 41
Prob. resplit 128 56 94 41 93 40 80 35
Tag-based resplit 84 36 100 44 86 37 100 44

Classical RQMC 49 55 36 39 39 43 40 44

Array-Sobol 19 21 14 15 7.6 8.4 3.9 4.3
Array-Korobov-Baker 13 14 10 11 6.2 6.8 3.7 4.1

Array-Sobol, Prob. weight 24 9.3 18 6.8 18 7.0 13 5.0

Array-Korobov-Baker, Prob. weight 26 10 19 7.2 13 4.8 12 4.9
Array-Sobol, Periodic weight 26 9.9 18 6.9 15 5.7 13 5.1
Array-Korobov-Baker, Periodic weight 18 6.7 14 9.1 14 5.2 14 5.4

Array-Sobol, Tag-based weight 24 9.1 21 7.9 19 7.3 13 4.8
Array-Korobov-Baker, Tag-based weight 17 6.4 20 7.7 18 6.9 14 5.3

Array-Sobol, Prob. resplit 22 9.6 11 4.7 6.3 2.8 5.4 2.4
Array-Korobov-Baker, Prob. resplit 14 6.2 8.0 3.5 6.0 2.6 2.7 1.2

Array-Sobol, Tag-based resplit 21 8.9 12 5.0 6.6 2.9 4.8 2.1
Array-Korobov-Baker, Tag-based resplit 15 6.6 11 4.7 4.1 1.8 3.4 1.5

The array-RQMC methods behave differently for h2 and h3. With h2, the ef-
ficiency is improved roughly by a factor of 5 without truncation, a factor of 12
with truncation, and a factor of 15 with truncation and resplits. With h3, these
factors are of the same order for n = 210, but for n = 216 they are approximately
25, 20, and 50 to 70 (50 for Sobol’ and 70 for Korobov), respectively. With h3,
the array-RQMC method without truncation turns out to be very effective and the
gain improves rapidly with n. Its combination with truncation and resplit is even
more effective. Without the resplits, however, the truncation increases the variance
so much that it reduces the overall efficiency. With the resplits, Korobov is slightly
better than Sobol’ in all eight cases with h3. The best empirical efficiency (1.2 for
n = 216) is obtained by array-RQMC with a Korobov point set and probabilistic
truncation with resplits. Its overall efficiency improvement factor (on top of what is
obtained by splitting alone with h3) is nearly 100. Choosing a good sorting function
together with a good importance function is a key factor to make the array-RQMC
method really effective. For the results reported so far, we always took v = h.
To get a idea of whether the improvement observed with h3 is due mainly to the
better choice of h or to the better choice of v, we made additional experiments
in which we used h = h2 with v = h3, and vice-versa, for the Array-Sobol and
Array-Korobov-Baker methods. We observed a greater dependence on the sorting
function v than on the importance function h (between h2 and h3). In comparison
with h = v = h3, using h = h2 and v = h3 gave a slight increase of empirical
variance (by less than 50%) for k = 16 and no significant change for smaller values
of k, whereas with h = h3 and v = h2, the empirical variance increased by factors
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ranging (roughly) from 2 to 6. So in this case, switching between h2 and h3 has
more impact for v than for h.

5.3 Highly Reliable Multicomponent Systems

We return to Example 1, for which we want to estimate the probability γ0 that the
system fails before it returns to its initial state, with all the components operational.
Here we consider IS, rather than splitting, in combination with RQMC. We also
discuss splitting and its limitations for this type of application.

As in Shahabuddin [1994b], we assume that the failure rate of type-i components
when in state x is λi(x) = ai(x)εbi(x), where ai(x) is a strictly positive real number
when at least one type-i component is operational in state x and bi(x) is a strictly
positive integer, both independent of the rarity parameter ε, which satisfies 0 <
ε � 1. In full generality, failure propagation is allowed: from state x, there is a
probability pi(x, y) that the failure of a type-i component directly drives the system
to state y, in which there could be additional component failures. Thus, the net
jump rate from x to y is λ(x, y) =

