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ABSTRACT

This paper focusses on safe screening techniques for the
LASSO problem. We derive a new sphere test, coined RFNE,
exploiting the firmly non-expansiveness of projection opera-
tors. Our test generalizes some methods of the literature but,
unlike the latter, exploits approximated primal-dual solutions
of the LASSO problem while remaining safe and effective.
Our simulation results show that the proposed RENE test out-
performs the best methodology of the state of the art, namely
the GAP test derived by Fercoq et al.

Index Terms— /;-norm minimization, LASSO, screen-
ing techniques.

1. INTRODUCTION
This paper focusses on the (nonnegative) LASSO problem!:

X3 € arg>min Py (y,x), (D)
x>0

where Py(y,x) = 1|y — Ax||§ + Ax|l;, and y € R™,
x €R", A =Ja,...,a,] € R™*" with ||la;||, = 1 for all .
During the last decade, ¢;-norm penalization has revealed to
be a proper regularization scheme for many inverse problems
(see [2]). Therefore, the study of computationally-efficient
procedures solving (1) has become an active field of research
[3-6].

Recently, an important step in that direction has been car-
ried out in [7] by El Ghaoui et al.: the authors introduced a
“screening” technique, allowing for a safe’ identification of
some of the zeros in x}; the latter components can thus be
ignored in the LASSO computations leading to (potentially)
huge memory and computational savings. Since the corner-
stone paper by El Ghaoui et al., many contributions address-
ing the screening problem have appeared in the literature, see
[8-15].

*Cédric Herzet was supported by the French National Research Agency
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IThe standard LASSO problem can be reduced to a particular instance of
(1), see [1, Section 2].

2The term “safe” refers to the fact that the elements identified by the
screening method always correspond to zeros of x3.
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In this paper, we propose a new screening method belong-
ing to the family of “safe sphere tests”. Our approach relies
on properties of projection onto convex sets and generalizes
some methods of the state of the art [13, 14]. In particular,
unlike previous works, the proposed screening technique is
ensured being safe even when the primal-dual solution ex-
ploited in the test is corrupted by some error’. We show that
our methodology leads to superior performance than the best
sphere test of the current state of the art (namely GAP [15]),
at both a theoretical (in some specific setups, see Lemma 1)
and an empirical level.

2. SOME CONVEX CONSIDERATIONS

In this section, we remind some elements of convex analysis
which will serve as building blocks in the next sections.

Problem (1) is convex and has always (at least) one so-
lution x3 [16]. The dual problem associated to (1) can be
written as (see for example [12]):

0% =argmax D,(y,0), )
6D

where

1,2 1 2
Di(y,0) = 5“3’”2 - §||y =05,
D={0cR":a/6<11<i<n}.

Since Dy (y, 0) is a strictly convex function and D a closed
set, there exists one unique 0% satisfying (2). We can also
notice that (2) can be recast as a projection problem, 8% being
the projection of y /A onto D. We will exploit this property in
Section 4 to state Theorem 1.

From the Karush-Kuhn-Tucker conditions, it can be
shown that any primal-dual optimal couple (x3, %) must
satisfy the following optimality conditions [17, Prop. 5.1.5]:

x} >0, a0 < 1forall, ©)
(a;FHK — 1)x§(z) =0 for all 4, 4
y = A0} + Ax}, 4)

3This error is related for instance to the finite numerical precision of nu-
merical solvers.



where x3 (i) denotes the ith component of x}. From these
conditions, it can be seen that if A > Aar = HATyHOO, then
the only possible solution is x} = 0, see e.g., [7, Section 4.2].
In the sequel we will therefore restrict our attention to the case
A < Amaz-

3. SCREENING TESTS

It is well-known that the solutions of (1) are typically sparse.
Optimality conditions (3)-(5) provide some information about
the position of zeros in x%. Indeed, if a; 6} < 1 then neces-
sarily x3 () = 0 from (4). Defining the support of x > 0 and
the active set associated to 8 € D as

supp(x) = {i € {1,...,n} : x(i) > 0},
acts(9) = {i € {1,...,n} a0 =1},

this can also be rewritten as
supp (x}) C acts(63). (6)

Knowing 63 thus gives a valuable information about the sup-
port of x¥. Of course, in practice 87 is unknown and solving
(2) is unfortunately as difficult as solving (1).

