Beyond Petrov-Galerkin projection by using « multi-space » priors

Cédric Herzet Inria, France

Joint work with M. Diallo & P. Héas

The target problem...

Find $h^* \in \mathcal{H}$ such that $a(h^*, h) = b(h) \quad \forall h \in \mathcal{H}$

where \mathcal{H} is a Hilbert space $(\langle \cdot, \cdot \rangle$ and $\|\cdot\|)$ $a: \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is a bilinear operator $b: \mathcal{H} \to \mathbb{R}$ is a linear operator

... and its Petrov-Galerkin approximation

Find $\hat{h}_{PG} \in V_n$ such that $a(\hat{h}_{PG}, h) = b(h) \quad \forall h \in Z_n$

where $V_n \subset \mathcal{H}, Z_n \subset \mathcal{H}$ are *n*-dimensional subspaces

The precision of Petrov-Galerkin can be quantified by an « instance optimal property »

$$\left\|\boldsymbol{h}^{\star} - \hat{\boldsymbol{h}}_{\mathrm{PG}}\right\| \leq C(V_n, Z_n) \operatorname{dist}(\boldsymbol{h}^{\star}, V_n),$$

Standard methods constructing V_n often return a set of subspaces and their « widths »

Standard outputs of methods constructing V_n :

$$V_0 \subset V_1 \subset \ldots \subset V_n, \qquad \dim(V_k) = k$$

such that

$$\operatorname{dist}(\boldsymbol{h}^{\star}, V_k) \leq \hat{\epsilon}_k, \qquad k = 0 \dots n.$$

E.g., « reduced basis » methods

The Petrov-Galerkin projection discards most of the available information

Standard outputs of methods constructing V_n :

$$\bigstar \subset \bigstar \subset \ldots \subset V_n, \qquad \dim(V_k) = k$$

such that

dist
$$(\mathbf{h}^{\star}, \mathbf{X}) \leq \hat{\epsilon}_k, \qquad k = 0 \dots n.$$

E.g., « reduced basis » methods

Can we use this information to improve the projection process?

The Petrov-Galerkin projection can be reformulated as a variational problem

$$\hat{\boldsymbol{h}}_{\mathrm{PG}} = \operatorname*{arg\,min}_{\boldsymbol{h}\in V_n} \sum_{j=1}^n (b_j - \langle \boldsymbol{a}_j, \boldsymbol{h} \rangle)^2$$

where
$$\operatorname{span}\left(\{\boldsymbol{z}_{j}\}_{j=1}^{n}\right) = Z_{n}$$

 \boldsymbol{a}_{j} is the Riesz's representer of $a(\cdot, \boldsymbol{z}_{j})$
 $b_{j} = b(\boldsymbol{z}_{j})$

The proposed « multi-space » decoder adds new constraints to the variational problem

$$\hat{\boldsymbol{h}}_{\text{MS}} = \underset{\boldsymbol{h} \in V_n}{\operatorname{arg\,min}} \sum_{j=1}^n (b_j - \langle \boldsymbol{a}_j, \boldsymbol{h} \rangle)^2,$$

subject to dist $(\boldsymbol{h}, V_k) \leq \hat{\epsilon}_k, \quad k = 0 \dots n - 1.$

See [Binev et al., SIAM JUQ 17] for a related work.

$$n = 2$$

 $V_k = \operatorname{span}\left(\left\{\boldsymbol{v}_i\right\}_{i=1}^k\right)$

$$n = 2$$
$$V_k = \operatorname{span}\left(\{\boldsymbol{v}_i\}_{i=1}^k\right)$$

The shape of the iso-contours depends on $\mathbf{G} = [\langle \boldsymbol{a}_i, \boldsymbol{v}_j \rangle]_{ij}$

$$n = 2$$
$$V_k = \operatorname{span}\left(\left\{\boldsymbol{v}_i\right\}_{i=1}^k\right)$$

The shape of the iso-contours depends on $\mathbf{G} = [\langle \boldsymbol{a}_i, \boldsymbol{v}_j \rangle]_{ij}$

$$n = 2$$
$$V_k = \operatorname{span}\left(\left\{\boldsymbol{v}_i\right\}_{i=1}^k\right)$$

The shape of the iso-contours depends on $\mathbf{G} = [\langle \boldsymbol{a}_i, \boldsymbol{v}_j \rangle]_{ij}$

The feasibility region depends on $\{V_k\}_{k=1}^n$ and $\{\hat{\epsilon}_k\}_{k=1}^n$

Can we give some guarantee on the performance of the « multi-space » decoder?