∑c
i=1 λi(x)pi(x, y) = O(ε). Similarly, the repair

rate from state x to state y is µ(x, y) (with possible grouped repairs), where µ(x, y)
does not depend on ε (i.e., repairs are not rare events when they are possible).
We also assume that at least one repairman is active whenever a component is
failed. We want to estimate γ0 = P[τB < τA], defined in Example 1. For this,
it suffices to simulate the embedded discrete-time Markov chain {Xj , j ≥ 0}. We
denote its transition probabilities by P (x, y) = P[Xj = y | Xj−1 = x], for x, y ∈ X ,
with P (x, y) = λ(x, y)/q(x) if the transition from x to y results from a failure, and
P (x, y) = µ(x, y)/q(x) if it is a repair, q(x) =

∑
y∈X (λ(x, y) + µ(x, y)) being the

total flow rate out of x.
Various heuristics have been proposed to select a change of measure for IS in

this setting [Nakayama 1996; Cancela et al. 2002]. The most robust approach
with respect to rarity is the balanced failure biasing (BFB) scheme developed by
Shahabuddin [1994b]; it has bounded relative error when ε → 0. See Nakayama
[1996], Tuffin [1999], Tuffin [2004], and Cancela et al. [2005] for discussions of
robustness. BFB replaces the P (x, y)’s by new transition probabilities P ′(x, y)
defined as follows. For any state x ∈ X , let F (x) [resp., R(x)] be the set of states
y such that the direct transition x → y (if any) corresponds to a failure [resp., a
repair]. Let pF(x) =

∑
y∈F (x) P (x, y) and pR(x) =

∑
y∈R(x) P (x, y) be the overall

failure and repair probabilities, respectively. We select a constant ρ ∈ (0, 1), not
too close to 0 or 1. For a state x 6∈ B, we define

P ′(x, y) =



1
|F (x)| if y ∈ F (x) and pR(x) = 0;

ρ 1
|F (x)| if y ∈ F (x) and pR(x) > 0;

(1− ρ)P (x,y)
pR(x) if y ∈ R(x);

0 otherwise.

For x ∈ B, we take P ′(x, y) = P (x, y). This change of measure increases the
probability of failure to at least ρ when the system is up, so a failure transition is
no longer a rare event.

A second approach is inverse failure biasing (IFB) [Papadopoulos 1998], which
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follows the idea of exponential twisting in queueing networks; it inverts the prob-
abilities of the sets F (x) and R(x), taking uniform probabilities in those subsets.
This gives

P ′(x, y) =



1
|F (x)| if y ∈ F (x) and pR(x) = 0;
pR(x)
|F (x)| if y ∈ F (x) and pR(x) > 0;
pF(x)
|R(x)| if y ∈ R(x);

0 otherwise.

Though this scheme does not verify robustness properties such as bounded relative
error (BRE) in full generality [Cancela et al. 2002], because the most likely paths
to failure may involve some repairs and thus become rare under IFB, it does for
our numerical examples. It also performs better than BFB in many situations, see
Example 6 below.

With IS, the contribution of a chain to the estimator is the likelihood ratio

L =
τB∏
j=1

P (Xj−1, Xj)
P ′(Xj−1, Xj)

multiplied by the indicator I[τB < τA]. The IS estimator of γ0 is the average value
of these contributions over the n Markov chains that are simulated.

We will try IS with MC and with array-RQMC for a few examples. For the choice
of the sorting function v for array-RQMC, it seems reasonable to take some kind
of forecast of the final value of L · I[τB < τA]. Here, as a crude (easy to compute)
estimate, we take v(x) as the largest value of L that can be obtained, over all sample
paths that reach B, given the current state x and the likelihood ratio cumulated so
far. Sometimes, we will also consider a variant that looks at the number of failed
components as well.

Example 6. We start with the simple case where c = 1, so the system has n1

components all of the same type and the state Xj is the number of failed com-
ponents. We take ε = 0.05, µ(x, y) = µ1 = 1, λ1(x) = λ1 = 0.001, n1 = 10,
ρ = 0.5, and B is the set where fewer than two components are operational. For
this example, we have γ0 ≈ 9.0× 10−24 and the variance per run for MC with IS is
approximately 1.99 × 10−44 for BFB and 1.45 × 10−48 for IFB. So the variance is
about 10,000 times smaller with IFB.

