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ABSTRACT

Rare event simulation requires acceleration techniques
in order to i) observe the rare event and ii) obtain a valid
and small confidence interval for the expected value. A
“good” estimator has to be robust when rarity increases.
This paper aims at studying robustness measures, the
standard ones in the literature being Bounded Relative
Error and Bounded Normal Approximation. By con-
sidering the problem of estimating the reliability of a
static model for which simulation time per run is the
critical issue, we show that actually those measures do
not validate the satisfying behavior of some techniques.
We thus define Bounded Relative Efficiency and gener-
alized bounded normal approximation properties of the
two previous measures in order to encompass the sim-
ulation time. We also illustrate how a user can have a
look at the coverage of the resulting confidence interval
by using the so-called coverage function.

1 INTRODUCTION

In order to understand the behavior and dynamics of sys-
tems, stochastic modeling has been seen as a powerful
tool, with applications in various fields such as biol-
ogy, medicine, computer science, telecommunications...
The solution methods available to analyze those models
depend on their degree of abstraction: analytical tech-
niques are usually only applicable when quite stringent
assumptions are verified such as Markov property for
instance. If no necessary assumption is imposed, the
users have to turn to numerical solutions. Another re-
quirement for both analytical and numerical techniques
is that the model is of small to moderate size (or encom-
passes symmetries) so that the time to get the results
remains feasible. If those two requirements are not met,
Monte Carlo simulation becomes the method of choice.

Another issue is that, in many cases, the properties
of interest depend critically on the occurrence of a rare

event. This happens for instance in communication
networks, where a traditional measure of performance
is the packet loss probability having an incidence on
quality of service. Losses are generally due to buffer
overfilling and may be computed from queuing theory
tools. Another field of interest is dependability analysis.
For instance, we may be interested in computing the
probability of not being able to connect two terminal sites
of a network, due to failures in the links. Usually, these
events have very small probabilities, smaller than 10−9

in actual practice. Nuclear plants reliability analysis is
a similar critical application.

When we find a rare event situation, standard sim-
ulation techniques meet important difficulties, as the
low probability of the interesting states makes it very
improbable to observe them in a random sample of
the evolution of the system. This leads to very poor
precision in the estimation of the target measures, and
increases the probability of non meaningful experiments
(such as never observing the event of interest). There
has been much research in alternative techniques, which
can improve the precision of the estimation. Most of
these methods are usually classified within the class of
variance reduction techniques, as they strive to give es-
timators for the target measure having the same mean
value but smaller variance than the standard Monte
Carlo estimator (Fishman 1997). This improved preci-
sion is in general attained at the cost of employing a
more complex algorithm, which leads in many cases (but
not necessarily) to increasing the computational time.
Other methods have the same precision per replication
as standard Monte Carlo, but with lower computational
costs.

As there are many techniques offering different
tradeoffs, two immediate questions are i) is the method
robust as rarity increases? ii) what is the most ap-
propriate one? To answer those questions, a purely
empirical approach, used in some of the first papers
in the area, consists of observing the efficiency of each
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method (defined as the product of the variance by the
computational time) in comparison with the standard
Monte Carlo technique, which serves as a base point,
over a test set. This idea has many problems, as it is
difficult to extrapolate the results for other systems not
included in the test set, and to obtain useful insights to
design alternative methods. A better possibility is the
analytical study of the simulation methods. In particu-
lar, there has been a line of research of the asymptotic
behavior of rare event simulation estimators when the
rarity of the events goes to 0, which has led to define
new concepts such as bounded relative error, asymptotic
optimality (both concerning the size of the confidence in-
terval relatively to the considered rare event), and more
recently bounded normal approximation (looking at the
coverage of the confidence interval). These concepts
focus on the precision attained and the robustness of
the simulation estimators (both are important features,
see for example the discussion in (Heegaard 1998)), but
do not take into account the computational times as-
sociated with them. We show in this paper that those
properties are not defined generally enough to encom-
pass some classes of estimators actually exhibiting a
very nice behavior. This is illustrated on the prob-
lem of estimating the source-terminal reliability of a
network. We therefore generalize the above mentioned
properties by incorporating the average simulation time
to get a single measure. This leads to the definitions
of bounded relative efficiency and generalized bounded
normal approximation. Another concept that we intro-
duce in this paper is the use of the coverage function
(Schruben 1980) applied to rare event estimators to ex-
actly see in practice if the coverage of the estimator is
robust with respect to the rarity of the event.

