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Performance of product-form multi-class queuing networks can be determined from normalization
constants. For large models, the evaluation of these performance metrics is not possible because
of the required amount of computer resources (either by using normalization constants or by using
MVA approaches). Such large models can be evaluated with Monte Carlo summation and integra-
tion methods. This paper proposes two cluster sampling Monte Carlo techniques to deal with such
models. First, for a particular type of network, we propose a variance reduction technique based
on antithetic variates. It leads to an improvement of Ross, Tsang and Wang’s algorithm which is
designed to analyze the same family of models. Second, for a more general class of models, we use
a mixture of Monte Carlo and quasi-Monte Carlo methods to improve the estimate with respect
to Monte Carlo alone.

Categories and Subject Descriptors: G.3 [Probability and Statistics|: Probabilistic algorithms
(including Monte Carlo); 1.6.3 [Simulation and Modeling]: Applications; 1.6.8 [Simulation
and Modeling]|: Types of Simulation—Monte Carlo

General Terms: Theory, Algorithms, Performance

Additional Key Words and Phrases: Product-form networks, Monte Carlo, Variance reduction,
antithetic variates, low discrepancy sequences

1. INTRODUCTION

Communication and computer systems can be efficiently represented by stochastic
models. Among them, closed product-form multi-class Jackson networks are useful
in practice. The steady-state solution to such networks is known, but it includes
a normalization constant for which, in general, no closed form is known. Thus an
important problem in the area is the development of efficient algorithms (like MVA
[Reiser and Kobayashi 1975]) and, in particular, the computation of those normal-
ization constants, which are sums over all the possible states of the network. These
calculation methods (MVA, convolution [Buzen 1973|, etc) are quickly irrelevant,
when the number of states increases. In these cases, we can use approximation
methods.
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In Bell Laboratories, McKenna, Mitra and Ramakrishnan used in the eighties the
asymptotic expansion of the normalization constants [McKenna and Mitra 1984][M-
ckenna and Mitra 1982|[Mckenna et al. 1981|[Ramakrishnan and Mitra 1982] to
derive efficient approximation algorithms. Nevertheless, we think that the best
approaches are Monte Carlo ones. Ross et al. [Ross et al. 1994][Ross and Wang
1993][Wang and Ross 1994][Ross and Wang 1997] have developed a software pack-
age, MonteQueue, which uses four different techniques more or less efficient with
respect to the particularities of the studied network. Two of these methods use the
normalization constant in a summation form. The two last techniques use the fact
that, under some restrictive conditions, the normalization constant can be repre-
sented by an integral. All these approaches give good results. We propose here
refinements to improve their efficiency, in order to take less time to obtain the same
confidence interval width. For one of the methods working on the integral form, we
propose a variance reduction algorithm based on antithetic variates and we prove
that it improves the corresponding technique, described in [Ross et al. 1994].

Another general approach for numerical integration or summation is the use of
quasi-Monte Carlo. In such methods, the independent and identically distributed
random sequence is replaced by a deterministic one, called low discrepancy se-
quence, which is optimally distributed (see [Niederreiter 1992][Bouleau and Lépin-
gle 1993][Niederreiter 1978]). Unfortunately, the error bound has only a theoretical
interest because its value is very large for a fixed number of iterations and a large
dimension of the integration or summation space. However, it is possible to make
a mixture of Monte Carlo and quasi-Monte Carlo methods. As a matter of fact, we
can use the distribution of low discrepancy sequences to obtain a variance reduc-
tion in Monte Carlo. This idea was introduced by Cranley and Patterson [Cranley
and Patterson 1976] in 1976 and Shaw [Shaw 1988] in 1988 for Bayesian statistics.
Owen [Owen 1995] [Owen 1994] uses the same type of technique. In some cases,
the convergence speed of low discrepancy sequences ensures a variance reduction if
one uses a sufficient number of elements of the low discrepancy sequence.

The paper is organized as follows: In Section 2 we present the model of product-
form queuing networks and the Monte Carlo methods of Ross et al. Section 3 deals
with the application of antithetic variates method. In Section 4, we give a short
review of quasi-Monte Carlo methods, which we next apply as a variance reduction
technique. Finally, we conclude in Section 5.

2. MODEL AND OVERVIEW OF ROSS ET AL. WORK
2.1 Model

Our network has M stations, J classes and a population of N; customers for class
j- We suppose that there exist two types of stations: first come first served stations
(FCFS) and infinite server stations (IS). We suppose, without loss of generality,
that stations 1 to L are FCFS and stations L + 1 to M are IS, and we denote by
Sm the number of servers at FCFS station m (1 < m < L). All classes have the
same exponential service for each FCFS station with mean 1/u,, for m =1,---, L.
On the other hand, all classes may have different exponential services in IS stations
with mean 1/, for class j in station m.

