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Abstract required in order to obtain accurate estimates of the mea-
sures of interest when using crude simulation. Importance
Simulation of highly reliable Markovian systems has sampling consists in changing the underlying distributjon
been the subject of an extensive literature in recent years.hence the dynamics governing the system, in order to in-
Among all methods, simulation using importance sampling crease the failures probabilities. To obtain unbiased esti
schemes gives the best results when the state space is largeates, we must multiply our estimator by a correction factor
In this paper, we highlight numerical problems that arise in called the likelihood ratio. Selecting an appropriate impo
rare events simulation, even when using importance sam-tance sampling measure is not easy since it depends on the
pling. The literature has up to now focused on variance system being simulated. Different choices for the new sam-
reduction techniques, without any relation to the variance pling measure have been published in the literature: Biasl
estimation for instance. The main contribution here is to failure biasing [9], Bias2 failure biasing [5], Distancelfa
relate the estimation of the considered parameter and of ure biasing [3] and Balanced failure biasing [13]. Two major
its variance to the Bounded Relative Error and Bounded properties have also been studied with respect to a reliabil
Normal Approximation properties. We especially show that ity parameter: th&@ounded relative errofl1, 13] which as-
Bounded Normal Approximation implies that the variance serts that the confidence interval half-width divided by the
is well-estimated, which implies Bounded Relative Error, estimation remains bounded for large reliabilities, andamo
implying itself that the parameter is well-estimated, Hnattt recently thebounded normal approximatida4] which val-
no converse implication is true. This emphasizes the impor-idates the normal approximation in the Central Limit Theo-
tance of Bounded Normal Approximation property, not fre- rem, so the coverage of the confidence interval as well.

quently used in the literature yet. , )
In this paper, we study the numerical problems encoun-

tered in simulations of highly reliable Markovian systems,
even when using importance sampling. Indeed, when test-
1. Introduction ing the importance sampling schemes and studying their
properties, we have numerically observed some unexpected
In many problems, we have to study multi-component, results with respect to the theoretical ones. To our knowl-
fault tolerant and highly reliable Markovian systems. Tihis  edge, no notice and no explanation of this problem have
the case for example in telecommunications, computer sys-already been published, especially for the variance estima
tems or space research. Many important measures have tdon. However, it seems interesting for a user to take care
be computed, such as for instance the reliability, the avail of abusive interpretations from numerical results and for a
ability or the mean time to failure. In general, the com- theorist to understand the reasons of the problems. These
plexity of the state space is such that analytic computa-reasons are wrong estimations of the parameter being eval-
tions require too much time to be realized, so approxima- uated and of the variance of this estimator. We will study
tion methods have to be used. Among the most importantthis point and explain the interaction between estimation
are Monte Carlo methods (see [4, 6] for a general descrip-of the value and of the variance with bounded relative er-
tion of Monte Carlo). Especially, there is an abundant{iter ror and bounded normal approximation properties. More
ature [2, 3,5, 7, 8,9, 10, 11, 12, 13] on the application of specifically, we show that, somehow surprisingly, good as-
regenerative Monte Carlo methods, using importance sam-ymptotic (that is when the rarity increases) estimations of
pling techniques because of rare events. Indeed, becausthe parameter being evaluated and of its variance might not
system failures are rare, extremely long simulations may bebe enough to guarantee the confidence interval coverage.



We show that there is a strong link (a total order) between Markov chain(Y;),>¢. As in [11], a transition(z, y) from

the good estimations and the Bounded relative Error anda statex to a statey is said to be a failure transition, and
Bounded normal Approximation properties in the sense thatis denoted byy > =z, if V1 < i < C, n;(y) < n;(x),
Bounded Normal Approximation implies that the variance with ny(y) < ny(z) for somek. We define similarly the

is well-estimated, which implies Bounded Relative Error, repair transitiongz,y), which we denote by, < z. The
implying itself that the parameter is well-estimated, Imattt ~ whole set of possible transitions is denoted bys it is as-

no converse implication is true. This extends the results in sumed that the system is composed of highly reliable com-
[14] where only the relation between Bounded Relative Er- ponents, a rarity parameter> 0 is introduced in [11, 13],
ror and Bounded Normal Approximation was studied. Also, such that < 1 and such that the failure rates tend to zero
we propose a refinment of [14] on the necessary and suffi-with . In the same way we suppose that the failure prop-
cient condition over the paths for obtaining Bounded Nor- agation probabilities also depends @rbut not the repair
mal Approximation. rates.