Thepaper is organized as follows. InSection 2, we re-
call the properties from the existing literature: bounded
relative error, asymptotic optimality, and bounded nor-
mal approximation. In Section 3 we first present a simu-
lation method for estimation the static source-terminal
reliability in anetwork thatwill be used as the illustration
throughout the paper. We show that, despite being effi-
cient, this method does not verify the above traditional
properties. We thus propose a desirable property for a
simulation method, called Bounded Relative Efficiency,
which corresponds to the situation where a given rela-
tive error can be obtained with constant computational
effort even when the probability of the event of interest
goes to 0. We also provide for our illustrative simulation
method a sufficient condition for holding Bounded Rel-
ative Efficiency, implying its robust behavior. Section 4
then similarly generalizes bounded normal approxima-
tion property, providing a bound of error coverage in
average for a given simulation time. Again, a condition
is provided for the static reliability estimator. This last

property giving only a sufficient condition for ensuring
the coverage of the confidence interval, we look in Sec-
tion 5 at the effective coverage by using the so-called
coverage function. Section 6 presents numerical exam-
ples illustrating our results and Section 7 concludes the
paper and gives directions for future research.

2 PROPERTIES OF RARE EVENT

ESTIMATORS

Throughout the rest of the paper, we aim at estimating
the probability γ of a rare event. Since we wish to
study the robustness of estimators as rarity increases,
we introduce a rarity parameter ε characterizing the rare
event and such that as ε → 0, γ → 0. This parameter
may have different interpretations depending on the
context of use. In reliability models for instance, ε may
represent a maximum failure rate of a component in
the case of dynamic models (Shahabuddin 1994), or the
reliability of a component in the case of static models.
In queuing performance evaluation models, ε may be
chosen as 1/B where B is the buffer size, so that the
buffer overflow probability γ → 0 as ε → 0 (Juneja 1993,
Heegaard 1998).

2.1 Bounded Relative Error

Let us consider an unbiased estimator γ̂n of γ built from a
sample having size n. Bounded Relative Error (BRErr)
has been defined in (Shahabuddin 1994) in order to
state if the half-width confidence interval divided by γ
is bounded as ε tends to 0 (for a fixed sample size n).
This asserts the robustness of the estimation, meaning
that the relative error is not sensitive to the rarity of
the event. Formally,

Definition 1 Let σ2
n denote the variance of γ̂n,

σn =
√

σ2
n and let zδ denote the 1 − δ/2 quantile of

the standard normal distribution (zδ = N−1(1 − δ/2)
where N is the standard normal distribution). Then the
relative error RErr is defined by

RErr = zδ

σn

γ
. (1)

We say that we have a bounded relative error (BRErr)
if RErr remains bounded as ε → 0.

This property has been further studied in
detail in several articles (Heidelberger 1995,
Heidelberger, Shahabuddin, and Nicola 1994,
Nakayama 1996), mainly in the context of highly
reliable Markovian systems. Necessary and sufficient
conditions for verifying the property are provided in
those papers.
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2.2 Asymptotic optimality

Asymptotic optimality has been widely used in queuing
applications, for a special class of simulation meth-
ods called importance sampling. Importance sam-
pling consists of modifying the probability measure
of the system under study before simulating it: if
γ = Ef [g(X)] is the expectation of random vari-
able g(X) under probability measure f , then γ =
∫

g(x)f(x)dx =
∫

g(x)L(x)f∗(x)dx = Ef∗ [g(X)L(X)]
where L(x) = f(x)/f∗(x) is called the likelihood ratio
(assuming f∗ > 0 if fg > 0). In other words, γ is also the
expectation of g(X)L(X) under probability measure f∗.
Denoting γ̂n = n−1

∑n
i=1 g(Xi) the standard estimator

of γ where the sample is X1, · · · ,Xn, the importance
sampling estimator of γ corresponding to the new mea-
sure f∗ is γ̂IS

n = n−1
∑n

i=1 g(Xi)L(Xi). Then, if L � 1
the variance of γ̂IS

n verifies Var(γ̂IS
n ) � Var(γ̂n).