For this particular example, there is another change of measure that guarantees
a sharp bound on the likelihood ratio. When in state x, the probability that the
next event is a failure is qx = pF(x) = xλ1/(xλ1 + (n1 − x)µ1) for x > 0, and
q0 = 1. Select q′1 > q1 and define recursively q′x+1 = 1 − (1 − qx+1)(qx/q′x). These
q′x’s suffice to simulate the chain. We then have q′x > qx for all x > 0. This also
gives (qx/q′x)(1 − qx+1)/(1 − q′x+1) = 1, which means that all cycles in the sample
path contribute nothing to the likelihood ratio (such a change of measure is much
more difficult to construct in the multidimensional case). As a result, whenever we
reach B, we have

L =
n1−2∏
i=1

(qx/q′x),
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a constant. Note that γ0 is equal to this L multiplied by the probability γ′0 of
reaching B under IS. To increase γ′0, i.e., make the constant L as small as possible,
we would choose q′1 as large as possible, i.e., q′1 = 1. This algorithm will be denoted
by NLC (for no loop contribution). On our example, it gives an (empirical) variance
per run of approximately 2.72× 10−48, which is about the same as for IFB.

Table VII gives the (empirical) additional variance reduction factor obtained
when we combine IS with RQMC; that is, the variance with IS + MC divided by
the variance with the same IS technique + the named RQMC method (the larger
the better, in contrast with the previous examples). The sorting function v1 only
looks at the largest possible likelihood ratio as explained earlier, whereas v2 uses
a lexicographic order: it first looks at the number of failed components, and the
chains that have the same number are sorted according to the current value of the
likelihood ratio. The RQMC methods use n points (or almost). The number of
independent replications used to estimate the variance (in this example and those
that follow) is R = 256.

To compare the no-RQMC IS methods between themselves, we can look at the
variance reduction factor of each method compared with BFB. This factor is ap-
proximately 14000 for IFB and 7300 for NLC

(it does not depend on v).

Table VII. Empirical variance reduction factors of RQMC with respect to MC, for Example 6,

with n points and R = 256 replications (for classical RQMC, n is the largest prime number smaller

than the given value).

IS v n = 210 n = 212 n = 214 n = 216 n = 218

BFB v1 Classical-Korobov-Baker 1.0 2.6 2.8 5.2 9.6

Array-Sobol 2.8E+7 2.6E+10 9.4E+13 3.4E+17 1.5E+21
Array-Korobov-Baker 11 21 53 17 134

BFB v2 Classical-Korobov-Baker 1.0 2.2 3.1 4.5 8.2

Array-Sobol 2.4E+7 1.2E+11 1.2E+14 5.4E+17 2.3E+21
Array-Korobov-Baker 10 25 53 19 132

IFB v2 Classical-Korobov-Baker 19 23 43 134 118
Array-Sobol 14 26 65 124 420

Array-Korobov-Baker 16 23 67 17 122

NLC v2 Classical-Korobov-Baker 5.8 9.6 23 33 50

Array-Sobol 5.2 12 21 33 68
Array-Korobov-Baker 4.4 12 20 12 39

We see that RQMC reduces the variance by significant factors and the reduction
also increases with n. The combination of BFB with Array-Sobol gives surprisingly
good results, with practically zero variance when n = 218. At first, we thought
it was a programming error of some sort, but then realized that this is due to a
constructive interaction between the randomized Sobol’ point set and the modified
probabilities P ′(x, y). By taking ρ = 0.5, for any state where both a failure and a
repair are possible, the probability of each is 0.5. But for a two-dimensional random-
ized Sobol’ point set with 2k points, for any interval of the form [a12−k+1, a22−k+1)
where a1 and a2 are integers such that 0 ≤ a1 < a2 ≤ 2k−1, exactly half of the
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points whose first coordinate is in this interval have their second coordinate smaller
than 0.5. Because of this, after the first failure, a second failure will occur immedi-
ately for exactly half of the chains, and a repair for the other half. Then, exactly
half of the chains with two failures will have another failure for their next transition,
and so on. At most steps and for most states, exactly half of the chains in that
state have a failure and the other half have a repair. As long as this happens, the
empirical distribution of the states reproduces exactly the theoretical distribution,
so the variance is almost nil. This does not happen for the Korobov point sets,
since they do not have this property, but Array-Korobov-Baker nevertheless gives
a substantial improvement. With classical RQMC, there is a good improvement
for IFB but not quite as good for BFB. The choice of v is irrelevant for classical
RQMC, so the difference between v1 and v2 with BFB is only noise. It gives a sense
of the uncertainty in the variance estimate: the observed difference sometimes goes
up to almost 20%.

