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ABSTRACT

Due to the increasing availability of large-scale observations
and simulation datasets, data-driven representations arise as
efficient and relevant computation representations of geophy-
sical systems for a wide range of applications, where model-
driven models based on ordinary differential equations remain
the state-of-the-art approaches. In this work, we investigate
neural networks (NN) as physically-sound data-driven repre-
sentations of such systems. Viewing Runge-Kutta methods
as graphical models, we consider a residual NN architecture
and introduce bilinear layers to embed non-linearities which
are intrinsic features of geophysical systems. From numerical
experiments for synthetic and real datasets, we demonstrate
the relevance of the proposed NN-based architecture both in
terms of forecasting performance and model identification.

Index Terms— Dynamical systems, neural networks, Bi-
linear layer, Forecasting, ODE, Runge-Kutta methods

1. PROBLEM STATEMENT AND RELATED WORK

Model-driven strategies have long been the classic frame-
work to address forecasting and reconstruction of geophysi-
cal systems [1]. The ever increasing availability of large-scale
observations and simulation datasets make more and more ap-
pealing the development of data-driven strategies [2] espe-
cially when dealing with computationally-demanding models
or high modeling uncertainties [1].

In this context, data-driven schemes typically aim to iden-
tify computational representations of the dynamics of a given
state from data, i.e. the time evolution of the variable of in-
terest. Physical models usually describe this time evolution
through an ordinary differential equation (ODE). One may
distinguish two main families of data-driven approaches. A
first category involves global parametric representations deri-
ved from physical principles [3]. Polynomial representations
are typical examples [4]. The combination of such represen-
tations with sparse regression recently opened new research
avenues. A second category of approach adopts a machine
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learning point of view and states the considered issue as a
regression problem for a predefined time step dt, i.e. the re-
gression of the state at time t+ dt given the state at time t.

A variety of machine learning regression models have
been investigated, among which neural networks and nearest-
neighbor models (often referred to as analog forecasting
models in geoscience) are the most popular ones [5, 6]. Such
approaches offer more modeling flexibility to optimize fo-
recasting performance, at the expense however of a lack
of interpretability of the learnt representation. Regarding
neural network representations, a variety of recurrent neu-
ral networks [7] have been proposed to address non-linear
dynamics. They can lead to very accurate forecasting perfor-
mance, but they do not provide an explicit representation of
the systems of interest in terms of physically-interpretable
differential operators. With a view to jointly uncovering the
governing equations of geophysical processes and optimizing
forecasting performance, one may investigate neural network
representations designed as numerical integration schemes
of ordinary differential equations [8]. In [8] however, the
authors only embed classic non-linear activation functions.
Though such activations may theoretically represent any type
of non-linearities, this representations lead to overcomplex
approximations witch have trouble to efficiently encode bi-
linear non-linearities frequently encountered in geophysical
dynamics.

In this work, we investigate such residual neural net-
work representations for geophysical dynamics. We aim to
derive computationally-efficient and physically-sound repre-
sentations. Our contribution is three-fold : i) we introduce
a NN architecture with bilinear layers to embed intrinsic
non-linearities depicted by the dynamical systems, ii) we
make possible the physical interpretation of some NN mo-
dels based on bilinear non-linearities, iii) we demonstrate the
relevance of the proposed NN architecture with respect to
state-of-the-art models both in terms of model identification
and forecasting for synthetic datasets, namely Lorenz-63 and
Lorenz-96 dynamics [9] which are representative of ocean-
atmosphere dynamics and for real sea surface temperature
anomaly data.

This paper is organized as follows. Section 2 describes



the proposed NN-based architecture for dynamical systems.
Section 3 presents numerical experiments. We further discuss
our contributions in Section 4.

2. NEURAL NET ARCHITECTURES FOR
DYNAMICAL SYSTEMS

We present in this section the proposed NN architecture
to represent and forecast a dynamical system governed by an
unknown ODE. We first point out the graphical representation
of Runge-Kutta methods as residual neural nets as shown in
[8]. Based on this graphical representation, we introduce the
proposed bilinear NN. We then discuss training issues and
applications to forecasting and reconstruction problems.