Definition 2 An importance sampling estima-
tor γ̂IS

n is called asymptotically optimal, if

lim
ε→0

lnEf∗ [g(X)2L(X)2]

ln γ
= 2.

Note that the quantity under limit is always positive and
less than or equal to 2.

Basically, this property means that when ε → 0 the
variance of γ̂IS

n goes to zero as well. However, what in-
terests us here is the relative error. In (Sandmann 2004),
it is proved that asymptotic optimality is a necessary
but not sufficient condition to BRErr.

2.3 Bounded Normal Approximation

Whereas the two previous properties deal with the vari-
ance of the estimator to maintain as small as possible
the relative size of the confidence interval, an important
remaining question is whether or nor the coverage of
this confidence interval remains bounded as ε → 0.

Bounded Normal Approximation (BNA)
(Tuffin 1999) ensures that the Gaussian approxi-
mation, and thus the confidence interval coverage,
remains valid as ε tends to 0. It is based on the
Berry-Esseen Theorem which states that if % is
the third absolute moment of each of the n i.i.d.
random variables Xi (and σ2 the variance), N the
standard normal distribution, γ̂n = n−1

∑n
i=1 Xi,

σ̂2
n = n−1

∑I
i=1(Xi − γ̂n)2 and Fn the distribution of

the centered and normalized sum (γ̂n − γ)/σ̂n, then
there exists an absolute constant a > 0 such that, for
each x and I

|Fn(x) −N (x)| ≤ a%

σ3
√

n
. (2)

Definition 3 We say that γ̂n verifies Bounded
Normal Approximation if %/σ3 remains bounded as ε →
0.

If the estimator enjoys this property, only a fixed
number of iterations is required to obtain a confidence
interval having a fixed error no matter how rarely failures
occur.

In (Tuffin 2004), it is shown that, for Markovian
reliability models, BNA implies that the estimation of
the variance is asymptotically correct, implying in turn
BRErr, which implies the γ is well-estimated, but that
none of the converse implications is verified in full gen-
erality. A refinement of the necessary and sufficient
condition for BNA is also provided in (Tuffin 2004).

3 DEFINITION OF BOUNDED RELATIVE

EFFICIENCY

3.1 Need for extending the current properties

Consider the problem of evaluating the reliability of
a “static” (time is not an explicit variable) stochastic
model of a complex system by Monte Carlo. To be
specific, consider a standard network reliability prob-
lem: we are given an undirected graph G representing
a communication network where nodes are perfect but
links (edges) can fail (they can be either operational
or completely down), two fixed nodes, s and t, and we
want to quantify the capacity of the network to support
the communications between these two selected nodes.
Edges are supposed to fail independently, and we know
the (elementary) reliability ri of each edge i (ri is the
probability that edge i is working). The random set of
operational edges defines a random subgraph G′ of G.
The target is the network reliability R, the probabil-
ity that nodes s and t belong to the same connected
component of G′.

The computation of R is NP-hard, and it is out
of scope today for even moderate graph sizes (having,
say, several dozens of nodes and links (Rubino 1998)).
Estimating R using a standard Monte Carlo method
consists of building n copies of G′, simply counting in
how many of those the selected nodes can communicate
and dividing this number by n. This ratio is an unbiased
estimator of R; its variance is R(1−R)/n. The cost of
building a copy of G′ following the standard approach is
Θ(M) if M is the number of links in G, and the average
cost in time of checking if s and t are connected in a
subgraph of G (that is, the cost of running a Depth First
Search procedure) is also Θ(M). The usual situation is
that the reliabilities of the lines are high, leading to a
rare event situation (1 − R ≈ 0).

In (Khadiri and Rubino 1996), a different estima-
tor of R is proposed, having some interesting properties.
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To use it, we need to build a set of elementary paths con-
necting nodes s and t, such that any pair of paths share
only nodes s and t. Let this set beP = {P1, P2, · · · , PH},
and call πh the event “all links of path Ph work”. Denote
by ph the probability of πh, that is,

ph = Pr[πh] =
∏

i∈Ph

ri.

