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Abstract

Simulation of highly reliable Markovian systems has
been the subject of an extensive literature in recent years.
Among all methods, simulation using importance sampling
schemes gives the best results when the state space is large.
In this paper, we highlight numerical problems that arise in
rare events simulation, even when using importance sam-
pling. The literature has up to now focused on variance
reduction techniques, without any relation to the variance
estimation for instance. The main contribution here is to
relate the estimation of the considered parameter and of
its variance to the Bounded Relative Error and Bounded
Normal Approximation properties. We especially show that
Bounded Normal Approximation implies that the variance
is well-estimated, which implies Bounded Relative Error,
implying itself that the parameter is well-estimated, but that
no converse implication is true. This emphasizes the impor-
tance of Bounded Normal Approximation property, not fre-
quently used in the literature yet.

1. Introduction

In many problems, we have to study multi-component,
fault tolerant and highly reliable Markovian systems. Thisis
the case for example in telecommunications, computer sys-
tems or space research. Many important measures have to
be computed, such as for instance the reliability, the avail-
ability or the mean time to failure. In general, the com-
plexity of the state space is such that analytic computa-
tions require too much time to be realized, so approxima-
tion methods have to be used. Among the most important
are Monte Carlo methods (see [4, 6] for a general descrip-
tion of Monte Carlo). Especially, there is an abundant liter-
ature [2, 3, 5, 7, 8, 9, 10, 11, 12, 13] on the application of
regenerative Monte Carlo methods, using importance sam-
pling techniques because of rare events. Indeed, because
system failures are rare, extremely long simulations may be

required in order to obtain accurate estimates of the mea-
sures of interest when using crude simulation. Importance
sampling consists in changing the underlying distributions,
hence the dynamics governing the system, in order to in-
crease the failures probabilities. To obtain unbiased esti-
mates, we must multiply our estimator by a correction factor
called the likelihood ratio. Selecting an appropriate impor-
tance sampling measure is not easy since it depends on the
system being simulated. Different choices for the new sam-
pling measure have been published in the literature: Bias1
failure biasing [9], Bias2 failure biasing [5], Distance fail-
ure biasing [3] and Balanced failure biasing [13]. Two major
properties have also been studied with respect to a reliabil-
ity parameter: thebounded relative error[11, 13] which as-
serts that the confidence interval half-width divided by the
estimation remains bounded for large reliabilities, and more
recently thebounded normal approximation[14] which val-
idates the normal approximation in the Central Limit Theo-
rem, so the coverage of the confidence interval as well.

In this paper, we study the numerical problems encoun-
tered in simulations of highly reliable Markovian systems,
even when using importance sampling. Indeed, when test-
ing the importance sampling schemes and studying their
properties, we have numerically observed some unexpected
results with respect to the theoretical ones. To our knowl-
edge, no notice and no explanation of this problem have
already been published, especially for the variance estima-
tion. However, it seems interesting for a user to take care
of abusive interpretations from numerical results and for a
theorist to understand the reasons of the problems. These
reasons are wrong estimations of the parameter being eval-
uated and of the variance of this estimator. We will study
this point and explain the interaction between estimation
of the value and of the variance with bounded relative er-
ror and bounded normal approximation properties. More
specifically, we show that, somehow surprisingly, good as-
ymptotic (that is when the rarity increases) estimations of
the parameter being evaluated and of its variance might not
be enough to guarantee the confidence interval coverage.



We show that there is a strong link (a total order) between
the good estimations and the Bounded relative Error and
Bounded normal Approximation properties in the sense that
Bounded Normal Approximation implies that the variance
is well-estimated, which implies Bounded Relative Error,
implying itself that the parameter is well-estimated, but that
no converse implication is true. This extends the results in
[14] where only the relation between Bounded Relative Er-
ror and Bounded Normal Approximation was studied. Also,
we propose a refinment of [14] on the necessary and suffi-
cient condition over the paths for obtaining Bounded Nor-
mal Approximation.

The paper is organized as follows. In Section 2, we de-
scribe the model and we give a brief state of the art on
the applicable simulation techniques. In Section 3, we de-
scribe a typical problem that we have encountered during a
simple test, to motivate the present paper. In Section 4, we
study the relation between bounded normal approximation
and variance estimation. The same kind of results, but be-
tween variance estimation and bounded relative error, and
bounded relative error and the estimation of the value are
presented respectively in Section 5 and in Section 6. We
conclude in Section 7.