The routing is supposed to be Markovian. For each class j, let Aj,,, be the relative
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visit ratio of a customer of class j to station m. Let pjn, = Njrm /s form =1,---, L
and pjm = Njm/fjm, for m = L +1,---, M, be the traffic intensity for class j at
station m. We denote by

M

pjo = Z pim 1 <j<J
m=L+1

the total traffic intensity for the whole set of IS stations.
A FCFS station is said to be in normal usage [Mckenna and Mitra 1982] if

J

SN <,
= Pio

in critical usage [Ross and Wang 1993] if
J

SN =,

= P

and near the critical usage [Ross and Wang 1993] if
J .
j{:]V;BﬂE ~ 1.
= Pjo

The number Z;zl Njpim/pjo can be asymptotically seen as an indicator of the

utilization of the m!" station [Mckenna and Mitra 1982]. The network is said to

be in normal usage if all the FCFS stations are in normal usage. It is said to be

in mixed usage if all the stations are in normal usage or near critical usage. In the

same way, it is said to be in critical usage if all the stations are in critical usage.
A state of the network is a vector of dimension JM

n = (Njm)1<j<J, 1<m<m

where 7, is the number of class j customers at station m.
The set of possible network states is then

M
Q:{n Y nim =N fOTJ':l"“’J}'
m=1

J .
1 if n < sy,
Let ny, = Zlnjm and 6, (n) = { = s?+i o> s, Then the steady state
j: m
probability for such a network is given by [Baskett et al. 1975]
1
m(n) = -d(n
(n) P (n)
with
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where

9= d(n) 1)

neQ

is the normalization constant.

It is proven in [Ramakrishnan and Mitra 1982] that, in the case where each
FCFS station has a unique server, that is s, = 1 (1 < m < L), this normalization
constant g can be written as

J
1 -1'u I N;
g= Ji/ e H(Pjo + pju)idu, (2)
Hj:l Nj! " j=1
where
= (ula"'auL)l
L= (1,0

p; = (pj1, =+ pir)
Q+:{UERL :UlZO,l:]_7...7L}.

Given these normalization constants, network performance measures can be easily
derived. For example, if g; is the normalization constant of the network with one
less class j customer,

TH;,, = Ajm% (3)

represents the throughput of class j customers at station m.

For complex networks, relation (1) can require a huge amount of computation
in practice. In the same way, the integral form (2) is not computable in general.
We then apply Monte-Carlo methods with importance sampling to evaluate them.
The application of Monte Carlo summation and integration to the evaluation of
the normalization constant was introduced in [Ross et al. 1994]. For general theory
on Monte Carlo methods and importance sampling, see [Hammersley and Hand-
scomb 1964]. We do not describe the technique called integration with truncated
normal sampling (see [Ross and Wang 1997|[Ross and Wang 1993]), because it is
not applicable to our variance reduction algorithm.

2.2 Monte Carlo summation

2.2.1 Summation with decomposition sampling method. Define a probability p on
2, and let p(n) be the probability of state n. We can write

_N )
g= an:Q p(n)p( ). (4)

If (n(i))lgigj is a sample of mutually independent random variables (N(i))lgig
with probability distribution p, an estimator of g is

L §(n®)
; p(nt)

~ =

Gsp =
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and, for I large enough, a confidence interval at risk approximately « is given by

GSD — Ca Up%p) ) GSD + cﬂ% )

‘ )
where 02(6/p) is the variance of random variable — (N (1) under probability p (this

variance is unknown but is easily estimated by its standard unbiased estimator)
and ¢, = ®71(1 — /2) with @ distribution function of the normal law with mean
0 and variance 1. It is argued in [Ross et al. 1994] and in [Ross and Wang 1993|
that a good choice for the probability p is such that sampling is independent across
classes,

J
p(n) = [ pi(nj, - njm),
j=1

where
1 (& oo
— Njm Jjm
pj(nﬂ,---,an)—F(H pjr]n> ( 11 . |>
J m=1 m=L+1 Jme:
with (nj1,---njm) state vector for class j. Here the normalization constants K;

are easy to compute using convolution and recurrence (see [Ross et al. 1994]).