Consider an infinite sequence of independent copies of
G′ and let F be the random variable “first element in
the sequence where every path in P has at least one
link that does not work”. See that

Pr[F = 1] = q =

H
∏

h=1

(1 − ph),

and in general, for any n ≥ 1,

Pr[F = n] = (1 − q)n−1q.

Then, on the average, we have to wait for E(F ) = 1/q
samples of G′ to find one such that no path in P con-
nects s and t. If the links are highly reliable, then q
will be small and E(F ) large. It was then proven in
(Khadiri and Rubino 1996) that the following intuitive
idea works. We first sample from the geometric distri-
bution of F . Call f the obtained value. The estimator
of R is then built assuming that in the first f −1 copies
of G′ nodes s and t are connected (saving a significant
amount of computations as the reliability gets close to
one). It remains to know if they are connected in the
fth copy or not. To build that fth copy, we must sample
the states of the lines in the network, conditioned to
the fact that each of the paths on P contains at least a
failed component. The problem reduces to sampling the
states of the edges in a path, knowing that at least one of
them is down; once this is done for the H paths, the rest
of the links in the network are sampled independently,
using their original reliabilities.

Let path Ph be Ph = (ih,1, ih,2, · · · , ih,Kh
) and let

ch,k = rih,1
rih,2

· · · rih,k
be the probability that the first

k edges in Ph (in some arbitrary and fixed order) are all
up, for 1 ≤ k ≤ Kh. Then, define a random variable Wh

on the set of integers {1, 2, · · · ,Kh} with distribution

Pr[Wh = k] =
(1 − rih,k

)ch,k−1

1 − ch,Kh

,

where ch,0 = 1. It can be then shown that Wh has the
distribution of the index of the random variable “first
failed edge of Ph knowing that there is at least one failed
edge”. To sample the state of links ih,1, ih,2, · · · , ih,Kh

we just sample Wh; if the obtained value is wh, links

ih,1, ih,2, · · · , ih,wh−1 are set to ‘up’, link ih,wh
is set to

‘down’, and the states of the remaining links i in the
path (from position wh +1 to position Kh) are sampled
from the original Bernoulli distribution with parameter
ri.

Consider the average cost in building n copies of
G′ using the previously described approach. We will
need, on the average, nq samples from the geometric
distribution. For each of these nq cases where we must
sample the conditional state of the links in the network,
we need to sample from W1, · · · ,WH , then to sample the
states of a subset of the whole graph, which has average
cost inO(M). This leads to an average global cost in time
of the form O(nq(M + K)), where K = K1 + · · ·+ KH .
Observe that the variance of the estimator is R(1−R)/n,
because as stated in (Khadiri and Rubino 1996), we are
in fact building the standard estimator in a more efficient
way.

Introduce the rarity parameter ε by assuming that,
∀i, there exist two reals ai, bi > 0 such that ri = 1−aiε

bi .
It is straightforward to verify that the unreliability γ =
1 − R → 0 as ε → 0. Let γ̂ be the above estimator of
the unreliability.

The Relative Error of this method is

Θ(
√

γ(1 − γ)/γ) = Θ(1/
√

γ) → ∞

as ε → 0. Nevertheless, as the per-replication com-
putational time decreases with ε, this should be also
considered in the asymptotic efficiency of the estimator.

3.2 Definition

For a fixed sample size, we thus define the Bounded
(Relative) Efficiency. It basically gives the (relative)
variance of an estimator obtained during a given simu-
lation time. Indeed, an estimator A yielding a smaller
variance than an estimator B for the same number n of
replications may require a larger computational time in
order to obtain one replication. The efficiency looks at
the variance obtained for a given simulation time since
a quicker estimator will run more replications.

Definition 4 Let γ̂n be an estimator of γ built
using n replications and σ2

n its variance (possibly depen-
dent). Let tn be the average simulation time to get those
n replications. The relative efficiency of γ̂n is given by

REff =
γ2

σ2
ntn

.

We will say that γ̂n has bounded relative efficiency
(BREff) if there exists a constant d > 0 such that REff
is minored by d for all ε.
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In the case of independent replications, tn = nt
and σ2

n = σ2/n with t and σ2 respectively the average
time and variance for a single replication. Therefore
the efficiency is REff = γ2/(σ2t), independent of the
sample size n.