2. Model and state of the art

2.1. Model

Recall as in [11] and [13] that a functionf is said to
be o(εd) if f(ε)/εd → 0 as ε → 0, f(ε) = O(εd) if
|f(ε)| ≤ c1ε

d for some constantc1 > 0 for all ε suffi-
ciently small,f(ε) = O(εd) if |f(ε)| ≥ c2ε

d for some con-
stantc2 > 0 for all ε sufficiently small, andf(ε) = Θ(εd)
if f(ε) = O(εd) and f(ε) = O(εd), i.e., if there exist
0 < c2 ≤ c1 such thatc2ε

d ≤ f(ε) ≤ c1ε
d for all ε suffi-

ciently small.
The description of the model we use here is more de-

tailed in [11, 13]. We consider a system composed ofC
different types of components that fail and get repaired.
There areni components of typei, so a total number
N =

∑C
i=1 ni of components. The (finite) state spaceS

is such that for eachx ∈ S we have the number of opera-
tional components of typei, ni(x) (1 ≤ i ≤ C). Let 1 be
the initial state with all components up. We decomposeS
into two subsetsU andF , whereU is the set of operational
states andF is the set of failed states. The setsU andF ver-
ify that if x ∈ U andy ∈ S with ni(y) ≥ ni(x) for all i,
theny ∈ U . Failures and repairs of components are sup-
posed to be exponentially distributed, and failure propaga-
tions, as well as repair on more than one component at a
time, may occur. These event rates may be state-dependent
to take into account special structures and dependences of
the studied system. The model is then a continuous time

Markov chain(Yt)t≥0. As in [11], a transition(x, y) from
a statex to a statey is said to be a failure transition, and
is denoted byy � x, if ∀1 ≤ i ≤ C, ni(y) ≤ ni(x),
with nk(y) < nk(x) for somek. We define similarly the
repair transitions(x, y), which we denote byy ≺ x. The
whole set of possible transitions is denoted byΓ. As it is as-
sumed that the system is composed of highly reliable com-
ponents, a rarity parameterε > 0 is introduced in [11, 13],
such thatε � 1 and such that the failure rates tend to zero
with ε. In the same way we suppose that the failure prop-
agation probabilities also depends onε, but not the repair
rates.

Let us denote byX the canonically embedded discrete
time Markov chain (DTMC) and byP its transition matrix.
Transitions can also be rare forX. Indeed, it is proved in
[11] that there exists an integer functionb(x, y) and an inte-
gerb0 = miny:(1,y)∈Γ b(1, y) such that for any(x, y) ∈ Γ,

P (x, y) =

{
Θ(εb(x,y)) if x 6= 1

Θ(εb(x,y)−b0) if x = 1.

The special case for statex = 1 comes from the fact that
all transitions are rare for the CTMC. Define alsoΦ as the
corresponding measure on the sample paths of the DTMC.

We also assume that the system verifies the following
properties:

1. the DTMCX is irreducible onS.

2. For every statex 6= 1 ∈ S, there exists a statey such
thaty ≺ x and(x, y) ∈ Γ.

3. For each statez ∈ F , such that(1, z) ∈ Γ, P (1, z) =
o(1).

We consider here the evaluation of theMTTF (Mean
Time To Failure), but other performance measures can be
studied similarly. TheMTTF can be expressed by [5]

MTTF =

EΦ

[∑min(τ
1

,τF )−1

k=0 1/q(Xk)

]

EΦ

[
1(τF <τ

1
)

] , (1)

whereτF is the hitting time of the DTMCX to setF , τ1
the hitting time to state1 and1/q(Xk) is the expectation of
the sojourn time in stateXk.

2.2. Simulation

The performance measure (1) is estimated by means of
regenerative simulation [5], that is using independent regen-
erative cycles(Ci)1≤i≤I of the Markov chainX, whereCi

is for X between thei−1th andith return time to1, and ap-
plying the Central Limit Theorem to those cycles. A classi-
cal estimator of theMTTF is

̂MTTF =

∑I
i=1 G(Ci)∑I
i=1 H(Ci)



where G(Ci) is the sum of the expectations of sojourn
times in the states up tomin(τF , τ1) in the ith cycle and
H(Ci) = 1(τF <τ

1
)(Ci). Another method is to estimate in-

dependently the numerator and the denominator in (1) by
usingξI (0 < ξ < 1) cycles for the numerator estimation
and(1 − ξ)I for the denominator [5]. Indeed, the numera-
tor statistical estimation in (1) is efficient with crude Monte
Carlo simulation [5], so we can concentrate our attention on
the evaluation of the denominator

γ = EΦ[1[τF <τ
1

]].