2.1. Runge-Kutta methods as residual neural nets

Let us consider a dynamical system, whose time-varying
state X is governed by an ordinary differential equation
(ODE) :

dXt

dt
= F (Xt, θ) (1)

where F is the dynamical operator and θ some parameters.
The fourth-order Runge-Kutta integration scheme is among
the most classical ones for simulating state dynamics from a
given initial condition X(t0). It relies on the following se-
quential update for a predefined integration time step dt :

Xt0+(n+1)dt = Xt0+n·dt +

4∑
i=1

αiki (2)

{ki} are defined as follows : ki = F
(
Xt0+βiki−1dt, θ

)
with

k0 = 0, α1 = α4 = 1/6, α2 = α3 = 2/6, β1 = β4 = 1 and
β2 = β3 = 1/2.

Runge-Kutta integration scheme (2) may be restated using
a graphical model as illustrated in the bottom panel of Fig.1.
Assuming we are given an approximate model F̂ of the true
dynamical operator F , the fourth-order runge-Kutta scheme
can be regarded as a recurrent network with a four-layer resi-
dual net [8], each layer sharing the same operator F̂ . In this
architecture, coefficients {αi}i refers to the relative weights
given to the outputs of the four repeated blocks F̂ . The same
holds for coefficients βi which refer to the weight given to the
output from block i − 1 when added to input Xt and feeded
to block i.

Based on this representation of numerical integration (2)
as a residual net, we may state the identification of dynami-
cal operator F in (1) as the learning of the parameters of our
recurrent residual NN block F̂ stated as in Fig. 1. The other
parameters, namely coefficients {αi}i and {βi}i, may be set
to the values used in the fourth-order Runge-Kutta scheme or
learnt from data. Overall, the key aspect of the considered re-
sidual NN is the architecture and parameterization chosen for
the shared block F̂ that approximates the dynamical operator

F . We may also stress that the fourth-order architecture sket-
ched in Fig.1 may be extended to any lower- or higher-order
scheme. As a special case, the explicit Euler scheme leads to
a one-block architecture.

2.2. Proposed bilinear neural net architecture

Neural net architectures classically exploit convolutional,
fully-connected and non-linear activation layer [10]. Follo-
wing this classic framework, operator F may be approxima-
ted as a combination of such elementary layers. It may be
noted that dynamical systems, as illustrated for instance by
Lorenz dynamics (3) and (4), involve non-linearities, which
might not be well-approximated by the combination of a li-
near transform of the inputs of non-linear activation functions.
Especially physical dynamical systems often involve bilinear
non-linearities, which express some multiplicative interaction
between two physical variables [3, 11]. Among classic phy-
sical models, one may cite for instance advection-diffusion
dynamics or shallow water equations. Polynomial decompo-
sitions then appear as natural representation of dynamical sys-
tems for instance for model reduction issues [4].

These considerations motivate the introduction of a bili-
near neural net architecture. As illustrated in Fig.1, we can
combine fully-connected layers and an element-wise product
operator to embed a second-order polynomial representation
for operator F̂ in the proposed architecture. High-order poly-
nomial representation might be embedded similarly. In Fig.1,
we illustrate an architecture where operator F̂ can be repre-
sented as the linear combination of three linear terms (i.e.,
linear combination of the input variables) and three bilinear
terms (i.e., products between two linear combination of the
input variables). In this architecture, the parameterization of
the architecture initially relies on the definition of the number
of linear and non-linear terms, which relate to the number of
hidden nodes in the fully-connected layers, respectively FC1

and FC2,3. The calibration of the proposed architecture then
comes to learning the weights of the different fully-connected
layers. It may be noted that bilinear NN architectures have
also been proposed in other contexts [12, 13].