The paper is organized as follows. In Section 2, we de- Let us denote byX the canonically embedded discrete
scribe the model and we give a brief state of the art on time Markov chain (DTMC) and byP its transition matrix.
the applicable simulation techniques. In Section 3, we de- Transitions can also be rare féf. Indeed, it is proved in
scribe a typical problem that we have encountered during a[11] that there exists an integer functibfx, y) and an inte-
simple test, to motivate the present paper. In Section 4, wegerby = mimy:(l,y)EF b(1,y) such that for anyz,y) € T,
study the relation between bounded normal approximation b)) if
and variance estimation. The same kind of results, but be- P(z,y) = { %65 )!b ) Tz #1
tween variance estimation and bounded relative error, and O(e"ew=he) if = 1.
bounded relative error and the estimation of the value areThe special case for staie= 1 comes from the fact that

presented respectively in Section 5 and in Section 6. Weg|| transitions are rare for the CTMC. Define algas the

conclude in Section 7. corresponding measure on the sample paths of the DTMC.
We also assume that the system verifies the following
2. Model and state of the art properties:
1. the DTMCX is irreducible onS.
2.1. Model 2. For every state # 1 € S, there exists a statgsuch

thaty < z and(z,y) € T

Recall as in [11] and [13] that a functiofi is said to 3. For each state € F, such tha(1, z) € T, P(1, 2) =

be o(c?) if f(e)/e? — 0ase — 0, f(e) = O(e?) if

|f(e)] < c1e? for some constant; > 0 for all e suffi- o(1).
ciently small,f(¢) = O(?) if |f(e)| > coe? for some con- We consider here the evaluation of theTTF (Mean
stantc, > 0 for all e sufficiently small, andf(c) = ©(¢4) Time To Failure), but other performance measures can be

if f(e) = O(¢%) and f(s) = O(e?), i.e., if there exist  studied similarly. TheV/ TTF can be expressed by [5]
0 < ¢z < ¢; such thateae? < f(e) < ¢ for all e suffi-

. min(7q ,7F)—1
ciently small. E@[ ro VT I/Q(Xk)}

The description of the model we use here is more de- MTTF = , Q)
tailed in [11, 13]. We consider a system composed_of Eg {1(TF<71)}

different types of components that fail and get repaired.
There aren; components of type, so a total number
N = Ziczl n; of components. The (finite) state spage

is such that for eack € S we have the number of opera-
tional components of typg n;(z) (1 < i < C). Let1 be
the initial state with all components up. We decompS§se
into two subseté” and F', whereU is the set of operational
states and is the set of failed states. The sétandF' ver-

!{fget:at if 3{} ng'la?ed yai dSr\(lewtz'rni E)??c?mni(()ﬁ)e;?r E;I:el’ _erative cycle§C;)1<i<; of the Markov chainX , whereC;
y € U. raiures pairs P S SUP-is for X between the— 1** andi*" return time tol, and ap-

posed to be exponentially distributed, and failure propaga plying the Central Limit Theorem to those cycles. A classi-

t!ons, as well as repair on more than one component at 8.41 estimator of tha/TTF is

time, may occur. These event rates may be state-dependent ;

to take into account special structures and dependences of MTTF — 21 G(C)
- I

the studied system. The model is then a continuous time S H(Cy)

where7r is the hitting time of the DTMCX to setF, 71
the hitting time to stat@ and1/q(X},) is the expectation of
the sojourn time in stat&y.

2.2. Simulation

The performance measure (1) is estimated by means of
regenerative simulation [5], that is using independengineg



where G(C;) is the sum of the expectations of sojourn
times in the states up tmin(7x, 77) in the it* cycle and
H(C) = 1(7F<Tl)(Ci). Another method is to estimate in-

Definition 1 [13] Definec?, as the variance of the random
variable 1[TF<71]L under probability measur®’ (which

has meany) andz; as thel — §/2 quantile of the standard

dependently the numerator and the denominator in (1) bynormal distribution (i.e., mean 0 and variance 1). Then the

usingél (0 < ¢ < 1) cycles for the numerator estimation
and(1 — &)I for the denominator [5]. Indeed, the numera-
tor statistical estimation in (1) is efficient with crude Men

Carlo simulation [5], so we can concentrate our attention on

the evaluation of the denominator
Y= E<I’[1[TF<71]]'

Note also that the computation e¢fis useful for the deter-
mination of many other measures [11]. We have the follow-
ing result showing thatr < 7] is a rare event, hence the
difficulty of estimatingy using crude Monte Carlo simula-
tion:

Theorem 1 [13] There exists a strictly positive constant
such thaty = ©(e").