Note also that the computation ofγ is useful for the deter-
mination of many other measures [11]. We have the follow-
ing result showing that[τF < τ1] is a rare event, hence the
difficulty of estimatingγ using crude Monte Carlo simula-
tion:

Theorem 1 [13] There exists a strictly positive constantr
such thatγ = Θ(εr).

To estimateγ, we use importance sampling by choosing a
new matrixP ′ so that

γ = EΦ′ [1[τF <τ
1

]L]

whereL(x0, · · ·xn) =
Φ{(X0, · · · ,XτF

) = (x0, · · · , xn)}
Φ′{(X0, · · · ,XτF

) = (x0, · · · , xn)}
is defined for all path(x0, · · · , xn) and whereΦ′ is the mea-
sure corresponding to matrixP ′. The different choices in
literature are Bias1 failure biasing (also called simple fail-
ure biasing) [9], balanced failure biasing [13], Bias2 failure
biasing [5] and failure distance biasing [3].

We describe here briefly Bias1 failure biasing which will
be used in our numerical examples. The choice ofP

′ is the
following: from a statex in {1} ∪F , the probability transi-
tions are not changed, i.e.P

′(x, .) = P (x, .). From another
state, a probabilityρ0 is assigned to the whole set of failure
transitions, and a probability1−ρ0 is assigned to the whole
set of repair transitions. In each of these two subsets, the in-
dividual probabilities are taken proportionally to the origi-
nal ones. In numerical illustrations, we will takeρ0 = 0.8.
The advantage of this technique is that the failure set prob-
abilities are no moreO(ε), meaning that observing a failure
is not a rare event anymore.

2.3. Bounded Relative Error and Bounded Nor-
mal Approximation

In this Section, we describe/recall two important proper-
ties to be verified by theγ estimator.

Let us first introduce the following definition, which as-
serts that the confidence interval width will not be large with
respect toγ for large reliabilities:

Definition 1 [13] Defineσ2
Φ′ as the variance of the random

variable 1[τF <τ
1

]L under probability measureΦ′ (which

has meanγ) andzδ as the1 − δ/2 quantile of the standard
normal distribution (i.e., mean 0 and variance 1). Then the
relative error for a sample sizeI is defined by

RE = zδ

√
σ2

Φ′/I

γ
.

We say that we have a bounded relative error ifRE remains
bounded asε → 0.

Let ∆m be the set of paths defined by

∆m = {(x0, · · · , xn) : n ≥ 1, x0 = 1, xn ∈ F,

xi 6∈ {1, F} for 1 ≤ i ≤ n − 1, (xi, xi + 1) ∈ Γ

andΦ{(X0, · · · ,XτF
) = (x0, · · · , xn)} = Θ(εm)}.

The following result is a necessary and sufficient condition
on the importance sampling measure to have a bounded rel-
ative error:

Theorem 2 [11] ConsiderH the set of importance sam-
pling measuresΦ′ corresponding to a transition matrixP ′

such that for any(x, y) ∈ Γ, if P (x, y) = Θ(εd), then
P ′(x, y) = O(εd). Let Φ′ ∈ H. Then we have a bounded
relative error if and only if for all (x0, · · · , xn) ∈ ∆m,
r ≤ m ≤ 2r − 1,

Φ′{(X0, · · ·XτF
) = (x0, · · · , xn)} = O(ε2m−2r).

In the same way, using the Berry-Esseen Theorem, or
one of its variants from the Student statistic [1], we can
bound the normal approximation for a given sample size,
and then be sure that the confidence level of the confidence
interval is controlled. The Berry-Esseen bound is the fol-
lowing: let N (x) be the standard normal distribution and,
for a random variableX, let ρ = E[|X − E(X)|3], σ2 =
E[(X−E[X])2]. ConsiderX1, · · · ,XI I i.i.d. copies ofX,
defineX̄I = I−1

∑I
i=1 Xi, σ̂2

I = I−1
∑I

i=1(Xi − X̄I)
2

and letFI be the distribution of the centered and normal-
ized sum(X1 + · · · + XI)/(σ̂I

√
I) − E[X]

√
I/σ̂I . Then

there exists an absolute constantc > 0 such that, for eachx
andI

|FI(x) −N (x)| ≤ cρ

σ3
√

I
.