2.2.2 Summation with rejection sampling method. Summation with rejection is
another importance sampling technique. Let

QI :{n|n]1 +...+n]—L SN],J.: ]_,-..J}_
In [Ross and Wang 1997], Ross and Wang have modified (1) into

g=c < > o(Nj,nj1+---+n;r)
e |mor Tmb Mmbe Tl 25X pio =1 " ’
(5)
J pl_\’j N i
where ¢ = N]—(')' and o(N,n) = H N As in (4), we can use importance
j=1 "7 i=N—n+1

sampling for the computation of (5). It is proven in [Ross and Wang 1997] that a
good choice for p is p = p, where

L Nm | Nim NJym

nm!am Nim: - nJm! Ym Ym

m=1

with
A = IN’L overset of ',
Y = (Vm)i<i<t, 1<m<L,

Ym = '71m+"'+7Jm7
T

Ay = Z 6m(n)7:rlu

n!

n=0
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where T, is the maximum of customers that can be present at station m. The
best asymptotic choice for v is described in [Ross and Wang 1997|. Then the it"
realization of g is

nld) J

. Jm . .

ZW = cay - aplo (n?) H H ( ]pjm> Ha(Nj,ng.Zl)+---+n§.ZL)).
m=1j=1 \1imPjo j=1

2.3 Monte Carlo integration with exponential sampling

Let (Vi)lgig 1 be a sequence of I mutually independent random vectors with prob-

ability density p defined on Q™. Let

1 e YV (pjo + 0, V)N

I, N;! p(V?)

zZ' =

I
_ 1 )
An estimator of g is Z! = Vi E Z* and a confidence interval can also be obtained.

i=1
Ross, Tsang and Wang have proved (see [Ross et al. 1994]) that, asymptotically, the
optimal importance sampling probability p is a product of exponential laws with
parameters ; for 1 <1 < L. The value of 7, depends on some network properties
(see [Ross and Wang 1997]):

—if the network is in normal usage, then

J

n=1-Y NP 1 <1<y
= P30

—if the network is near or in critical usage, the values of the different v, will be
estimated by means of a short preliminary simulation: having the estimated
utilization, util;, of the I** FCFS station, we set

7[:1—utill, ].SISL

3. ANTITHETIC VARIATES

A simple description of this well known method can be found in [Hammersley and
Handscomb 1964]. We apply it to the Monte Carlo integration with exponential
sampling.

3.1 Application

Consider vectors V' ('?) defined as the V¥ in the sectior(112b53 and vectors V*?) whose
log (1 —e Vi ™)

v
the r.v. V3 is also exponentially distributed with parameter . Let

(1,0)
Vel

I*" coordinate is defined by Vl(2’b) =— . It is easy to show that

j—1(pjo + PJV(Lb))NJ

Z(lrb) — f(V(lrb)) —
I, Nj! p(VH?)




Variance Reduction Applied to Queuing Networks . 7

and

(2,b)
1 YV T (pjo + 0 V2D)Ns
I, Nj! p(VED) ’

with p(v) = Hlel (yie= ") and v =1 — ijl Njpji/pjo. As the VY have the

same distribution as the V(l’b), a new normalization constant estimator is

5 1a1 (1,) 4 (2,b)
b=1

Z(27b) — f(V(27b)) —

We have then
_ _ 1
Var(2%) = Var(2*%) + o Cov(Z2(MY), 7)),

where Z?P is the standard estimator defined in 2.3, with I = 2B. This new
estimator will be more efficient than the standard one if random variables Z(1:%)

and Z(b) are negatively correlated.
THEOREM 1. If the network is in normal usage, then the random variables Z(+-*)
and Z?? are negatively correlated.

ProOF. To simplify the notations of the proof, let

F(o) = Fon,++v) = H (00 + P10)
FW) = i, o)) = f (_b_b)
71 YL
L .
a(’u) = a(vl, ,’UL) = H (]_ _e—’Yle)T
=1 ; N
Jj=1 =

d L log(1l — e=mvt) i
c(v):c(vl,---,vL) = H(]O_ijl—> .

j=1 =1 mn
We have to show that
o [0 @pto)d - (

i.e.
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with C' = fQ+ (Hle e‘”’) b(v)dv. This is equivalent to showing

L

/ . (sz) b(v) (C — a(v)c(v)) dv > 0.
=1

Given that (Hlel e*’”) b(v) >0 forally; >0andall 1 <1 < L, it suffices to check
that
a(v)e(v) < C

for all yy >0 and 1 <[ < L. In that case, the integral will be positive, because we
will integrate a positive function. Let

g(v1,--+,vr) = a(v)e(v).