Note again that the average per-replication simula-
tion time may vary with ε (as well as σ2 and γ).

3.3 Sufficient condition for BREff on our static

reliability estimator

Returning to our unreliability estimation problem, us-
ing n virtual replications, σ2

n = γ(1 − γ)/n and tn =
O(nq(M + K)) = O(nqM), since K ≤ M . We can
thus write tn = O(nq). The efficiency of this approach
is then O(γ2n/(γ(1 − γ)nq)) = O(γ/q) where a func-
tion f(ε) = O(g(ε)) if there exist d1 > 0 such that
f(ε)/g(ε) ≥ d1 for all ε sufficiently small.

Using standard representations of R in terms of
minpaths or mincuts (see (Rubino 1998)) we know that
γ = Θ(εr) for some real r > 0 (if every bi is an integer,
then r is an integer as well). Let C denote the set of
mincuts with probability Θ(εr) (the probability of a
mincut is the probability that all its components are
down). We also say that mincuts in C have “order” r.
Every other mincut not in C has probability Θ(εr′

) (or
order r′).

A sufficient condition for Bounded Relative Effi-
ciency is then the following.

Theorem 1 ∀Ph ∈ P, let Ph = (ih,1, · · · , ih,Kh
)

and bh = min1≤k≤Kh
bih,k

the order of the most reliable
edge of Ph. The estimator γ̂ of the static unreliability
described in previous section verifies Bounded Relative
Efficiency if

∑H
h=1 bh ≥ r.

Proof: Let ah =
∑

k:bih,k
=bh

aih,k
. We have

q =
H
∏

h=1

(1 − ph) =
H
∏

h=1

(

1 −
Kh
∏

k=1

(

1 − aih,k
εbih,k

)

)

=

H
∏

h=1

Θ(ahεbh) = (

H
∏

h=1

ah)Θ(ε
∑

H

h=1
bh).

Then REff = O(γ/q) = O(εr−
∑

H

h=1
bh) = O(1) (mean-

ing that BREff is verified) if
∑H

h=1 bh ≥ r. 2

The method is thus robust as ε → 0 whereas BRErr
is never satisfied.

4 GENERALIZED BOUNDED NORMAL

APPROXIMATION

Similarly to the BRErr property, BNA does not deal
with the computational time per run. A natural question
is then to see whether BNA could also be generalized.

Recall that Equation (2) bounds from above the dis-
tance between the (normalized and centered) empirical
distribution and the Gaussian law by a%/(σ3

√
n) when

using n independent runs. The generalization of BNA
rather considers the (average) distance between the two
distributions for a given simulation time instead of a
number of runs (by using the average computational
time per run). This leads to the following definition:

Definition 5 Let n(T ) be the average number of
runs for a given simulation time T . We say that the
estimator γ̂ verifies Generalized Bounded Normal Ap-
proximation (GBNA) if %/(σ3

√

n(T )) remains bounded
as ε → 0, or equivalently if %

√
t1/σ3 remains bounded as

ε → 0 since T = n(T )t1 (with t1 the average simulation
time for a single run).

This definition says that if GBNA is verified, the
coverage of the confidence interval is robust as the rarity
increases, when considering a fixed simulation time.

We then have the following theorem saying that, at
least for the static reliability analysis problem, GBNA
implies BREff , and what is more, that actually both
properties are equivalent.

Theorem 2 For our static reliability estimator,
GBNA is verified if and only if BREff is verified.

Proof: Since σ2 ≈ γ, BREff is verified if and only
if σ2t1/γ2 ≈ t1/γ is bounded as ε → 0.

But % ≈ γ also, thus GBNA is verified if and only
if
√

t1/σ3 is bounded as ε → 0, which is equivalent to
BREff. 2

5 COVERAGE ERROR

This section deals with a way to (exactly) look at the
coverage of an estimator. Whereas GBNA bounds the
distance between the empiric and Gaussian distributions
(and therefore bounds from above the coverage error of
the confidence interval), there indeed exists a way to
directly look at the coverage error of the confidence
interval (instead of bounding it), based on the seminal
paper from L.W. Schruben (Schruben 1980). Assume
with full generality that a confidence interval R(η, X)
is constructed for the estimation of parameter γ, at
confidence level η with (random) data X. Given the
randomness of the data, if the interval estimation is
based on true assumptions we have Pr[γ ∈ R(η, X)] = η.
If we define η∗ = inf{η ∈ [0, 1] : γ ∈ R(η, X)}, then, η∗

should be uniformly distributed:

Fη∗(η) = Pr[η∗ ≤ η] = η.