To estimatey, we use importance sampling by choosing a
new matrix P’ so that

v = E¢'[1[7F<71]L]
(I){(Xo,"'yX‘r ) = (Z‘o,"',xn)}

h L P = =
where (3707 wn) (I)/{(XO,...’XTF) = (xo,"‘7$n)}

is defined for all patlizg, - - - , x,,) and whered’ is the mea-
sure corresponding to matriR’. The different choices in
literature are Biasl failure biasing (also called simpié fa
ure biasing) [9], balanced failure biasing [13], Bias2dad
biasing [5] and failure distance biasing [3].

We describe here briefly Bias1 failure biasing which will
be used in our numerical examples. The choic#6fs the
following: from a statec in {1} U F, the probability transi-
tions are not changed, i.€'(z,.) = P(x,.). From another
state, a probability, is assigned to the whole set of failure
transitions, and a probability— p, is assigned to the whole
set of repair transitions. In each of these two subsetsnthe i
dividual probabilities are taken proportionally to thegori
nal ones. In numerical illustrations, we will takg = 0.8.

The advantage of this technique is that the failure set prob-

abilities are no moré(e), meaning that observing a failure
is not a rare event anymore.

2.3. Bounded Relative Error and Bounded Nor-
mal Approximation

In this Section, we describe/recall two important proper-
ties to be verified by the estimator.

Let us first introduce the following definition, which as-
serts that the confidence interval width will not be largewit
respect toy for large reliabilities:

relative error for a sample sizéis defined by
2, T
RE = 7 Y72/

We say that we have a bounded relative errd® ' remains
bounded as — 0.

Let A,, be the set of paths defined by

Ay = {(zoy,-yxn): n>1z0=1,2, €F,
v, g {1, F}forl1 <i<n-—1,(x;,z;+1) el
and<I>{(X0’ oo X ) — (330,' .. al‘n)} — @(EHL)}.

) TF
The following result is a necessary and sufficient condition
on the importance sampling measure to have a bounded rel-
ative error:

Theorem 2 [11] Consider H the set of importance sam-
pling measure®’ corresponding to a transition matrig”
such that for any(z,y) € T, if P(z,y) = O(g?), then
P'(z,y) = O(e?). Let®' € H. Then we have a bounded

relative error if and only if for all (xg,---,2,) € A,
r<m<2r—1,
@’{(X(L .. .XTF) — (x()’ . 7xn)} — Q(62m72r).

In the same way, using the Berry-Esseen Theorem, or
one of its variants from the Student statistic [1], we can
bound the normal approximation for a given sample size,
and then be sure that the confidence level of the confidence
interval is controlled. The Berry-Esseen bound is the fol-
lowing: let V'(z) be the standard normal distribution and,
for a random variableX, letp = E[|X — E(X)|?], 0% =
E[(X — E[X])?]. ConsiderXy, - - -, X I i.i.d. copies ofX,
defineX; = I"' Y0 X;, 62 = "' (X; — X))?
and letF; be the distribution of the centered and normal-
ized sum(X; + --- + X1)/(¢rVI) — E[X]VI/61. Then
there exists an absolute constant 0 such that, for each

and/
cp

o3I

From this bound and the discussion in [14] on a neces-
sary condition to be verified, we can define the Bounded
Normal Approximation property.

Definition 2 [14] If

|Fi(z) = N(z)] <

3
Py = Eg |:‘1[TF<T1]L - E‘I)/[l[TF<T1]L]’ :|

denotes the third-order absolute moment angd the stan-
dard deviation of the random variable[TF<T1]L under
probability measur&’, we say that we have a bounded nor-
mal approximation ifpe /03, is bounded whea — 0.