2.3. Dynamical model interpretation

A huge advantage of using bilinear neural network as a
building block of the RKNN introduced in [8] is the interpre-
tability of our dynamical operator when used to identify mo-
dels with only bilinear nonlinearities. While classical feed-
forward networks rely on non-linear activation functions to
capture non-linear behavior in dynamical systems, making
them difficult to be interpreted physically. The bilinear neural
network can approach very efficiently systems like Lorenz-63
using only linear activation functions sins it’s governed by bi-
linear nonlinearities. This configuration allows to learn a phy-
sically interpretable approximation as the output of the model



Fig. 1. Proposed bilinear residual architecture for the repre-
sentation of a dynamical system represented by (1). We illus-
trate an architecture associated with a 4th-order Runge-Kutta-
like numerical integration for an elementary time-step dt = 1.
It involves a four-layer residual neural net with an elementary
network F̂ repeated four times. The output of this elemen-
tary network involves a fully-connected layer FC4 whose in-
puts are the concatenation of the output of the fully-connected
layer FC1 and the element-wise product between the outputs
of fully-connected layers FC2 and FC3.

will be a linear combination of linear and bilinear combina-
tions of the inputs.

2.4. Training issues

Given the proposed architecture and a selected paramete-
rization, i.e. the number of nodes of the fully-connected layers
FC1,2,3 the number of F̂ blocks, the learning of the model
aims primarily to learn the weights of the fully-connected
layers associated with block F̂ . As stated previously, coeffi-
cients {αi}i and {βi}i from (2) may be set a priori or learned
from the data. Given a dataset {Xtn , Xtn+dt}n, correspon-
ding to state time series for a given time resolution dt, the
loss function used for training is the root mean square error
of the forecasting at one time step dt. Given the relationship
between the number of elementary blocks F̂ in the conside-
red architecture and the order of the underlying integration
scheme, one may consider an incremental strategy, where we
initially consider a one-block architecture, i.e. an explicit Eu-
ler integration scheme prior to increasing the number of F̂ -
blocks for a higher-order numerical scheme.

Regarding initialization aspects, the weights of the fully-
connected layers FC1,2,3,4 are set randomly and coefficients
{αi}i and {βi}i are set to those of the associated Runge-Kutta
scheme. We use Keras framework with Tensorflow backend
to implement the proposed architecture. During the learning
step, we impose a hard constraint that the different F̂ -blocks
share the same parameters after each training epoch.

2.5. Application to forecasting and dynamical model
identification

In this study, we first consider forecasting of the evolution
of state X from a given initial condition Xt0 . For a trained
NN architecture, two strategies may be considered : i) the use

of the trained architecture as a recurrent neural net architec-
ture to forecast a time series for a number of predefined time
steps dt, ii) the plug-an-play use of the trained operator F̂ in
a classic ordinary differential equation solver. It may be no-
ted that, for a trained operator F̂ , the fourth-order architecture
sketched in Fig. 1 is numerically equivalent to a fourth-order
Runge-Kutta solver.

We also explore the potential of the proposed NN re-
presentation for the identification of the underlying dynami-
cal model with bilinear non-linearities. Given a time series
{Xt+kdt}k that we assume is governed by an unknown ODE
that only involves linear and bilinear terms. The approximate
dynamical operator F̂ will be constructed using linear and
bilinear blocks feed into a fully connected layer with linear
activation functions.

This architecture allows us to reconstruct the physical
learned equations by propagating symbolic inputs through
the learnt NN block F̂ .

3. NUMERICAL EXPERIMENTS

This section presents the numerical experiments we per-
form to demonstrate the relevance of the proposed bilinear
NN architecture. We consider two categories of experiments :
using synthetic datasets issued from the numerical integra-
tion of classic dynamical systems and using a satellite-derived
SST (Sea Surface Temperature) dataset.

3.1. Synthetic case-studies

We first evaluate the proposed approach for 2 classic dy-
namical system, namely Lorenz-63 and Lorenz-96 dynamics,
for which we generate time series exemplars from the nume-
rical integration of the ODE which governs each system. We
use the Shampine and Gordon solver [14].