Instance optimality properties

• Petrov-Galerkin:
$$\left\| \boldsymbol{h}^{\star} - \hat{\boldsymbol{h}}_{\mathrm{PG}} \right\| \leq C(\mathbf{G}) \operatorname{dist}(\boldsymbol{h}^{\star}, V_n),$$

• « Multi-space » decoder:

$$\left\|\boldsymbol{h}^{\star} - \hat{\boldsymbol{h}}_{\mathrm{MS}}\right\| \leq \left(\sum_{j=\ell+1}^{n} \delta_{j}^{2} + \rho \,\delta_{\ell}^{2} + \left(\operatorname{dist}(\boldsymbol{h}^{\star}, V_{n})\right)^{2}\right)^{\frac{1}{2}}$$

where ℓ and δ_j 's are "easily-computable" quantities only depending on $\mathbf{G} = [\langle \boldsymbol{a}_i, \boldsymbol{v}_j \rangle]_{i,j}, \{\hat{\epsilon}_k\}_{k=1}^{n-1} \text{ and } \{\operatorname{dist}(\boldsymbol{h}^{\star}, V_k)\}_{k=1}^n$

Particularization of the instance optimality bound to some examples

Particularization of the instance optimality bound to some examples

$$\hat{\epsilon}_{j} = \begin{cases} 1 & j = 0 \dots n - 3, \\ \epsilon^{\frac{1}{2}} & j = n - 2, n - 1, \\ \epsilon & j = n, \end{cases}$$

 $\operatorname{dist}(\boldsymbol{h}^{\star}, V_k) = \hat{\epsilon}_j$

$$\sigma_j = \text{sing. values of } \mathbf{G}$$
$$= \begin{cases} 1 & j = 1 \dots n - 3, \\ \epsilon^{\frac{1}{2}} & j = n - 2, n - 1, \\ \epsilon & j = n. \end{cases}$$

$$\left\| \boldsymbol{h}^{\star} - \hat{\boldsymbol{h}}_{\mathrm{PG}} \right\| \leq 1$$
$$\left\| \boldsymbol{h}^{\star} - \hat{\boldsymbol{h}}_{\mathrm{MS}} \right\| \leq 3\epsilon^{\frac{1}{2}}$$

Quid of the computational complexity?

PG projection can be en carried out efficiently with a complexity $\mathcal{O}(n^2)$ per iteration

$$\hat{\boldsymbol{h}}_{\mathrm{PG}} = \operatorname*{arg\,min}_{\boldsymbol{h}\in V_n} \sum_{j=1}^n (b_j - \langle \boldsymbol{a}_j, \boldsymbol{h}
angle)^2$$

« Least square » problem: can be solved efficiently via gradientbased methods with a complexity $O(n^2)$ per iteration.

Our decoder can also be implemented with a complexity $\mathcal{O}(n^2)$ per iteration

Our problem can be rewritten as:

$$\hat{\boldsymbol{h}}_{\text{MS}} = \underset{\boldsymbol{h} \in V_n}{\operatorname{arg\,min}} \sum_{j=1}^n (b_j - \langle \boldsymbol{a}_j, \boldsymbol{h} \rangle)^2,$$

subject to $\|P_{V_k}^{\perp}(\boldsymbol{h})\| \leq \hat{\epsilon}_k, \quad k = 0 \dots n - 1.$

We use the « Alternating Directions Method of Multipliers » to solve this convex problem with a complexity $O(n^2)$ per iteration

Some results

We consider a parametric mass transfert problem

$$egin{aligned} \mu_1 riangle oldsymbol{h} + \mathbf{b}(\mu_2) \cdot
abla oldsymbol{h} = oldsymbol{s} & ext{in } \Omega \ \mu_1
abla oldsymbol{h} \cdot \mathbf{n} = 0 & ext{in } \partial \Omega \end{aligned}$$

where $\mathbf{b}(\mu_2) = [\cos(\mu_2)\sin(\mu_2)]^{\mathrm{T}}$ $s = \exp\left(-\frac{\|\mathbf{x} - \mathbf{m}\|_2^2}{2\sigma^2}\right)$ $\mu_1 = [0.03, 0.05]$ $\mu_2 = [0, 2\pi]$

The multi-space decoder improves the worst-case approximation error over PG

Our contributions

- We exploit additional information in the Petrov-Galerkin projection
- We derive an instance optimal guarantee for our « multi-space » decoder
- We propose an efficient implementation for the « multi-space » decoder

Thank you for your attention.