We also considered splitting for this example, but met the following difficulty:
When qx = xλ1/(xλ1 + (n1 − x)µ1) is too small, it is just impossible to set the
thresholds close enough to each other for the splitting to be effective. For n1 = 10,
if h(x) = x, the only possible thresholds are 2, 3, . . . , 8. With these thresholds
and our selected parameters, the probability of reaching level 8 given that we have
reached level 7 is p8 ≈ 0.0004, which is quite small. Too few of the chains started at
a given level will make it to the next level, especially for the highest levels. Splitting
does not work well in this case (the relative error remains very large). To view the
difficulty from another angle, suppose we insist that the splitting factor ck never
exceeds 100 (which is already quite large). If n1 = 10 and µ1 = 1, then we must
have λ1 ≈ 0.024. If n1 = 40 instead, then we must have λ1 ≈ 0.12.

Example 7. Consider now a system with c = 3 component types, µi = 1 for
all i, λ1 = ε, λ2 = 1.5ε, and λ3 = 2ε2, where µi and λi are the repair and failure
rates of component type i. Suppose the system is down when fewer than two
components of anyone type are operational. We assume that ni is the same for all
i, for 1 ≤ i ≤ c, and consider the three parameter sets given in Table VIII. The
sorting function v for array-RQMC is v1, as defined earlier. The table also gives
the variance per run Vn for BFB and IFB, without RQMC. As for the previous
example, we see that IFB is more effective than BFB. The two IS methods are also
much less effective to reduce the variance when ni = 12 than for the smaller values
of ni (recall that without IS, the variance per run is γ0(1− γ0) ≈ γ0). This is due
to the fact that these IS methods are not adapted to this case. Indeed, BFB and
IFB schemes have actually been designed to cope with the case where individual
failure rates are small (i.e., when ε → 0) and not for the case where the number of
components is large.

Table VIII. Parameters and MC variance estimates for the 3-dimensional example.
ni ε γ0 Vn with BFB Vn with IFB

3 0.001 2.6× 10−3 6.21× 10−5 2.83× 10−5

6 0.01 1.8× 10−7 6.17× 10−11 9.42× 10−12

12 0.1 6.0× 10−8 7.48× 10−8 2.71× 10−8
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Table IX. Empirical variance reduction factors of RQMC with respect to MC, for the 3-dimensional

example, with n points and R = 256 replications (for classical RQMC, n is the largest prime

number smaller than the given value).

ni IS n = 210 n = 212 n = 214 n = 216 n = 218

3 BFB Classical-RQMC-Baker 73 28 40 107 7910
Array-Sobol 24 74 250 720 3200

Array-Korobov-Baker 18 57 467 123 6120

3 IFB Classical-RQMC-Baker 56 10 38 32 287

Array-Sobol 23 51 71 241 613
Array-Korobov-Baker 7 53 146 460 1440

6 BFB Classical-RQMC-Baker 1.0 1.0 1.4 1.9 3.9

Array-Sobol 1.1 1.4 3.2 6.2 20.0
Array-Korobov-Baker 1.3 2.0 3.9 6.7 35.0

6 IFB Classical-RQMC-Baker 1.9 0.5 1.8 3.0 2.7
Array-Sobol 1.2 2.4 2.5 4.0 4.8

Array-Korobov-Baker 2.5 2.9 2.6 4.4 5.3

12 BFB Classical-RQMC-Baker 1.0 110 7 23 9
Array-Sobol 140 21 150 14 0.1

Array-Korobov-Baker 1400 500 265 80 5

12 IFB Classical-RQMC-Baker 7850 182 6 0.01 1.3

Array-Sobol 3300 460 70 34 10
Array-Korobov-Baker 560 120 22 50 14

Table X. Estimated values γ̂n by RQMC for the 3-dimensional example, for ni = 12, with n points
and m = 256 replications.

ni IS n = 210 n = 212 n = 214 n = 216 n = 218

12 BFB Classical-RQMC 5.4E-7 5.3E-8 8.8E-8 5.0E-8 5.5E-8
Array-Sobol 7.3E-8 9.2E-8 2.8E-8 7.1E-8 1.7E-7

Array-Korobov-Baker 2.2E-8 1.9E-8 3.1E-8 4.1E-8 6.3E-8

12 IFB Classical-RQMC 1.1E-8 4.0E-8 5.7E-8 4.9E-7 7.0E-8

Array-Sobol 1.1E-8 2.1E-8 3.2E-8 3.8E-8 5.0E-8
Array-Korobov-Baker 3.6E-8 2.3E-8 5.1E-8 3.3E-8 4.6E-8

Variance reduction factors for RQMC versus MC (the MC variance divided by
the RQMC variance, for the corresponding IS method), for both BFB and IFB, are
given in Table IX. The expected number of simulation steps per chain is the same
for all the methods. However, the array-RQMC methods require more CPU time
because of the need to compute the sorting function and sort the chains at each
step. The increase in CPU time depends very much on the implementation and
computer and it could be more than a factor of 10 when the sorting function takes
much more time to compute than simulating the next step of a chain.