The Lorenz-63 system is a 3-dimensional system gover-
ned by the following ODE :

dXt,1

dt = σ (Xt,2 −Xt,2)
dXt,2

dt = ρXt,1 −Xt,2 −Xt,1Xt,3
dXt,3

dt = Xt,1Xt,2 − βXt,3

(3)

Under parameterization σ = 10, ρ = 28 and β = 8/3,
Lorenz-63 system involves chaotic dynamics with two attrac-
tors. The integration time step dt is set to 0.01.

Lorenz-96 system is a 40-dimensional system. It involves
propagation-like dynamics governed by :

dXt,i

dt
= (Xt,i+1 −Xt,i−2)Xt,i−1 +A (4)

with periodic boundary conditions (i.e. Xt,−1 = Xt,40 and
Xt,41 = Xt,1). Time step h is set to 0.05 and A = 8.

For each synthetic system, we generate a time series of
50000 time steps to create our training dataset and a time se-
ries of 1000 time steps for the test dataset.



In our experiments, we evaluate the forecasting perfor-
mance as the Root Mean Square error (RMSE) for an inte-
gration time of h, 4h and 8h, where h is the integration time
step of the simulated time series. For benchmarking purposes,
we compare the proposed bilinear residual NN representation
to the following data-driven representation :

— a sparse regression model [3] referred to as SR. It
combines an augmented bilinear state as regression
variable and a sparsity-based regression ;

— an analog forecasting operator [6] referred to as AF. It
applies locally-linear operators estimated from nearest
neighbors, retrieved according to a Gaussian kernel as
in [6] ;

Several NN representations are evaluated :

— the proposed bilinear residual architecture using a
one-block version (Euler-like setting), referred to as
Bi-NN(1), and a four-block version (Runge-Kutta-
like setting) with shared layers, referred to as Bi-NN-
SL(4). We use 3-dimensional (resp. 40-dimensional)
fully-connected layers for the linear and bilinear
layers FC1,2,3 for Lorenz-63 system (resp. Lorenz-96
system).

— a neural network architecture similar to the above
four-block one but replacing the proposed bilinear
block by a classic MLP [8]. From cross-validation
experiments, we consider a MLP with 5 hidden layers
(resp. 11 hidden layers) and 6 nodes in each layer
(resp. 80 nods in each layer) for Lorenz-63 model
(resp. Lorenz-96 model). This architecture is referred
to as MLP-SL(4) ;

— a MLP architecture trained to predict directly state
at time t + h from the state at time t. From cross-
validation experiments, we consider a MLP with 5
hidden layers (resp. 10 hidden layers) and 6 nodes in
each layer (resp. 80 nodes) for the Lorenz-63 model
(resp. the Lorenz-96 model). This architecture is re-
ferred to as MLP.

Learning from noise-free training data : in this experiment,
we compare the quality of the forecasted state trajectories ge-
nerated using the models described above (see Tab.1). The
learning of the data-driven models is carried using noise-free
time series computed using the analytical dynamical models.

Model identification : we investigate model identification
performance for Lorenz-63 dynamics in Tab.2. We report the
performance in terms of model parameter estimation for the
three data-driven schemes whose parameterization explicitly
relates to the true physical equations, namely SR, Bi-NN(1)
and Bi-NN(4)-SL. Bi-NN(4)-SL leads to a better estimation
of model parameters, which explains better forecasting per-
formance presented in Tab.1.

Table 1. Forecasting performance of data-driven models for
Lorenz-63 and Lorenz-96 dynamics : mean RMSE for dif-
ferent forecasting time steps for the following models, AF
(A), SR (B), MLP (C), MLP-SL(4) (D), Bi-NN(1) (E), Bi-
NN-SL(4) (F). See the main text for details.