For each desired coverage level η, Fη∗(η) is the actual
coverage level. If Fη∗(η) < η, the coverage is over-
stated and may lead to wrong conclusions, while the
case Fη∗(η) > η means that the desired coverage could
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Figure 1: A simple topology.

have been reached at less cost, so that the method is
not efficient.

In practice, the distribution of η∗ is determined
by using I independent data sets Xi (1 ≤ i ≤ I) and
computing the corresponding values of η∗

i . From these
values, the empirical distribution of η∗ can be built.

Turning back to rare event estimation, let us now
define the Coverage Error.

Definition 6 Let n(T ) be the average number of
runs for a given simulation time T . Let Xn(T ) be the
n(T ) data used for an estimation γ̂ of γ, and η∗

n(T ) be

the random variable defined as η∗
n(T ) = inf{η ∈ [0, 1] :

γ ∈ R(η, Xn(T ))} (where R(·, ·) is usually the centered
interval using the empiric standard deviation estimator).
The Coverage Error function is defined by CErr(η) =
|Fη∗

n(T )
(η) − η| which depends on ε.

Note that the Coverage Error is always bounded
since supη∈[0,1] |Fη∗

n(T )
(η) − η| ≤ 1 for all ε > 0. Study-

ing this function in terms of ε, as well as Kolmogorov-
Smirnov statistic supη∈[0,1] |Fη∗

n(T )
(η) − η|, might nev-

ertheless be of interest.
In the next section, we are going to study the evo-

lution of the coverage function as ε → 0.

6 EXAMPLES

Consider as an illustration the static reliability esti-
mation problem when using the estimator described in
Section 3.1. Consider the topology of Figure 1 when
looking at the connectivity between nodes s and t.

6.1 Small illustrative problem

This very simple topology will enable us to derive explicit
expressions of the considered metrics and to check if
the properties are verified or not. Let ri = 1 − ε be
the reliability of each link i of the graph, and P1 and
P2 be the disjoint paths described on Figure 1. It
can easily be verified that the unreliability between
nodes s and t is γ = 1 − R = ε3 + 2ε2(1 − ε) ≈ 2ε2.
Moreover, the variance for a single estimation is given

by σ2 = γ(1 − γ) ≈ 2ε2. Therefore, σ/γ ≈ 1/(
√

2ε),
meaning that we do not have BRErr as ε → 0, when
using the naive implementation of crude Monte Carlo.

On the other hand, the probabilities that all links
of P1 and P2 work are p1 = 1 − ε and p2 = (1 − ε)2

respectively. Thus the probability that at least one link
does not work on each path is q = (1−p1)(1−p2) ≈ 2ε2.
The simulation time is proportional to the parameter q
of the geometric law giving the first time of a failure on
the disjoint paths tn proportional to q, so that REff =

Θ( γ2

σ2q
) is bounded. BREff is therefore actually verified.

Also

ρ = E
(

1{s and t not connected} − γ
)

= (1 − γ)3(ε3 + 2ε2(1 − ε))

+γ3((1 − ε)3 + 3(1 − ε)2ε + ε2(1 − ε))

≈ 2ε2 ≈ γ.

Since σ3 ≈ 2
√

2ε3 and n(T ) is inversely proportional to
q ≈ 2ε2, GBNA is also verified.