We are going to see that, under certain conditions, the maximum of g on Q7 is
smaller than the value C. For all p we have

@(m ) = ia('v)c('v) {1_7 EJ: Niprp
) ) - . P v
vy, 1—e L = oo — K pu MJ

The derivate has the sam; sign as the bracketed term. But this expression is posi-
. J

tive: in normal usage, Y ;| Nkprp/pro <1 Vp, we set v, =1 =1 | Niprp/pro-
Then, replacing v, by its value in the bracketed term, we obtain

| 5 Nip
kPkp
(=) — Z L In(l—e=71%1)
k=1 PO = Djq PRI
J J
_ Pkp Nipryp
o ZNk_ - L In(l—e~71v1)
k=1 pko k=1 pkO - El:l ple

> 0.

Thus we have

9y
o
As g is increasing, its maximum is obtained when v; — +o00, V1 <[ < L. The
upper bound of g is then

V1<I<LVY(v, - ,vL), (v1,--+,vg) > 0.

lim g(vla"'avL):Hp{\(f)j'
VI<I<L vj——+o0 j

But

L J L Nj
C = / N H (e*Uz H (P]O -}—Zp]ﬂ)l) dv
j=1
> L)
=1
= Hpjo.-
j=1

= 1
I

H pjo d

J

<
=2
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station 1

station 3

IO

station 2

Fig. 1. Class 1

The property is then shown. O

Applying the method with antithetic variates in normal usage, we obtain a vari-
ance reduction. In the same way, we have investigated if the same approach deals
to a variance reduction in the case of an utilization in critical usage, that is, if
Zgzl Niprp/pro > 1. We will see in an example that in this case, the property is
not true in general: there can be an increase and not a reduction of the variance
for some networks.

3.2 Numerical examples

The purpose here is to illustrate the variance reduction obtained with the new
algorithm. We use small models to allow the reader to check the estimation values.

3.2.1 Network in normal usage. For the network that we study here, we use the
following heuristic for all [:

J
n=1-Y N
P
The system consists of three stations: two FCFS and one IS. We consider two
customer classes with five customers for class 1 and four customers for class 2.
The routing for customers of class 1 is described in Figure 1 and for customers
of class 2 in Figure 2. The service rates are as follows:

p = 9.0,
pe = 7.0,
p1z = 0.5,
p23 = 0.4.

we have then 37 Nipgi/pro = 181/450 and 3.i_, Nipka/pro = 57/140.

We compare the confidence interval width obtained by Ross et al. for 10° itera-
tions with those obtained for 5 x 10° iterations in the antithetic variates method, in
order to have the same number of points of function f. As the computational time
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ST

station 1

03 s{aﬁon 3
-

station 2

Fig. 2. Class 2

Table I. Confidence interval widths in normal usage. The estimated values are approximately
TH11=2.21, TH12=1.10, T'H21=0.994 and 17'H22=1.420.
Variate | Width for Ross et al. | Width with antithetic

THiy 0.000634 0.000263
THio 0.000317 0.000132
T Hoy 0.000282 0.000114
THo» 0.000403 0.000163

is the same for both algorithms, the improvement will be manifest in the confidence
interval reduction.

In Table I, the confidence interval width of the throughput of class j at station [
THyj for [,j = 1,2, are given.

As we can see, confidence interval widths are diminished by approximatively 2.5.
It takes about (2.5)> = 6.25 more time using Ross et al. algorithm to obtain an
interval with the same width.

3.2.2 Network in critical usage. Let us illustrate here that in this case, there
can be an increase in the variance of the new estimator. The network presented
here is in critical usage and needs a preliminary simulation for the estimation of
the parameters 7; in the software package MonteQueue 2.0. The network is still
constituted of three stations, two FCFS with a unique server and one IS. On the
other hand, we consider a single class of ten customers. Figure 3 gives the network
routings. The service rates are as follows:

H1 = 057
M2 = 057
H13 = 1.0.

We have then Nlpll/plO = N1p12/p10 = 20.
We observe then in Table II an increase of the confidence interval width in the
case of critical usage.
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station 1

o
|

station 3

-O)

station 2

Fig. 3. Network in critical usage

Table II. Confidence Interval Widths in critical usage. The estimated values are approximately
TH;1=0.542, TH12,=0.452.

| Variate | Width for Ross et al. | Width with antithetic |
TH;i1 0.000629 0.000680
TH;i» 0.000629 0.000680

4. QUASI-MONTE CARLO METHODS AND VARIANCE REDUCTION METHOD
4.1 Description

An alternative to Monte Carlo methods are Quasi-Monte Carlo ones. In the lat-
ters, we approximate /

N
Fludu by 1 37 FE™) where P = (607),4x is a
[0,1]¢ n=1

deterministic sequence. As a consequence, the error is deterministic as well. A
measure of uniform distribution, which is necessary for convergence, is the discrep-
ancy. Let Ax(B,P) be the number of elements of P belonging to B among the N
first elements of the sequence, that is Ax(B,P) = Zgzl 15(€M), and A, be the
s-dimensional Lebesgue measure. Let B be the family of sets of form []7_,[0, u;)
with u = (uq,---,us) € [0,1)°. The discrepancy of the N first terms of P is defined
by

Dy (P) =sup 7AN(£’P)
BeB

Then P is uniformly distributed on [0,1)® if and only if limy 40 Dy (P) = 0
[Kuipers and Niederreiter 1974].