Let - importance sampling techniques that can be modeled by
A~ U A the framework presented here, only balanced failure bias-
- = m ing scheme verify in general the Bounded Normal Approx-

. . i __imation and Bounded Relative Error properties.
and for®’ an importance sampling measure, define as in

[14]
Ami={ (20, 2n) €A : 3. A Comparison between numerical and the-
O{(Xo, -+, Xpp) = (20, x0)} = O(™) and oretical results
(I)/{(X()v e 7X7'F) = (I07 to ,'Tn)} = G(ek)}7
One important point is that, even using importance sam-

A} = U Ap ks, pling scheme, numerical results can be far from the theoret-

m.k s m—k=t ically expected ones. In this section we consider a small and
ands the integer such that3, = ©(c*). instructive example allowing to understand this probletm. |

In [14], we have considered the so-called cancel- Not only illustrates that importance sampling does not al-
lation case wheres > 2r from cancellation of the Wways yield correct results, but also that theoretical prope
highest order terms ofy? and E@’[1[7F<71]L2] when ties might look verified even if there are not theoretically.
these quantites are of the same order of magni- The system consists of two types of component with two
tude. But an important remark is that if the variance components of each type. The transition probabilities ef th

) 2 embedded discrete time Markov chain are described in Fig-
oy = FBa (1[TF<71]L — Ea [1[TF<71]L]) In- ure 1, where< i, j > denotes the state with(resp.;) oper-
cludes the computation over a pdth z, 1) in ©(1) (with ational components of type 1 (resp. 2) and where the states

one failure and one repair) such th@tFQl} = 0, the can-
cellation case does not occur since

2
o2, > (1[TF<71](1, z,1)L(1,z,1) — 7) &'(1,7,1)
=~2®'(1,2,1) = O(s*).
This is especially the case of the class of measireg-
fined below. This situation was not considered in [14].
A necessary and sufficient condition to obtain a bounded

normal approximation property is the following (refinement
of the one in [14], from the above remark):

Theorem 3 Let 7 be the class of measurés correspond-
ing to matrix P’ defined as follows: for allw,y) € T,
w # landy > w,

if P(w,y) =0(c?), thenP'(w,y) = O(¢?71)
and for all (w, y) with eithery < w ory = w andw = 1,

if P(w,y) =0(c?), thenP’(w,y) = O(?).

The normal approximation is bounded for a fixed num- ) o N '
ber of observations and a measubé ¢ 7 if and only if Figure 1. System | with its probability transi-
Wk, m such thatm — k < 1, (20, -+, 2n) € Ap s, tions.

O {(Xo,, Xrp) = (20, Tn)} = Q(€3m/2—3s/4)

(ie.k < 3m/2 —3s/4). representing the system down (i.e. the stateB)imre col-
The necessary and sufficient conditions of Theorems 2 andPred in grey. More exactly, the system is up if and only if at
3 will be used in next sections to prove our assertions. least one component of each type is up. Moreover, the tran-

Using these conditions, we have also proved in [14] that, Sitions probabilities of this system, using Bias1 failuress
for a measured’ ¢ Z, the bounded normal approxima- ing scheme, are described in Figure 2.
tion implies bounded relative error and that among all the  For this model, using Biasl failure biasing scheme as the



€ 2e2 1 Confidence Interval Est. RE
102 2e-04 | 2.03e-04| (1.811e-04,2.249e-04) 1.08e-01
103 2e-06 | 2.37e-06| (1.561e-06, 3.186e-06) 3.42e-01
210~% | 8e-08 | 6.48e-08| (1.579e-08,1.138e-07) 7.56e-01
10—4 2e-08 | 9.95e-09| (9.801e-09, 1.010e-08) 1.48e-02
106 2e-12 | 9.95e-13| (9.798e-13,1.009e-12) 1.48e-02
108 2e-16 | 9.95e-17| (9.798e-17,1.009e-16) 1.48e-02

Table 1. Asymptotic development 22 of ~, es-
timation of ~, confidence interval and esti-
mated relative error for system | using Biasl
failure biasing scheme ( pg = 0.8) with a fixed
sample size I = 10* and diverse values of ¢.

are still rare, i.e. their measures are stilliis). So, using a
fixed sample sizé from a pseudo-random generator, all the
sample paths with probability measure(ite) are not sam-
pled fore sufficiently small.

Following these observations, it seems to be interesting
to understand more precisely the dependencies between,
first the important properties (bounded relative error and
bounded normal approximation), and secondly the observed
estimation and confidence interval,as~ 0. This is done

Figure 2. System | with Bias1 failure biasing in the next sections and constitutes the main contributfon o
probability transitions. the paper.

4. Relation between o3, estimation and

importance sampling measudé, we have . .
P Ping Bounded Normal Approximation

1
v =2¢* +o(e?) andoi, = —&® + o(e?). 2 . i L
Po Let us start with the following definition.