Let us now look at the numerical values that can
be obtained in practice. The first columns of Table 1
display the estimated value, the confidence interval (at
confidence level 95% the Relative Error observed in prac-
tice when the number of replications is fixed to n = 104

and ε → 0. It can be immediately observed that, for a

Table 1: Results on the simple topology, with a number
of replications fixed to n = 104

ri ∀i Est. Conf. interval RErr KS stat.
0.5 3.779e-01 (3.684e-01,3.874e-01) 2.515e-02 5.671e-02
0.9 1.901e-02 (1.899e-02,1.903e-02) 1.049e-03 4.861e-02
0.95 4.100e-03 (2.848e-03,5.352e-03) 3.055e-01 5.269e-02
0.99 2.000e-04 (-7.717e-05,4.772e-04) 1.386e+00 2.544e-01
0.995 0 (0, 0) — 1
0.999 0 (0, 0) — 1
0.9999 0 (0, 0) — 1

fixed number of iterations, the quality of the method is
getting worse, until the rare event is not observed any-
more (therefore exhibiting the same kind of behavior
than crude Monte Carlo would). The last column dis-
plays the Kolmogorov-Smirnov statistic (the supremum
over the coverage error) when using 500 estimations for
the empirical coverage function. It becomes equal to
1 as soon as the rare event is not observed anymore.
The coverage function for the different values of ε is
displayed in Figure 2. The curve for ε = 0.9999 is not
displayed since all the mass of the empirical distribu-
tion is at value 1. The coverage quality is observed to
degrade as ε → 0.
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Figure 2: Coverage function for different values of ε
and the simple topology. The curve for ε = 0.9999
is not displayed since all the all mass of the empirical
distribution is at 1.

In Table 2 the same kind of results are displayed, but
using the average number of replications for a simulation
time fixed to T = 10 seconds on our computer, leading
to different values of n(T ). It can be observed that the
relative error for a fixed simulation time (that is, the
relative efficiency) is bounded as ε → 0, in agreement
with the theory. The coverage function for the different
values of ε is displayed Figure 3. It closely follows a
uniform distribution as expected whatever the value of
ε, showing the robustness of the method.

6.2 Numerical illustration on a larger problem

Consider now a larger example to see how the same
simulation method behaves on a large state space. We
consider the dodecahedron topology displayed in Fig-
ure 4, and the estimation of unreliability between nodes
s and t. In this case, deriving analytical results is
cumbersome.

The relative efficiency of the method with respect
to crude Monte Carlo simulation is displayed Table 3.
The degree of improvement as the reliability increases
is clearly established. Comparisons with respect to
other rare event simulation methods can be found in
(Khadiri and Rubino 1996).

Table 2: Results on the simple topology, where the
number of replications n(T ) corresponds to the average
number of replications for a simulation time T = 10
seconds. This leads to n(T ) = 9e + 06 for ε = 0.5,
n(T ) = for ε = 0.9, n(T ) = 7e + 08 for ε = 0.95,
n(T ) = 1.75e + 10 for ε = 0.99, n(T ) = 6.9e + 10
for ε = 0.995, n(T ) = 1.71e + 12 for ε = 0.999 and
n(T ) = 1.69e + 14 for ε = 0.9999.

ri ∀i Est. Conf. interval RErr
0.5 3.750e-01 (3.747e-01,3.753e-01) 8.435e-04
0.9 1.901e-02 (1.899e-02,1.903e-02) 1.049e-03
0.95 4.872e-03 (4.866e-03,4.877e-03) 1.059e-03
0.99 1.991e-04 1.988e-04,1.992e-04) 1.050e-03
0.995 4.987e-05 (4.981e-05,4.992e-05) 1.057e-03
0.999 2.000e-06 (1.998e-06,2.002e-06) 1.060e-03
0.9999 2.001e-08 (1.999e-08,2.004e-08) 1.066e-03

Table 3: Results with respect to crude Monte Carlo for
the dodecahedron topology. The curves for ε = 0.999
and ε = 0.9999 are not displayed since all the all mass
of the empirical distributions is at 1.

ri ∀i Speedup w.r.t. crude MC
0.9 18.9
0.95 188.3
0.98 3800.2

Look now again at the numerical values that can
be obtained in practice. We also first consider the case
where the number of replications is fixed to n = 104 and
ε → 0. The first columns ofTable 4 display the estimated
value, the confidence interval (at confidence level 95%)
and the observed Relative Error. It can be immediately
seen that, for a fixed number of iterations, the quality
of the method is getting worse, until the rare event is
not observed anymore (therefore exhibiting the same
kind of behavior than crude Monte Carlo would). The
last column displays the Kolmogorov-Smirnov statistic
(the supremum over the coverage error) when using 500
estimations for the empirical coverage function. The
coverage function for the different values of ε is displayed
Figure 5. Here again, the degradation as ε → 0 can be
observed.