For an infinite sequence P, we can not have faster than D} (P) = O(N~!log N)
for s = 1, and D3 (P) = O(N~'(log N)*()) for any s (see [Niederreiter 1992,
pages 23-25], [Borel et al. 1991, page 10] or [Beck and Chen 1987] for a proof).
The coefficient a(s) verifies s/2 < a(s) < s (and it is conjectured that a(s) = s).
Sequences with such convergence rate are called low discrepancy sequences.

One of the most known error bound is the following, called Koksma-Hlawka

—\(B)].
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Theorem [Zaremba 1968]:

e 3 (n)y — w)du
N ) [,

1]

where V(f) is the variation in sense of Hardy and Krause [Niederreiter 1992; Zarem-
ba 1968]. Asymptotically, convergence is then quicker than for standard Monte
Carlo method which is in O(1/v/N).

Unfortunately, the error bound of Koksma-Hlawka Theorem, given by equation
(6), is difficult to evaluate in practice. As a matter of fact V(f) is hard to compute
or to over-bound, and there exists many functions with infinite variation for which
Quasi-Monte Carlo convergence is fast [Bouleau and Lépingle 1993]. Furthermore,
the cost of an exact computation of D} (P) [Niederreiter 1972] becomes quickly
high and the computation is not feasible even for small values of the dimension and
of the number of iterations. In the same way, an over-bound of type C(log N)* /N
is useless in a large dimension. For example in dimension s = 10, we need more
than N = 3 x 10'® to have (log N)*/N < 1. Then, to obtain a useful error bound,
we use low discrepancy sequences to reduce the variance in Monte Carlo methods.

First we are going to explain how we make a variance reduction for uniformly
distributed random variable on set [0,1)%, for a generic dimension s. Let X be a
random variable uniformly distributed on [0,1)%, and (£*))zen a low discrepancy
sequence. Let us consider the random variable

2= 13 FHX +E0) (7
k=1

instead of f(X), where {«} is the fractional part for each coordinate of z € IR’.
To compute f the same number of times, we have to compare the variance after
I iterations with the variance after nl iterations in standard simulation. We will
obtain a variance reduction if and only if

a?(

S

S FUX +EW) < Lo (F(X)). Q
k=1

The first attempt in this direction can be found in [Cranley and Patterson 1976]
where (f(’“))kem is a lattice developed by Korobov and the second for Bayesian in-
tegration in [Shaw 1988] with low discrepancy sequences. Owen [Owen 1995][Owen
1994] uses a different technique, where the randomness is introduced on permuta-
tions, for Niederreiter sequences. In a recent paper [Tuffin 1996], we have compared
Faure, SQRT, Niederreiter, Sobol and Halton sequences for a use of the random
variable Z given in (7) on different classes of functions, and we have concluded that,
generally, Sobol sequences [Sobol” 1967][Sobol’ 1976] using the Gray code [Antonov
and Saleev 1979] are the most efficient (in terms of estimated variance multiplied
by the observed computational time).

To get an idea of the convergence speed, consider first the case of functions with
bounded variation.

THEOREM 2. Let P = (£®))ew be a low discrepancy sequence over [0,1)%. If f
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is a function with bounded variation, we have

’ (% > fHx+ §<’“>})> = O (logn)™).

k=1

PROOF. See first that E ( Zf {e® £ X1 E(f(X)). Next, let us define

the sequence Q, = ({¢*) + x})kelN Note that, V1 < i < s,
“ 0,2 (&) if ;=0
1[07Zi)({£i +$t}) = 1[17$i71+zi*1‘i)(£z(k)) if z;—x;<0and xz; >0

1wy (€) 4 1ozs 2y (€F) if 2> 2 >0
9)

and similarly
A1([0, 2;)) if ;=0
M([0,25) = ¢ M([1 =z, 1+ 2, — x3)) if zz—2z;<0andx; >0
M1 —2;,1) + A ([0, 2, — 2;)) if z; > 2 > 0.

Expanding then the products 1., ({é® + z}) = [[;_, 1[0,zi)({§§k) + x;}) and
As([0,2)) =TT;_; A1([0, 23)), we obtain at most 2 terms, so

An([u,v),P)

Dy(Q;) < 2% sup -

—n(u v>>‘ (10)
u,wel0,1)%, u<v

4°D; (P) [Niederreiter 1992, page 15].