From this bound and the discussion in [14] on a neces-
sary condition to be verified, we can define the Bounded
Normal Approximation property.

Definition 2 [14] If

ρΦ′ = EΦ′

[∣∣∣1[τF <τ
1

]L − EΦ′ [1[τF <τ
1

]L]
∣∣∣
3
]

denotes the third-order absolute moment andσΦ′ the stan-
dard deviation of the random variable1[τF <τ

1
]L under

probability measureΦ′, we say that we have a bounded nor-
mal approximation ifρΦ′/σ3

Φ′ is bounded whenε → 0.



Let

∆ =
∞⋃

m=r

∆m,

and forΦ′ an importance sampling measure, define as in
[14]

∆m,k = { (x0, · · · , xn) ∈ ∆ :

Φ{(X0, · · · ,XτF
) = (x0, · · · , xn)} = Θ(εm) and

Φ′{(X0, · · · ,XτF
) = (x0, · · · , xn)} = Θ(εk)},

∆′
t =

⋃

m,k : m−k=t

∆m,k,

ands the integer such thatσ2
Φ′ = Θ(εs).

In [14], we have considered the so-called cancel-
lation case wheres > 2r from cancellation of the
highest order terms ofγ2 and EΦ′ [1[τF <τ

1
]L

2] when
these quantities are of the same order of magni-
tude. But an important remark is that if the variance

σ2
Φ′ = EΦ′

[(
1[τF <τ

1
]L − EΦ′ [1[τF <τ

1
]L]

)2
]

in-

cludes the computation over a path(1, x,1) in Θ(1) (with
one failure and one repair) such that1[τF <τ

1
] = 0, the can-

cellation case does not occur since

σ2
Φ′ >

(
1[τF <τ

1
](1, x,1)L(1, x,1) − γ

)2

Φ′(1, x,1)

= γ2Φ′(1, x,1) = Θ(ε2r).

This is especially the case of the class of measuresI de-
fined below. This situation was not considered in [14].

A necessary and sufficient condition to obtain a bounded
normal approximation property is the following (refinement
of the one in [14], from the above remark):

Theorem 3 LetI be the class of measuresΦ′ correspond-
ing to matrix P

′ defined as follows: for all(ω, y) ∈ Γ,
ω 6= 1 andy � ω,

if P (ω, y) = Θ(εd), thenP
′(ω, y) = O(εd−1)

and for all (ω, y) with eithery ≺ ω or y � ω andω = 1,

if P (ω, y) = Θ(εd), thenP
′(ω, y) = O(εd).

The normal approximation is bounded for a fixed num-
ber of observations and a measureΦ′ ∈ I if and only if
∀k,m such thatm − k < r, (x0, · · · , xn) ∈ ∆m,k,

Φ′{(X0, · · · ,XτF
) = (x0, · · · , xn)} = O(ε3m/2−3s/4)

(i.e.k ≤ 3m/2 − 3s/4).

The necessary and sufficient conditions of Theorems 2 and
3 will be used in next sections to prove our assertions.

Using these conditions, we have also proved in [14] that,
for a measureΦ′ ∈ I, the bounded normal approxima-
tion implies bounded relative error and that among all the

importance sampling techniques that can be modeled by
the framework presented here, only balanced failure bias-
ing scheme verify in general the Bounded Normal Approx-
imation and Bounded Relative Error properties.

3. A Comparison between numerical and the-
oretical results

One important point is that, even using importance sam-
pling scheme, numerical results can be far from the theoret-
ically expected ones. In this section we consider a small and
instructive example allowing to understand this problem. It
not only illustrates that importance sampling does not al-
ways yield correct results, but also that theoretical proper-
ties might look verified even if there are not theoretically.

