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How to study high-dimensional differential equations ?

e.g. wave equation, Navier-Stokes and Maxwell’s equations.
discretization yields high-dimensional systems{

xt = ft(xt−1, θt−1),

x1 = θ1,

with
state variable xt ∈ Rn,
ft : Rn × Rpt → Rn,
some parameters θt ∈ Rpt .

computing a trajectory {xt}t given some parameters {θt}t may lead
to unacceptable computational burdens.
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Reduced-Order Models (ROMs)

ROM is a system
involving a small number of degrees of freedoms,
providing a reasonable approximation for a set of operating regimes.

Set of operating regimes

X , {x , (x1 · · · xT ) : x trajectory with {θt}Tt=1 ∈ R },

where R is a set of admissible parameters.
e.g. Galerkin projections, Hankel norm approximations, principal
oscillating patterns (POPs) or principal interacting patterns (PIPs).
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Example of POD-Galerkin projection

Galerkin projection is a low-rank approximation.
obtained by projecting xt ’s onto a subspace spanned by the columns
of some matrix u ∈ Rn×k where k < n.
yields tractable k-dimensional recursion{

zt = u∗ft(uzt−1, θt−1),

z1 = u∗θ1.

approximation of xt obtained by matrix-vector multiplication uzt .
POD-Galerkin approximation chooses matrix u solution of

arg min
u∈U

‖ x− uu∗x ‖2F ,

with U the set of unitary matrices in Rn×k , given some x ∈ X .
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Ingredients to build a ROM

ROM construction scenarios:
i) representative set of trajectories because X perfectly known
ii) no representative trajectories because:

uncertainty on R, i.e. on X ,
intractable computation of X .

Common approach substitutes trajectories in X by their incomplete
observation (e.g. in geophysics, satellite images provide partial
observation of the Ocean state).
⇒ ignores noise, incompleteness of observations.
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Our contribution

Propose a methodology for model-reduction which
accounts for the uncertainties in the system to reduce;
exploits observations in the reduction process while taking into
account their imperfect nature.

Idea: recast model reduction as an a posteriori inference problem
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Surrogate prior

Regimes uncertainties
θt realization of a random variable Θt (probability measure of support
R).
i.e. , xt seen as the realization of a random variable Xt (probability
measure of support X )

Surrogate prior ηt
dominating measure
i.e. trajectories in X will have a non-zero probability
assume probabilistic model of the form:{

Xt = bt(Xt−1) + Vt ,

X1 ∼ η1(dx1),

where bt : Rn → Rn and where the Vt ’s are mutually independent
random variables.
often exist probabilistic models for deterministic chaotic systems.
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Observation model

set of M observations, say matrix Y = (Y 1
1 · · ·Y M

T ).
assume matrix X = (X1 · · ·XT ) and Y satisfy

Y i
t = ht(Xt) + Wt ,

where ht : Rn → Rm and Wt ’s are mutually independent noises.
Given the observations, one can hope to remove certain uncertainties
on the system regime, the final goal being to include this information
in the model reduction process.
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Posterior model

Bayesian estimators relying on the joint posterior measure of X given
some observation Y = y, say µ.
Hidden Markov model (HMM) factorization
Helpful to compute expectation for some integrable function ϕ

〈µ(·, y), ϕ〉 ,
∫
Rn×T

µ(dx, y)ϕ(dx).

Gaussian linear case or finite state HMMs ⇒ closed-form expectation
given by Kalman recursions or by the Baum-Welsh re-estimation
formulae
General case, sequential Monte-Carlo methods provide asymptotically
consistent estimators
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ROM a posteriori inference

The uncertainty on the state x given some observation Y = y is
quantified by the posterior µ.
ROM parametrization u inferred as the solution of

arg min
u∈U

〈µ(dx, y), φ(x,u)〉.

where the set U and cost φ(x,u) are specific to the ROM
May extend the construction of ROMs such as POD-Galerkin, POPs,
POPs, etc.
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Particularization to POD-Galerkin projection

In this case we have
U is the set of unitary matrices u ∈ Rn×k ,
φ(x,u) ,‖ x− uu∗x ‖2

F .
Closed-form solution û by eigen-decomposition of

〈µ(dx, y), xx∗〉.

(û formed by the eigenvectors associated to the k largest eigenvalues)

P. Héas & C. Herzet (INRIA Rennes) 11 / 17



Comparison with state-of-the-art ROM inference

Expectation decomposition as

〈µ(dx, y), xx∗〉 =
T∑

t=1
pt + x̄t(y)x̄∗t (y).

where a posteriori mean x̄t(y) ∈ Rn and covariance pt ∈ Rn×n.
The standard snapshot method diagonalizes instead

T∑
t=1

x̂t(y)x̂∗t (y),

where x̂t(y) denotes some estimate of the state xt given y.
Conclusion:
⇒ snapshot ignores directions where some uncertainty remains a

posteriori. (e.g. for the MMSE estimator x̂t(y) = x̄t(y), neglects pt ,
i.e. directions where the covariance of the estimation error is large).
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Numerical simulation: ROM of 2D turbulence

Goal: reduce the 2D Navier-Stokes equations from a video of scalar fields.
linear observation model describes variation yt ∈ R214 of the intensity
of a scalar field conveyed by the flow.

ht(xt) = htxt + ξt ,

with a zero-mean uncorrelated Gaussian noise ξt of variance σ2

quadratic function with respect to velocity xt ∈ R216

ft(xt−1, θt−1) = c∗(in + α`− x∗t−1r)cxt−1 + θt−1,

where variable θt ∈ Rn accounts for some forcing.
⇒ sequence of 50 motion and scalar fields {xt}50

t=1 and {yt}50
t=1 for a

given operating regime {θt}50
t=1 ∈ R.

P. Héas & C. Herzet (INRIA Rennes) 13 / 17



Numerical simulation: surrogate prior

standard or self-similar “optic-flow” priors1 : time-uncorrelated
Gaussians of covariance qt .
In this linear Gaussian setting, we obtain the posterior mean and
covariance {

x̄t(y) = σ−2pth∗t (yt − ξt),

pt = σ2(h∗t ht + σ2qt)−1.

1see references in P. Héas, F. Lavancier, S. Kadri Harouna. Self-similar prior
and wavelet bases for hidden incompressible turbulent motion. SIAM Journal on
Imaging Sciences, Volume 7, Issue 2, pp. 1171-1209, 2014.
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Results: uncertainty v.s. estimation error (t=25)

standard prior

self-similar prior
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Results: reduction of POD-Galerkin projection error
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Square `2 error with respect to dimension k using state-of-the-art snapshot method (red
solid line), the proposed method (green dashed line) or using directly the ground truth
(blue dotted line).
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Any questions ?
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