Appendix

Main Theorem (IOP for multi-space decoder)

Theorem 1. The solution of the "multi-space" decoder satisfies:

$$\left\| oldsymbol{h}^{\star} - \hat{oldsymbol{h}}_{\mathrm{MS}}
ight\| \leq \left(\sum_{j=\ell+1}^n \delta_j^2 +
ho \, \delta_\ell^2 + (\operatorname{dist}(oldsymbol{h}^{\star}, V_n))^2
ight)^{rac{1}{2}},$$

where ℓ is the largest integer such that

$$\sum_{j=\ell}^n \sigma_j^2 \delta_j^2 \ge 4\gamma^2 (\operatorname{dist}(\boldsymbol{h}^\star, V_n))^2,$$

and $\rho \in [0,1]$ is defined as

$$ho \sigma_\ell^2 \delta_\ell^2 + \sum_{j=\ell+1}^n \sigma_j^2 \delta_j^2 = 4 \gamma^2 (\operatorname{dist}(oldsymbol{h}^\star,V_n))^2.$$

 $\gamma = \sup_{oldsymbol{h} \in V^{\perp}, \|oldsymbol{h}\| = 1} \left(\sum_{j=1}^{n} \langle oldsymbol{a}_{j}, oldsymbol{h}
angle^{2}
ight)^{\frac{1}{2}},$ $\mathbf{G} = [\langle oldsymbol{a}_{i}, oldsymbol{v}_{j}
angle]_{i,j}$ $\mathbf{X} = \text{right singular vectors of } \mathbf{G},$ $\sigma_{k} = k$ th singular value of $\mathbf{G},$

$$\delta_j = \sum_{k=1}^n \lvert x_{kj}
vert (\hat{\epsilon}_{k-1} + \operatorname{dist}(oldsymbol{h}^\star, V_k)).$$

ADMM (first step): problem reformulation

$$\hat{oldsymbol{h}}_{ ext{MS}} = rgmin_{oldsymbol{h}_n \in V_n} \sum_{j=1}^n (b_j - \langle oldsymbol{a}_j, oldsymbol{h}_n
angle)^2,$$

 $ext{subject to } \left\{ egin{array}{c} \|P_{V_k}^{\perp}(oldsymbol{h}_k)\| \leq \hat{\epsilon}_k, & k = 0 \dots n-1, \ oldsymbol{h}_0 = oldsymbol{h}_1 = \dots = oldsymbol{h}_n. \end{array}
ight.$

We add *n* new variables and *n* new constraints.

ADMM (second step): main recursions

$$\begin{split} \boldsymbol{h}_{n}^{(l+1)} &= \operatorname*{arg\,min}_{\boldsymbol{h}_{n} \in V_{n}} \sum_{j=1}^{n} (b_{j} - \langle \boldsymbol{a}_{j}, \boldsymbol{h}_{n} \rangle)^{2} + \frac{\rho}{2} \sum_{k=1}^{n-1} \left\| \boldsymbol{h}_{n} - \boldsymbol{h}_{k}^{(l)} + \boldsymbol{u}_{k}^{(l)} \right\|^{2}, \\ \boldsymbol{h}_{k}^{(l+1)} &= \operatorname*{arg\,min}_{\boldsymbol{h}_{k}} \left\| \boldsymbol{h}_{k} - \boldsymbol{h}_{n}^{(l+1)} + \boldsymbol{u}_{k}^{(l)} \right\|^{2} \text{subject to } \left\| P_{V_{k}}^{\perp}(\boldsymbol{h}_{k}) \right\| \leq \hat{\epsilon}_{k}, \\ \boldsymbol{u}_{k}^{(l+1)} &= \boldsymbol{u}_{k}^{(l)} + \boldsymbol{h}_{n}^{(l+1)} - \boldsymbol{h}_{k}^{(l+1)} \end{split}$$

$$\boldsymbol{h}_k^{(l)} \in V_n \text{ and } \boldsymbol{u}_k^{(l)} \in V_n \ \forall k,$$

They can thus be represented by *n*-dimensional vectors.

l