A B C D E F

Lorenz-63
t0 + h 0.001 0.002 0.114 0.009 0.002 1.37E-5
t0 + 4h 0.004 0.008 0.172 0.035 0.006 4.79E-5
t0 + 8h 0.007 0.014 0.197 0.071 0.013 8.17E-5

Lorenz-96
t0 + h 0.242 0.031 0.827 0.731 0.049 0.012
t0 + 4h 0.580 0.086 1.623 1.870 0.140 0.035
t0 + 8h 0.988 0.147 2.215 2.752 0.246 0.064

Table 2. MSE in the estimation of Lorenz-63 parameters
for SR, Bi-NN(1) and Bi-NN(4)-SL models. See the main
manuscript for details.

Parameter value SR Bi-NN(1) Bi-NN(4)-SL

σ 10 9.97 10.10 10±E− 4
ρ 28 28±E− 13 27.74 28± E − 4
β 8/3 2.65 2.58 2.667
MSE 0.0387 0.31 4.6E− 4

3.2. SST case-study

We also evaluate the relevance of the proposed NN archi-
tecture for the forecasting and reconstruction of sea surface
dynamics, and more particularly sea surface temperature. We
consider an experimental setup similar to [15]. We use as SST
data the OSTIA product [16] delivered by the UK met Office
with a 0.05◦ spatial resolution from January 2008 to Decem-
ber 2015 with a temporal resolution h = 1 day. We here focus
on the SST anomaly below 100km using a Gaussian filtering
to remove the large-scale component. As case-study region,
we consider a region off south Africa located on longitude
5◦E to 75◦E and latitude 25◦S to 55◦S.

Our goal is to model and SST anomaly time series using
the proposed bilinear NN architecture. Following [15], we
adopt a patch-based representation with 20 × 20 patches
combined with a patch-level PCA decomposition so that
each patch is represented by a 50-dimensional vector. This
PCA decomposition accounts for 95% of the total patch-level
variance. Overall, the proposed bilinear NN architecture is
applied to 50-dimensional time series. The data from 2008 to
2014 were used as training data and we tested our approach
on the 2015 data.

We report forecasting performance on two patches which
involves complex ocean dynamics in Tab.3. Similarly to the
experiments with synthetic data, the proposed bilinear resi-
dual NN architecture (60-dimensional fully-connected layers
for the layers FC1,2,3) outperforms both MLP architectures



(10 hidden layers and 50 nodes in each layer), the sparse re-
gression model and locally-linear analog operators. We per-
formed additional experiments (not included due to the page
limit) for the interpolation of missing data in satellite-derived
SST image series [15]. Using the learnt NN model as a dyna-
mical operator in a Kalman-based assimilation scheme [15],
these experiments led to similar conclusions with a significant
improvement of the interpolation performance w.r.t. the best
competing methods (up to 40% in terms of MSE).

Table 3. Forecasting performance of data-driven models for
SST anomaly dynamics : mean RMSE for different forecas-
ting time steps for the following models, AF (A), SR (B),
MLP (C), MLP-SL(4) (D), Bi-NN(1) (E), Bi-NN-SL(4) (F).

A B C D E F

Patch 1
t0 + h 1.58 1.15 1.73 1.08 1.11 1.08
t0 + 2h 2.08 1.75 2.27 1.58 1.62 1.56
t0 + 3h 2.92 2.69 3.08 2.41 2.41 2.34

Patch 2
t0 + h 0.75 0.52 1.24 0.37 0.36 0.36
t0 + 2h 1.03 0.93 1.26 0.59 0.51 0.51
t0 + 3h 1.67 1.49 1.34 0.89 0.74 0.74

4. CONCLUSION

In this work, we demonstrated the relevance of a residual
bilinear NN representation for the modeling and identification
of geophysical dynamics. Our NN-based representation relies
on the representation of classic numerical schemes of diffe-
rential equations as a multi-layer recurrent network. Impor-
tantly, it embeds bilinear nonlinearities which are key features
of geophysical dynamics. We demonstrated the relevance of
the proposed NN representation in terms of identification and
forecasting performance for both synthetic and real datasets.
Such NN representation opens new research avenues for the
exploitation of machine-learning-based and physically-sound
strategies for the modeling, identification and reconstruction
of geophysical systems.
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