- k) + x el
(L) = [ K

LS~ f({w+ €9} - E(7)
k=1
< [, VD) ds

4V (£)D,(P))?,

IA

Then,
2

dx

:Iv—

AN

IN

so we get the Theorem. [

The estimator in (7) gives also good results for functions with infinite variation,
as in the case of quasi-Monte Carlo methods where [Wozniakowski 1991] the mean
square error

2
1 n
/ (‘ Do fEW) - / f(U)dU> duw (f)
F n k=1 [071)6
obtained on the set F of continuous functions (equipped with the Wiener measure
puw concentrated on functions with infinite variation [Morokoff and Caflisch 1994])
is equal to the square of the mean square discrepancy

T)(Q) = ( /{W (M _ )xs([(),u))>2 du>

1/2
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of @=(1 f(’“))kem Recall that the Wiener measure pw is Gaussian with mean
value 0 and covariance kernel R(z,y) = [, f(x)f(y)duw (f) = [I;—, min(zi, yi).
The following result gives another view of the asymptotlc convergence speed of this
approach.

THEOREM 3. For any low discrepancy sequence P = (f(’“))kem, the mean vari-
n

. 1
ance o2 avg Of the estimator — Z f({f(k) + X}), taken over the set F of continuous
’ n
k=1
functions f on [0,1]° equipped with the Wiener measure pyy , is in O(n=2(logn)?®).

PROOF.

Opavg = /f ( Zf ({¢ ’“>+X})> dpw (f)
/01) /. ( Zf{ék o)) - / . f(u)du) dyo (f)da

= [, @O e+ € e

by Wozniakowski’s result. Let D, (Z,P) = supg.z |[An(B,P)/n — As(B)|, with Z
set of subintervals of [0,1]° such that both open, closed or mixed intervals are
allowed. We get Vy € [0,1)%,

An([oay)a (1 - {;L' + g(n)}))/n - Hyt

i=1

A =y 11 Qo+ 67 p)/n = w

< 2°Dn(Z,P)

as 1(1_y, 1] ({fl(k) +xi}) = la—y, 1) ({fi(k)+:ni}) and using the same kind of arguments
as in (10), but with
(k)

Ly eit e () i1 — i — a5 > 0
Lamp{gY +aid) = § (vt ey .
(1=ys,1) 215 ! I(Z,yi,xi71)(£;k))+1[071,xi)(§§k)) otherwise

instead of (9). This implies that ( 7(L2)((1 —{z+EP N ren))? < (2°D,(Z,P))?. But
D, (Z,P) is also in O(n=t(logn)®) (using Koksma-Hlawka theorem and taking 2°
as an upper bound of the variation of the indicator function of each subinterval of
[0,1]%). O

The complete study of the convergence speed of the approach remains to be done.
In some recent work [Owen 1996], it has been shown that under some conditions
on the integrand, the variance of Owen’s method is O(n3(logn)*~1). It is shown
numerically in [Tuffin 1996] that for different functions the method using relation
(7) performs generally better.

In our applications, we do not use integration over uniform law on [0,1), but
over more general laws. We can remark that, by a simple transformation, it is often
possible to generate a sequence with a particular distribution on a subset of IR®
from a uniformly distributed sequence on [0, 1)® as we have just made, by means of
s one-dimensional pseudo-inverse functions, as done by Ross et al. For example, for
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integration with exponential sampling (see sub-section 2.3), the L coordinates are
independent and we can then generate them separately. Thus the mathematical
dimension is s = L. If F; *(u) = —log(l — u)/v is the pseudo-inverse function
of the distribution of an exponential law with parameter v; (I = 1,---, L), a new
estimator of g is

1<
122"
=1
with

(i,k)
Jiyn 1 VT (oo + oy VRN
el J V0 NJ-! p(V)

and
VIR = (B0 + 6, B U +6))

for (Ul(z))1glgL,1gigl independent uniform random variable on [0, 1).

For summation with decomposition sampling, sampling over classes is indepen-
dent, and sampling for class j in station m (1 < m < M) is found conditionally to
the variables (nji)1<i<m—1 (see [Ross et al. 1994]). Then p, defined as in 2.2.1, is

generated from a uniform random variable on [0,1)/M. Let U ](:,)L with 1 <1 < M,
1< j<Jand1l<i<Tbe independent uniform random variables on [0,1). A
new estimator of g is

; 1 & [(1 5(n(i’k))>

Gsp = 7 =)

% (L5

with n(4%) sampled (from {U® 4 ¢} instead of U?) by means of conditional
probabilities [Ross et al. 1994].