The system consists of two types of component with two
components of each type. The transition probabilities of the
embedded discrete time Markov chain are described in Fig-
ure 1, where< i, j > denotes the state withi (resp.j) oper-
ational components of type 1 (resp. 2) and where the states
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Figure 1. System I with its probability transi-
tions.

representing the system down (i.e. the states inF ) are col-
ored in grey. More exactly, the system is up if and only if at
least one component of each type is up. Moreover, the tran-
sitions probabilities of this system, using Bias1 failure bias-
ing scheme, are described in Figure 2.

For this model, using Bias1 failure biasing scheme as the
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Figure 2. System I with Bias1 failure biasing
probability transitions.

importance sampling measureΦ′, we have

γ = 2ε2 + o(ε2) andσ2
Φ′ =

1

ρ0
ε3 + o(ε3). (2)

(Note that, even if exact values can be computed on these
examples, we only give a first order approximation since
we are interested in the asymptotic results.) A first observa-
tion is then that we do not have bounded relative error. Nev-
ertheless, if we attempt to observe this numerically, we note,
see the last column of Table 1, that considering a fixed sam-
ple sizeI and decreasingε, bounded relative error is ob-
served. More exactly, the observed relative error grows asε
decays (forε ≥2e-04) but suddenly drops and remains con-
stant forε <2e-04.

In the same way, consider the evaluation ofγ. As ε → 0,
using (2), the estimation̄γI of γ should be approximately
2ε2. Table 1, columns 2 to 4, describe simultaneously2ε2,
γ̄I and the confidence interval (at risk5% and with an es-
timation of σ2

Φ′) as ε → 0 and for a fixed sample sizeI
using Bias1 failure biasing scheme. The estimated value is
bad asε → 0: as we can observe,̄γI seems to be close to
the expected value forε ≥2e-04, and the confidence inter-
val seems suitable too, but, between 2e-04 and 1e-04, asε
decays, the results are far from the expected one and2ε2 is
not included in the confidence interval.

The problem is that, even using importance sampling
schemes, some paths important forγ andσ2

Φ′ evaluations

ε 2ε2 γ̄I Confidence Interval Est. RE
10−2 2e-04 2.03e-04 ( 1.811e-04 , 2.249e-04 ) 1.08e-01
10−3 2e-06 2.37e-06 ( 1.561e-06 , 3.186e-06 ) 3.42e-01
2 10−4 8e-08 6.48e-08 ( 1.579e-08 , 1.138e-07 ) 7.56e-01
10−4 2e-08 9.95e-09 ( 9.801e-09 , 1.010e-08 ) 1.48e-02
10−6 2e-12 9.95e-13 ( 9.798e-13 , 1.009e-12 ) 1.48e-02
10−8 2e-16 9.95e-17 ( 9.798e-17 , 1.009e-16 ) 1.48e-02

Table 1. Asymptotic development 2ε2 of γ, es-
timation of γ, confidence interval and esti-
mated relative error for system I using Bias1
failure biasing scheme ( ρ0 = 0.8) with a fixed
sample size I = 104 and diverse values of ε.

are still rare, i.e. their measures are still inO(ε). So, using a
fixed sample sizeI from a pseudo-random generator, all the
sample paths with probability measure inO(ε) are not sam-
pled forε sufficiently small.

Following these observations, it seems to be interesting
to understand more precisely the dependencies between,
first the important properties (bounded relative error and
bounded normal approximation), and secondly the observed
estimation and confidence interval, asε → 0. This is done
in the next sections and constitutes the main contribution of
the paper.

4. Relation between σ
2
Φ′ estimation and

Bounded Normal Approximation

Let us start with the following definition.

Definition 3 Let f be a function defined over∆ (we set
f = 0 elsewhere) andt ≥ 0 be such that

EΦ[f(X0, · · · ,XτF
)] = Θ(εt).

We will say that EΦ[f(X0, · · · ,XτF
)] is well

estimated as ε → 0 under probability mea-
sure Φ′ if for all (x0, · · ·xn) ∈ ∆ such that
f(x0, · · ·xn)Φ{(X0, · · · ,XτF

) = (x0, · · · , xn)} = Θ(εt),
then

Φ′{(X0, · · · ,XτF
) = (x0, · · · , xn)} = Θ(1).