(Note that, even if exact values can be computed on theseygfinition 3 Let  be a function defined oveh (we set
examples, we only give a first order approximation since f = 0 elsewhere) and > 0 be such that

we are interested in the asymptotic results.) A first observa

tion is then that we do not have bounded relative error. Nev- Es|f(Xo, -+, Xr)] = O(eh).
ertheless, if we attempt to observe this numerically, we not _ _
see the last column of Table 1, that considering a fixed sam-We ~ will say that Eg[f(Xo, -, X-.)] is well

ple sizel and decreasing, bounded relative error is ob- estimated ase — 0 wunder probability mea-
served. More exactly, the observed relative error grows as sure &' if for all (zo,---2,) € A such that
decays (for >2e-04) but suddenly drops and remains con- f(zo, " - - Zn)®{(Xo, -+, X7,) = (w0, -+, 2n)} = O("),
stant fore <2e-04. then

In the same way, consider the evaluationiohsez — 0, ,
using (2), the estimatiofy; of v should be approximately OY{(Xo, -+, Xrp) = (w0, -+ )} = O(1).
2¢2. Table 1, columns 2 to 4, describe simultaneo@sf),
~r and the confidence interval (at risks and with an es- for the evaluation oFs|f(X, - - -, X,,.)] as¢ — 0 are not

o 5 ; .
Egstlogiaosflaga;i)luingi;ir? asncdh::?rzea gﬁidez‘i}mzltz dSI\fgue iSrare events under probability measupé This definition
9 9 ) can also be summarized saying that, using a (fixed) pseudo-

bad as= — 0: as we can observe; seems to be close to e

the expected value far >2e-04, and the confidence inter- randon_w sequence and sample dizand defining byf; L (¢)
al seems suitable t0o, but, between 2e-04 and 1e-04, as 1S estimated value dfe:[f(Xo, - -+, Xr) L] under prob-

v ul » UL, DEtw 77 ability measured’,

decays, the results are far from the expected one2ahis
not included in the confidence interval. ]

The problem is that, even using importance sampling Ea [213% fIL(g)} N gli% Ear[f(Xo, -+ X ) L]
schemes, some paths important foand 2, evaluations = lim Eg[f(Xo, - Xrp)].

e—0

This definition means that all the pathsAnimportant




Let us wonder if there is a relation betwee$, estima-
tion and Bounded Normal Approximation property.

Proposition 1 Let®’ € 7 (see Theorem 3). Bounded Nor-
mal Approximation property implies that3, is well esti-
mated.

Proof: Bounded Normal Approximation property im-
plies Bounded Relative Error property, se-= 2r.
Letm, k and(xo, - --,z,) € A, ; be such that

@2{()(07. .. 7)(,,_F) = (mo, s ,xn)}
(I)/{(XOa"'aXTF) = (xo,"',xn)}

f m — k > r then ®{(Xo, -, X,p) =
(xo, - +,zn)} = ©O() (i.e. & = 0), since
2r=(2m —k)=2(m — k) + k.

If m—k < r, consider the necessary and sufficient condi-
tion of Theorem 3. Thern = 2m—k andk < 3m/2—3s/4,
which means tha2m — s < 3/4(2m — s). As s = 2r (we
have Bounded Relative Error) amd > r by definition of
r, then2m = 2r = s, thatisk = 0. [ ]

=0(%) = 0(e™).

Figure 4. System Il with Bias1 failure biasing
probability transitions.

Proposition 2 The converse of Proposition 1 is false, i.e.

there exists a system and a meas@ifes Z such thair?, is

well estimated but such that Bounded Normal Approxima-

tion property is not verified. For this model, as it can be easily seen in Figure3,3

andAj; is constituted of only one patlix 2,2 >, < 1,2 >

,< 0,2 >). Moreovers = 6 and the sole path such that

¢2{(X07"')XTF):(x0>"'7xn)} 6y i

_(I)/{(XOa e 7_XTF_) = (.’ﬂo, T 7xn)} _ @(6 ) S the path

in A3 for which Figure 4 shows that it is well estimated.
However, the path< 2,2 >, < 2,1 >, < 2,0 >)

isin Ay, withm = 6 andk = 5. Then5 = £ >

3m/2 — 3s/4 = 4.5, so the necessary and sufficient condi-

tion of Theorem 3 is not verified. [

Proof: consider the example of Figure 3, using Biasl
failure biasing as described in Figure 4. The states where

A first idea would be to think that iy ando2, are well
estimated, then the normal approximation is good enough
(i.e. bad confidence interval coverage is only due tod¥ad
estimation). Proposition 2 shows that this is not the case.
Thus the Bounded Normal Approximation property is im-
portant to be verified in practice to be convinced that no the-
oretical or numerical error is realized.