For summation with rejection sampling, the number V,,, of customers in station m
m < L is first selected (with the help of a pseudo-inverse function). This number
must be less than T),.Then each of the V;, customers is chosen to be of class j
with probability 7;m/v¥m. The mathematical dimension in this technique is L +

2221 Tpn- A new summation with rejection sampling estimator of g is

with

i %gcal g ey () {H H( jp]m> " k)} ﬁg (N],Zn(’k)>.

m=1 j=1 Yim P50

n{&® is chosen from {U(Z) k } on the set {0,---,T} by means of the pseudo-

inverse of the probability 6m( ) Jam(n G k))!. We obtain n by distributing

from {Ur(i) + fﬁk)} (r > L) the n&k) customers among the J classes. a customer is
of class j with probability vjm/vm.
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Table III.
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Confidence interval widths for integration with exponential sampling. The estimated

values are approximately g=9.940e+64, g;=9.55e+62 and T Hj,,=9.6095e-03.

| Variate | Ross et al. I=105 | n=10%,71=10% [ n=10%,71=10% [ n=10%, T =10? |

g 8.1970e+60 3.0134e+60 1.4013e+-60 6.9722e+59
g 1.3187e+59 4.3284e+58 1.8322e+58 8.1147e+57
| THjm [ 5.4623e-07 | 1.6259¢-07 | 6.4567e-08 | 2.5715e-08

Table IV. Confidence interval widths for summation with decomposition sampling. The estimat-

ed values are approximately g=1.72e+15, g1 =3.18e+14 and T'H1,,=1.849e-01.

| Variate | Ross et al. 1 =10% | n =102, 1 =10 [ n=103,71=10% [ n=10%, T =10% |

g 2.7575e+12 2.3697e+12 2.2816e+12 2.2489e+12
g1 4.6949e+11 4.2516e+11 4.3404e+11 3.7260e+11
[ THim [ 1.1949e-03 | 1.0306e-03 | 9.3194e-04 [ 7.0177e-04

4.2 Numerical results

We apply this technique to the estimation of normalization constants in the three
methods described in previous section. We will compare all the methods with Ross
et al. ones for different values of n.

In all our examples the routing is supposed to be the same for each class. Cus-
tomers go from station m to station m + 1 (m = 1,---, M — 1) and from station
M to station 1 with probability 1. We give different values to p,,, (1 <m <L), J,
Ni,-- Ny, tjm (L+1<m < M) and s, (1 <m < L) in order to be in the case
where each method of Ross et al. performs the best (see [Ross and Wang 1997]).

To test integration with exponential sampling method, we set M =9, L =7,
U =101 <m<L),J=15Ny=--=N;y=2, ttjm, =001 (L+1<m< M)
and s, =1 (1 <m < L). The results (confidence interval width) for MonteQueue
for I = 109 iterations and for our algorithm for I = 10* and n = 10%, for I = 10°
and n = 10% and for I = 10% and n = 10%, then with the same number of calls of
the function, are given in Table III.

We can observe for integration with exponential sampling technique, a large
variance reduction. For n = 10* and I = 102, we obtain a standard deviation
reduction of about 21.25 for the estimation of the throughput. Then it requires
about (21.25)? =~ 451 times more iterations to give an interval with the same width
with Ross, Tsang and Wang’s method. Moreover, the computational time is about
0.72 that of Ross, Tsang and Wang’s method. This is not due to the smaller number
of calls to the random generator, but to the fact that we need less operations to
compute the variance and the covariance. As a matter of fact the latter variables
are computed only I times instead of nl times as in a pure Monte Carlo technique.
We have thus a gain on two points: variance and time. The efficiency 1/(0? X t) is
then 626 times better for the new technique.

The results for summation with decomposition sampling for M =9, L = 7,
J =3, Ni =Ny=N3 =5,83 =3, bty = 1.0 (1 < m < L) and p;, = 0.1
(L+1<m < M) are in Table IV. We give the confidence interval width only for
the first class because the results for the other classes are of the same order.

The improvements are smaller in this case (the interval width for TH,, with
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Table V. Confidence interval widths for summation with rejection sampling. The estimated
values are approximately g=3.17e+24, g1 =7.39e+22 and T'H1,,=2.325e-02.
| Variate | Ross et al. I=105 [ n=10%,71=107 [ n =103, 71=10% [ n=10%, T = 10? |

g 2.5257e 21 3.6708e+21 2.7548e+21 1.6920e+21
91 1.0017e+20 9.8506e+19 7.2692e+19 4.8122e+19
[ THim | 2.5527e-05 | 2.0094e-05 | 1.3921e-05 | 1.0267e-05 |

n = 10* and I = 10? if about 0.58 the initial interval width, then it requires about
(1/0.58)% = 2.97 times more iterations for Ross, Tsang and Wang to perform the
same interval width). As the computational time is 0.80 times that of Ross, Tsang
and Wang’s, the efficiency is 3.7 times better for the new algorithm. Nevertheless,
we can observe that as n, the number of elements of the low discrepancy sequence,
increases, the variance reduces.

