
Model Reduction from Partial Observations

C. Herzet1 and P. Heas1

1Institut National de Recherche en Informatique, 35000 Rennes, France

Our contribution takes place in the context of model reduction for parametric partial differential
equation:

PDE(u, µ) = 0, (1)

where u belongs to an Hilbert space H (with inner product 〈·, ·〉 and induced norm ‖ · ‖) and µ ∈ P
is a parameter. When the solution u(µ) of (1) has to be evaluated for many different values µ ∈ P,
the computational cost may become prohibitive. To circumvent this issue, model reduction intends to
simplify the resolution of (1) by constraining u to belong to some low-dimensional subspace S. The
choice of S should be made so that all the elements of the solution manifoldM = {u(µ) ∈ H : µ ∈ P}
are well-approximated by some element in S. Many techniques have been proposed in the literature
to identify such subspaces: reduced basis [3], POD [1], etc. However, all these methods presuppose
the knowledge of the solution manifold M (or the parameter set P) although the latter may not
always be available. On the other hand, since the advent of numerical acquisition, it has become quite
common to have (incomplete) measurements of the elements of M at our disposal. In this work, we
thus address the following question: can we build a good approximation subspace forM by exploiting
these measurements?

More formally, the setup considered in our work is as follows. We assume that: i) for each u ∈M,
we collect a set of observations {〈wi, u〉}mi=1, where {wi}mi=1 is an orthogonal basis of some subspace
W ; ii) we have a “rough” prior knowledge ofM, that is we are given some Σ̂ such thatM ⊆ Σ̂. We
assume that Σ̂ = {u : dist(u, V ) ≤ ε} for some ε ≥ 0 and n-dimensional subspace V . We address
the two following questions: i) how can we combine the observations {〈wi, u〉}mi=1 and the prior Σ̂ to
derive a “good” approximation subspace for M? ii) can we derive guarantees on the quality of this
approximation subspace?

The first question has a simple (theoretical) answer. Letting Σpost , ∪u∈M(Σ̂∩Hu), withHu = {u′ :
〈wi, u

′〉 = 〈wi, u〉 for i = 1, . . . ,m}, it can be seen that S? = arg minS:dim(S)=j maxu∈Σpost dist(u, S)
is the best j-dimensional approximation subspace for M from a “worst-case” perspective. As for
the second question, we provide an upper bound on the approximation quality achieved by S? by
elaborating on the recent results by Binev et al. [2]. More specifically, assuming that M ⊆ {u :
dist(u, U) ≤ ε′} where 0 ≤ ε′ ≤ ε and U ⊆ V is a k-dimensional subspace, we show that

max
u∈M

dist(u, S?) ≤ Cj ε
′, (2)

for some constant Cj ≥ 1. The value of Cj is related to the singular values of the projection operator
from V to W . In particular, when V and W obey some simple non-degeneracy conditions, we have
Cj < ∞ for j ≥ k. This shows that, under a proper choice of V and W , one can essentially achieve
the same reduction performance (up to some constant factor) as in the fully informed setup.
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