For ni = 3, the RQMC methods perform very well and reduce the variance by a
(large) factor that increases with n. Classical RQMC provides reductions similar
to array-RQMC in this case. This is probably due to the small effective dimension
(the small number of simulation steps required to reach failure).
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When the number of components increases (ni = 6 or 12), on the other hand,
RQMC appears much less effective to reduce the variance. For ni = 12, since
the IS methods provides almost no variance reduction, the relative error on γ0

remains high and we expect the relative error on the variance estimators to be even
higher. This is what explains the strange (noisy) results in Table IX, where the
empirical variance reduction factors of RQMC decrease with n: For small n, the
RQMC variance estimates are so noisy that they often grossly underestimate the
true variance, whence the large numbers in the table. What happens is that, even
when applying the IS methods, there are still in this case important events with
a large contribution to the estimator (e.g., they give a large likelihood ratio) but
which occur very rarely. When none of these rare events occurs, the mean and
variance are both grossly underestimated. Table X shows the estimates of γ0 for
the RQMC methods for ni = 12. When the mean estimate is much smaller than
6×10−8, this suggests that the corresponding variance reduction factor in Table IX
is grossly overestimated. For classical RQMC with IFB, for instance, we see that the
mean is grossly underestimated for n = 210 and grossly overestimated for n = 216,
so the corresponding empirical variance reduction factors of 7850 and 0.01 given in
the table are probably gross overestimates and underestimates, respectively, of the
true factors.

To illustrate this phenomenon, we made 10 independent MC simulations of 106

paths each, with BFB. Among those 10 runs, the smallest value of the mean es-
timator was 1.33 × 10−8, with an empirical variance per run of 1.99 × 10−11, and
the largest was 4.50 × 10−6, with an empirical variance per run of 1.98 × 10−5.
Increasing the number R of independent replications to better estimate the mean
and the variance is not really a viable solution in this context. The rare-event
problem must also be addressed before RQMC methods can be of any use; RQMC
methods are not designed to solve it. To handle the difficulty, one would need to
design a different IS technique or perhaps a clever combination of IS with splitting.
L’Ecuyer and Tuffin [2006] explore the use of weight windows to improve the IS
estimators for this example.

Example 8. We now consider a simplified version of an example taken from
Shahabuddin [1994a] that better fits the BFB framework. A system is comprised
of two sets of processors with two processors per set and two sets of disk controllers
with two controllers per set. We also have six clusters of disks with four disks per
cluster. Failure rates of processors, controllers, and disks are 5 × 10−5, 2 × 10−5

and 2× 10−5, respectively. The repair rate is 1 for each type of component.
There are two modes of failures occurring with equal probability. In each disk

cluster, data is replicated, which means that one disk can fail without affecting
the system. The system is operational if all data is accessible from both processor
types, meaning that at least one processor of each type, one controller of each set,
and three disks of each cluster need to be operational. This can be modeled by
c = 10 different types of components to differentiate between the different sets of
the same kind of component.

We made some numerical experiments using BFB and IFB, with MC, classical
RQMC and array-RQMC. For BFB, we used ρ = 0.5. The exact probability in
this case is approximately 5.55 × 10−5. Table XI gives the variance reduction
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factor of each RQMC method with respect to MC (with the same IS method). We
see that classical RQMC performs much better than array-RQMC and provides a
significant improvement compared with MC. This improvement can be explained
by the small effective dimension: In this context of multiple component types with
a small number of component failures required for the system failure, the Markov
chain typically needs only a few steps to reach its stopping time τ , under IS, so
its simulation only requires a few random numbers. For the same reason, splitting
(without IS) would not work for this example, because there is no way to set the
thresholds so that the pk’s are large enough. Thus, classical RQMC combines very
well with the IS simulation of the types of highly reliable Markovian systems studied
by Shahabuddin [1994b], whereas splitting hardly applies.