The results for summation with rejection sampling for M = 9, L=3, J = 15,
N;=1(1<j<J),and spm =3, pp = 1.0 (1 < m < L) and pjm = 0.15
(L+1<m < M), are in Table V. As an example, we give the confidence interval
width of the throughput only for the first class, instead of enumerating it for all
the fifteen classes.

The variance reduction is larger as the mathematical dimension is smaller. We
can observe that the interval width for TH;,, with n = 10* and I = 10% is 0.40
times the interval width with Ross and Wang’s method (which need about six times
more iteration to obtain the same interval width). As the computational time is
0.75 times that of Ross and Wang’s, the efficiency is 8.25 times better with the
use of low discrepancy sequences. For a sufficiently large number n of calls of
elements of the low discrepancy sequence, we get a variance reduction. Moreover,
as we increase n (and so decrease I, the number of random variables), the variance
reduction is more important. But we have to take care to keep a sufficiently large
I to invoke the normal approximation.

The fact that variance reduction is larger for integration with exponential sam-
pling is due to the smaller mathematical dimension. As a matter of fact, in our ex-
amples, dimension for integration with exponential sampling is L = 7, whereas it is
JM = 18 for summation with decomposition and L + Zlel T; = 48 for summation
with rejection. Observe that if o2 (n™! 31, fF{X +£W})) = O(n2(logn)??),
given that D% ((€")ew) > Cs(logn)®/? /n, it seems reasonable to conjecture that,
generally, the convergence speed of the variance decreases exponentially with di-
mension s. Then, although the variance reduction is very large asymptotically, it
requires a larger n as the dimension increases.

5. CONCLUSION

We describe two new applications of variance reduction methods to product form
queuing networks: the first is based on antithetic variates and the second on low
discrepancy sequences. These methods are easy to implement. Antithetic variates
techniques always give an improvement over integration with exponential sampling
in the case of normal usage, that is when the latter method performs the best.
The technique based on low discrepancy sequences gives better results when the
mathematical dimension is small. As the mathematical dimension is usually small
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for integration with exponential sampling, we recommend its use in this case (our
example gives an efficiency 626 times better than with Ross, Tsang and Wang’s
method). In the case of summation, either with decomposition or rejection sam-
pling, the use of our methods depends on two factors. If the dimension is not very
large and the needed interval width is small (then a large number of iterations is
required), we can apply our methods with a large n. If the mathematical dimension
is large and the number of iterations needed is small, we recommend the use of Ross
et al.’s algorithms.
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Variate | Width for Ross et al | Width with antithetic

THu 0.000634 0.000263
THi» 0.000317 0.000132
T Ho; 0.000282 0.000114
T Hos 0.000403 0.000163
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| Variate | Width for Ross et al | Width with antithetic

THu 0.000629 0.000680

THi» 0.000629 0.000680
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[ Variate | Ross et al 1 =10° [ n =10%, 7 =10" [ n =105, 7 =103 | n =10, 1 =10* |
g 8.1970e+60 3.0134e+60 1.4013e+60 6.9722e+59
g 1.3187e+59 4.3284e+58 1.8322e+58 8.1147e+57
| THjm | 5.4623e-07 | 1.6259¢-07 | 6.4567¢-08 | 2.5715¢-08 |
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[ Variate | Ross et al 1 =10° [ n =10%, 7 =10" [ n =105, 7 =103 | n =10, 1 =10* |
g 2.7575e+12 2.3697e+12 2.2816e+12 2.2489e+12
g1 4.6949e+11 4.2516e+11 4.3404e+11 3.7260e+11
[ THim ] 1.1949e-03 | 1.0306e-03 | 9.3194e-04 | 7.0177e-04 |
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27

[ Variate | Ross et al 1 =10° [ n =10%, 7 =10" [ n =105, 7 =103 | n =10, 1 =10* |

g 2.5257e+21 3.6708e+21 2.7548e+21 1.6920e+21
91 1.0017e+20 9.8506e+19 7.2692e+19 4.8122e+19
[ THim | 2.5527e-05 | 2.0094e-05 | 1.3921e-05 | 1.0267e-05 |