5. Relation between o2, estimation and
Bounded Relative Error

In this section, we prove that 2, is well estimated,
then the Bounded Relative Error property is verified, but
that the converse is not true.

Figure 3. System |l with its probability transi-
tions.

Proposition 3 If o2, is well estimated, using a probability
measured’ € H , then we have the Bounded Relative Error
the system is down are still colored in grey. property.



Proof: we will prove the equivalent proposition that if
Bounded Relative Error property is not verified, the is
not well estimated.

Unless we have Bounded Relative Error, there exist from
Theorem 2 integersn, k and (zo, - -, x,) € Ay SUCh
that2m — k = s < 2r. But, by definition ofr, 2m > 2r, so
thatk > 0. [ |

Proposition 4 The converse of Proposition 3 is false, i.e.
there exists a system and a measde € H such that
Bounded Relative Error is verified baf, is not well es-
timated.

Proof: consider the example of Figure 5, using Biasl
failure biasing as described in Figure 6.

Figure 5. System lll with its probability transi-
tions.

For this model, we have = 3, s = 6, so this system
verifies the Bounded Relative Error property. Moreover, the
set of paths such that

@2{()(0’ .
(I)/{(XO, e

X

sy TR

’XTF

): ($0,~'~,1‘n)}
)= (2o, "+, zn)}

is constituted of two pathg< 2,2 >, < 2,1 >,< 2,0 >),
which is well estimated (see Figure 6), afd 2,2 >, <
1,2 >,< 0,2 >) for which®’ is in O(e?). Thuso3, is not
well estimated. [ |

o(c%

Figure 6. System IIl with Bias1 failure biasing
probability transitions.

6. Relation between ~ estimation and

Bounded Relative Error

Return now toy estimation.

Proposition 5 If we have Bounded Relative Error property
using a measur®’ € H (see Theorem 2 to recaM defini-
tion), theny is well estimated as — 0 underd’.

Proof: a path (z¢,---,2,) € A important for the
evaluation ofy = E¢[1[TF<T1]] = 0(e") verifies

{(Xo, ", Xrp) = (mo, - -,2,)} = O("). It fol-
lows from the necessary and sufficient condition of Theo-
rem 2 on probability measu®’ thatV(xq,---,x,) € A,
(I)/{(XOa"'7XTF> = <x07"';xn)} = Q(EZT_QT)
= 0(1)
o(1).
Thus~ is well estimated undep’. [

Proposition 6 The converse of Proposition 5 is false, i.e.
there exists a system and a measi@ifec H such thaty is
well estimated but such that Bounded Relative Error prop-
erty is not verified.

Proof: consider the example of Figure 7, using Biasl
failure biasing scheme as described in Figure 8. The states
where the system is down are still colored in grey.

As it can be easily seen in Figure A, (with r = 6
for this example) is composed of two pathis: 2,2 >, <



Figure 7. System IV with its probability tran-
sitions.

Figure 8. System IV with Bias1 failure biasing
probability transitions.

2,1 >, < 2,0 >< 1,0 > and(< 2,2 > < 1,2 >

,< 0,2 >, < 0,1 >). It can be observed in Figure 8
that these two paths are well estimated. However, the path
(<2,2><21><1,1><1,0>)isinA,,; with

m = 8andk = 5. Then5 = k£ > 2m—2r = 4 so the neces-
sary and sufficient condition of Theorem 2 to have Bounded
Relative Error is not verified. [ |

Thus these results reinforce the importance of Bounded
Relative Error property.

7. Conclusion

The aim of this paper was to show up the numerical prob-
lems encountered with rare event simulation, even when us-
ing importance sampling schemes, and to give some ex-
planations to these phenomena. These problems are due to
events which, although more frequent using an importance
sampling scheme, are still rare and then cause bad estima-
tions of o2, and~. We have analyzed the dependences be-
tween the important estimations and the important prop-
erties which are bounded relative error and bounded nor-
mal approximation. These dependences reinforce the role
of these two last properties, principally the Bounded Nor-
mal Approximation one. Indeed, the Bounded Normal Ap-
proximation property implies that3,, v and the confidence
interval are well estimated, whereas goggd andy estima-
tions (surprisingly) do not imply Bounded Normal Approx-
imation, so they do not imply a controlled confidence in-
terval coverage. Note finally that Balanced failure biasing
scheme verifies Bounded Normal Approximation [14]. As
future work, we plan to develop the Bounded Normal Ap-
proximation theory to other rare event problems.
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