Array-RQMC provides a very modest variance reduction with Korobov point
sets, and (surprisingly) a variance increase with the Sobol’ point sets. Even more
surprisingly, the variance with the Sobol’ point sets increases with n. We have no
clear explanation for this phenomenon at the moment, but it could be that the
structure of the Sobol’ point set interacts with the problem in a way that reduces
the frequency of failures. We must underline that the choice of sorting function v
is very important for the array-RQMC method to work well. So we may be able
to improve the results significantly by changing v. But here the state space has 10
dimensions and it seems difficult to find a good v; we chose v = v1 and it performs
rather poorly.

Table XI. Empirical variance reduction factors of RQMC with respect to MC, for the 10-
dimensional example, with n ≈ 2k points and m = 256 replications.

IS method n = 210 n = 212 n = 214 n = 216 n = 218

BFB Classical-rqmc-Baker 8 22 9 276 27
Array-Sobol 0.3 0.1 0.03 0.01 0.003

Array-Korobov-Baker 1.3 4.8 2.2 0.8 1.1

IFB Classical-rqmc-Baker 11 40 181 96 11
Array-Sobol 0.7 0.3 0.09 0.003 0.008

Array-Korobov-Baker 2.1 4.0 5.7 1.8 3.1

6. CONCLUSION

We gave an overview of multilevel splitting for rare event simulation, proposed
some improvements via truncation and resplits within each stage, and examined
the combination with RQMC methods. Our numerical examples showed that when
splitting applies and the importance function is well chosen, these improvements
combined with the RQMC methods can reduce the variance and improve the ef-
ficiency by significant factors on top of those already obtained by the standard
multilevel splitting alone.

Our empirical comparisons are based on somewhat noisy variance estimates (with
up to 20% error) for the RQMC methods, as is usually the case. On the other hand,
the empirical efficiency improvement factors of over 200 and 100 observed in Ex-
amples 4 and 5 for array-RQMC compared with splitting alone, as well as the
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spectacular improvement observed in Example 6, are definitely much more impor-
tant than this noise. When RQMC methods are used in practice, it is customary to
make no more than about 10 independent replications. Then the variance estimates
often have more than 20% error. When a large computing budget is available, one
usually prefers to increase n instead of R, because this gives a better estimator of
the mean.

The unbiased truncation methods with resplits did improve the efficiency of mul-
tilevel splitting in all our experiments, by factors ranging from 2 to 10. They
increase the variance slightly but reduce the work by a larger factor. Without
RQMC, the difference in performance between the variants was not very signif-
icant. With array-RQMC, however, the two variants that use resplits performed
much better than those using weights. Between those two, we recommend the prob-
abilistic truncation with resplits, because it is simpler and easier to implement. The
performance of array-RQMC with splitting depends (sometimes strongly) on good
choices of both h and v, so one must be very careful in selecting them. Unfortu-
nately, good choices are not always easy to find. For this, adaptive methods that
estimate the function γ along the way appear promising. Further work is needed
in that direction.

We pointed out limitations of the splitting methodology. The method is not
appropriate, for example, for the type of HRMS considered by Shahabuddin [1994b],
because there is no way to define the levels close enough so that the probability
of reaching the next level is reasonably large. For these types of systems, other
techniques such as IS must be used to push the system toward the important rare
events. We compared (via numerical examples) two ways of applying IS: the BFB of
Shahabuddin [1994a] and the IFB of Papadopoulos [1998], and their combination
with RQMC methods. On our examples, without RQMC, IFB performed much
better than BFB, and the RQMC methods gave slightly more improvement over
BFB than over IFB. Our last example illustrated the fact that classical RQMC is
likely to perform better than array-RQMC if the state space has large dimension
and the Markov chain only needs a few steps to reach the rare event under IS. We
also found a situation where a synergetic effect between BFB and array-RQMC
with Sobol’ point sets produced an astonishing variance reduction, by a factor of
over 1021. We believe that simulation of Markov chains can sometimes be designed
(by an appropriate change of measure) to exploit this type of effect. This is a good
topic for further research.
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Lécot, C. and Tuffin, B. 2004. Quasi-Monte Carlo methods for estimating transient mea-

sures of discrete time Markov chains. In Monte Carlo and Quasi-Monte Carlo Methods 2002,
H. Niederreiter, Ed. Springer-Verlag, Berlin, 329–343.
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