In Table 5 the same kind of results are displayed, but
using the average number of replications for a simulation
time fixed to T = 10 seconds on our computer, leading
to different values of n(T ). It can be observed that the
method is still very efficient, though it seems that the
observed relative error increases a little when ε. Indeed,
for this example, BREff has not been proved. All the
same, the method is very efficient for highly reliable
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Figure 3: Coverage function for different values of ε
and the simple topology for a simulation time fixed to
T = 10 seconds.

components. The coverage function for the different
values of ε is displayed Figure 6. The efficiency is again
observed here.

7 CONCLUSIONS

The standard measure of robustness of a rare event
estimator in the literature is Bounded Relative Error,
stating that the relative width of the confidence interval
remains bounded as rarity increases. We show here that
this measure is not sufficient since there exist efficient
estimators for which the variance is similar to that
of crude Monte Carlo (resulting in unbounded relative

Table 4: Results on the dodecahedron topology, with a
number of replications fixed to n = 104

ri ∀i Est. Conf. interval RErr KS stat.
0.5 7.082e-01 (6.993e-01,7.171e-01) 1.259e-02 3.3896e-02
0.9 3.200e-03 (2.093e-03,4.307e-03) 3.459e-01 9.6531e-02
0.98 0 (0, 0) — 7.99e-01
0.99 0 (0, 0) — 8.28e-01
0.995 0 (0, 0) — 1
0.999 0 (0, 0) — 1
0.9999 0 (0, 0) — 1
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Figure 4: Dodecahedron topology, with s = 1 and t =
20.

Table 5: Results on the dodecahedron topology, where
the number of replications n(T ) corresponds to the av-
erage number of replications for a simulation time T = 5
seconds. This leads to n(T ) = 9.8e + 04 for ε = 0.5,
n(T ) = 8.86e + 05 for ε = 0.9, n(T ) = 6.1e + 07
for ε = 0.98, n(T ) = 4.55e + 08 for ε = 0.99,
n(T ) = 3.5e + 09 for ε = 0.995, n(T ) = 4.28e + 11
for ε = 0.999 and n(T ) = 4.25e + 14 for ε = 0.9999.

ri ∀i Est. Conf. interval RErr KS stat.
0.5 7.120e-01 (7.091e-01 , 7.148e-01) 3.98e-03 4.313e-02
0.9 2.889e-03 (2.778e-03 , 3.001e-03) 3.87e-02 7.068e-02
0.98 1.749e-05 (1.644e-05 , 1.854e-05) 6.00e-02 3.036e-02
0.99 2.053e-06 (1.921e-06 , 2.184e-06) 6.41e-02 3.347e-02
0.995 2.540e-07 (2.373e-07 , 2.707e-07) 6.57e-02 2.965e-02
0.999 2.005e-09 (1.870e-09 , 2.1389e-09) 6.69e-02 6.562e-02
0.9999 1.981e-12 (1.847e-12 , 2.115e-12) 6.75e-02 5.436e-02

error), but for which simulation time per run drastically
decreases as rarity increases.

In this paper we have proposed the notion of
Bounded Relative Efficiency which incorporates both
the variance and the computational time. We have
also proposed the notion of generalized bounded nor-
mal approximation (GBNA) which ensures that the
discrepancy between the empirical distribution and the
Gaussian one is kept bounded as rarity increases, bound-
ing as a consequence the coverage error of the confidence
interval. Since GBNA is only a sufficient condition (and
not a necessary one) for ensuring the coverage of the
confidence interval, we have also proposed to study the
coverage function as rarity increases. All these notions
have been illustrated by a problem of estimating the
reliability of a static network.
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Figure 5: Coverage function for different values of ε and
the dodecahedron topology.
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Figure 6: Coverage function for different values of ε and
the dodecahedron topology for a simulation time fixed
to T = 10 seconds.

As directions for future research, we aim at defining
necessary and sufficient conditions for obtaining BREff
and GBNA in specific contexts such as, for instance, the
static reliability problems we have used here. Investi-
gating the importance of other parameters than rarity
(e.g. model’s size...) is also of interest.
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