This definition means that all the paths in∆ important
for the evaluation ofEΦ[f(X0, · · · ,XτF

)] asε → 0 are not
rare events under probability measureΦ′. This definition
can also be summarized saying that, using a (fixed) pseudo-
random sequence and sample sizeI, and defining byfIL(ε)
the estimated value ofEΦ′ [f(X0, · · · ,XτF

)L] under prob-
ability measureΦ′,

EΦ′

[
lim
ε→0

fIL(ε)
]

= lim
ε→0

EΦ′ [f(X0, · · ·XτF
)L]

= lim
ε→0

EΦ[f(X0, · · ·XτF
)].



Let us wonder if there is a relation betweenσ2
Φ′ estima-

tion and Bounded Normal Approximation property.

Proposition 1 Let Φ′ ∈ I (see Theorem 3). Bounded Nor-
mal Approximation property implies thatσ2

Φ′ is well esti-
mated.

Proof: Bounded Normal Approximation property im-
plies Bounded Relative Error property, sos = 2r.

Let m, k and(x0, · · · , xn) ∈ ∆m,k be such that

Φ2{(X0, · · · ,XτF
) = (x0, · · · , xn)}

Φ′{(X0, · · · ,XτF
) = (x0, · · · , xn)} = Θ(εs) = Θ(ε2r).

If m − k ≥ r then Φ′{(X0, · · · ,XτF
) =

(x0, · · · , xn)} = Θ(1) (i.e. k = 0), since
2r = (2m − k) = 2(m − k) + k.

If m−k < r, consider the necessary and sufficient condi-
tion of Theorem 3. Thens = 2m−k andk ≤ 3m/2−3s/4,
which means that2m − s ≤ 3/4(2m − s). As s = 2r (we
have Bounded Relative Error) andm ≥ r by definition of
r, then2m = 2r = s, that isk = 0.

Proposition 2 The converse of Proposition 1 is false, i.e.
there exists a system and a measureΦ′ ∈ I such thatσ2

Φ′ is
well estimated but such that Bounded Normal Approxima-
tion property is not verified.

Proof: consider the example of Figure 3, using Bias1
failure biasing as described in Figure 4. The states where
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Figure 3. System II with its probability transi-
tions.

the system is down are still colored in grey.
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Figure 4. System II with Bias1 failure biasing
probability transitions.

For this model, as it can be easily seen in Figure 3,r = 3
and∆3 is constituted of only one path:(< 2, 2 >,< 1, 2 >
,< 0, 2 >). Moreovers = 6 and the sole path such that
Φ2{(X0, · · · ,XτF

) = (x0, · · · , xn)}
Φ′{(X0, · · · ,XτF

) = (x0, · · · , xn)} = Θ(ε6) is the path

in ∆3 for which Figure 4 shows that it is well estimated.
However, the path(< 2, 2 >,< 2, 1 >,< 2, 0 >)

is in ∆m,k with m = 6 and k = 5. Then 5 = k >
3m/2 − 3s/4 = 4.5, so the necessary and sufficient condi-
tion of Theorem 3 is not verified.

A first idea would be to think that ifγ andσ2
Φ′ are well

estimated, then the normal approximation is good enough
(i.e. bad confidence interval coverage is only due to badσ2

Φ′

estimation). Proposition 2 shows that this is not the case.
Thus the Bounded Normal Approximation property is im-
portant to be verified in practice to be convinced that no the-
oretical or numerical error is realized.

5. Relation between σ
2
Φ′ estimation and

Bounded Relative Error

In this section, we prove that ifσ2
Φ′ is well estimated,

then the Bounded Relative Error property is verified, but
that the converse is not true.

Proposition 3 If σ2
Φ′ is well estimated, using a probability

measureΦ′ ∈ H , then we have the Bounded Relative Error
property.



Proof: we will prove the equivalent proposition that if
Bounded Relative Error property is not verified, thenσ2

Φ′ is
not well estimated.

Unless we have Bounded Relative Error, there exist from
Theorem 2 integersm, k and (x0, · · · , xn) ∈ ∆m,k such
that2m− k = s < 2r. But, by definition ofr, 2m ≥ 2r, so
thatk > 0.

Proposition 4 The converse of Proposition 3 is false, i.e.
there exists a system and a measureΦ′ ∈ H such that
Bounded Relative Error is verified butσ2

Φ′ is not well es-
timated.

Proof: consider the example of Figure 5, using Bias1
failure biasing as described in Figure 6.
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ε
0,2

Figure 5. System III with its probability transi-
tions.

For this model, we haver = 3, s = 6, so this system
verifies the Bounded Relative Error property. Moreover, the
set of paths such that

Φ2{(X0, · · · ,XτF
) = (x0, · · · , xn)}

Φ′{(X0, · · · ,XτF
) = (x0, · · · , xn)} = Θ(ε6)

is constituted of two paths:(< 2, 2 >,< 2, 1 >,< 2, 0 >),
which is well estimated (see Figure 6), and(< 2, 2 >,<
1, 2 >,< 0, 2 >) for whichΦ′ is in O(ε3). Thusσ2

Φ′ is not
well estimated.

2,2

2,1

0,0

1,1

0,1

1,2

≈ ρ0

≈ ρ0ε

≈ 1/2 ≈ 1/2≈ 1/2

1/21/2

ε3

1 − ρ0

≈ ρ0ε
≈ ρ0

(1 − ρ0)/2

≈ 1

ε

≈ 1/2

ε ρ0/2

ε

(1 − ρ0)/2

1 − ρ0

ε

≈ 1

1,0

2,0

≈ 1

0,2
ρ0/2

Figure 6. System III with Bias1 failure biasing
probability transitions.

6. Relation between γ estimation and
Bounded Relative Error

Return now toγ estimation.

Proposition 5 If we have Bounded Relative Error property
using a measureΦ′ ∈ H (see Theorem 2 to recallH defini-
tion), thenγ is well estimated asε → 0 underΦ′.

Proof: a path (x0, · · · , xn) ∈ ∆ important for the
evaluation of γ = EΦ[1[τF <τ

1
]] = Θ(εr) verifies

Φ{(X0, · · · ,XτF
) = (x0, · · · , xn)} = Θ(εr). It fol-

lows from the necessary and sufficient condition of Theo-
rem 2 on probability measureΦ′ that∀(x0, · · · , xn) ∈ ∆r,

Φ′{(X0, · · · ,XτF
) = (x0, · · · , xn)} = O(ε2r−2r)

= O(1)

= Θ(1).

Thusγ is well estimated underΦ′.

Proposition 6 The converse of Proposition 5 is false, i.e.
there exists a system and a measureΦ′ ∈ H such thatγ is
well estimated but such that Bounded Relative Error prop-
erty is not verified.

Proof: consider the example of Figure 7, using Bias1
failure biasing scheme as described in Figure 8. The states
where the system is down are still colored in grey.

As it can be easily seen in Figure 7,∆r (with r = 6
for this example) is composed of two paths:(< 2, 2 >,<
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Figure 7. System IV with its probability tran-
sitions.
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Figure 8. System IV with Bias1 failure biasing
probability transitions.

2, 1 >,< 2, 0 >,< 1, 0 >) and (< 2, 2 >,< 1, 2 >
,< 0, 2 >,< 0, 1 >). It can be observed in Figure 8
that these two paths are well estimated. However, the path
(< 2, 2 >,< 2, 1 >,< 1, 1 >,< 1, 0 >) is in ∆m,k with
m = 8 andk = 5. Then5 = k > 2m−2r = 4 so the neces-
sary and sufficient condition of Theorem 2 to have Bounded
Relative Error is not verified.

Thus these results reinforce the importance of Bounded
Relative Error property.

7. Conclusion

The aim of this paper was to show up the numerical prob-
lems encountered with rare event simulation, even when us-
ing importance sampling schemes, and to give some ex-
planations to these phenomena. These problems are due to
events which, although more frequent using an importance
sampling scheme, are still rare and then cause bad estima-
tions ofσ2

Φ′ andγ. We have analyzed the dependences be-
tween the important estimations and the important prop-
erties which are bounded relative error and bounded nor-
mal approximation. These dependences reinforce the role
of these two last properties, principally the Bounded Nor-
mal Approximation one. Indeed, the Bounded Normal Ap-
proximation property implies thatσ2

Φ′ , γ and the confidence
interval are well estimated, whereas goodσ2

Φ′ andγ estima-
tions (surprisingly) do not imply Bounded Normal Approx-
imation, so they do not imply a controlled confidence in-
terval coverage. Note finally that Balanced failure biasing
scheme verifies Bounded Normal Approximation [14]. As
future work, we plan to develop the Bounded Normal Ap-
proximation theory to other rare event problems.
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