Nevertheless, as first noted in [7], (4) can be of interest to
identify the position of some of the zeros in x}: assume one
can identify a region R C R™ such that 85 € R; then the
following inequality trivially holds

a0} <maxa; 6,
O0cR

and from (4), we thus have

max alf<1=x}(i)=0. @)
This observation was the cornerstone of the “safe” screen-
ing test proposed in [7]. Since this seminal paper, many dif-
ferent tests, corresponding to different choices of R (sphere,
dome, etc), have been proposed in the literature, see [9—15].
In this paper, we focus on the family of sphere tests because:
i) they are conceptually very simple; ii) they have been shown
to achieve state-of-the-art performance [15]. In such a case,
R = S(q,7) £ {0 € R™ : ||6 — q]|, < r} and the screening
test (7) takes a very simple form:

aiq+r<1=x3(i)=0. ®)

The sphere tests proposed in the literature differ in the defi-
nition of the center q and the radius r, see [7,9, 13-15]. We
review the most competitive sphere tests of the literature in
Sections 4 and 5. We present some methodologies deriving
from the properties of projection onto convex sets [13, 14] in
Section 4. In Section 5, we recall the main equations of the
GAP test [15], which is a safe screening method currently
achieving the best performance of the state of the art.

4. TESTS BASED ON PROJECTION PROPERTIES

A recent line of research has concentrated on the design of
screening methods exploiting the knowledge of a dual op-
timal point 8%, with A’ # A. Among the most effective
screening methods relying on this approach, let us mention
the sphere test based on “variational inequalities” presented in
[13] and the methods exploiting the non-expansiveness prop-
erty of projection operators onto convex sets in [14]. The in-
equalities exploited in these papers are summarized and ex-
tended in the following result:

Theorem 1. Let @ € D. Then,

N 1(y ¥
\"A (‘”2@ x))

foranyy' € Y(0), where

VO) =y ¥y =X+ D aix(i), x>0, (10)

i€acts ()

This result is a direct consequence of the firmly non-
expansiveness (FNE) property of projection operators (see
[14]) and of the optimality conditions (3)-(5). A proof can
be found in the technical report associated to this paper [18].
In the sequel we will refer to the screening methods deriving
from Theorem 1 as FNE sphere tests.

As a consequence of Theorem 1, safe screening tests can
be derived from any sphere S(Qme, I'tme) satisfying

qfne:0+%(z_%)7
1 (an
l

B

where 8 € D and y’ € Y(0). In particular, the spheres pro-
posed in [13, 14] are obtained as particular cases of (11): if
0 = 6}, and y’ = N6}, for some X # A, (11) corresponds
to the “variational” sphere proposed in [13, Section 2]; simi-
larly, if 8 = 0:{, and x = x3,, for some 3 > 0, one recovers
the “EDDP” sphere proposed in [14, Th. 15].

It can be seen from Theorem 1 that the choice of y’ consti-
tutes a degree of freedom in the construction of an FNE sphere
test. In practice, a good rule of thumb consists in choosing y’
close toy: as seen from (11), the radius of the FNE sphere can
be decreased by a proper choice of y'. Since y’ € Y(0) and
y € Y(63), one should therefore choose 8 such that Y(8) is
close to J(03%). In particular, if some 6%, with A ~ X’ is avail-
able (as it occurs in sequential implementations of LASSO),
setting @ = 63, is certainly a sensible choice.

However, in practice, this approach faces an important
bottleneck: only finite-precision approximations of 83%,, say*
0 » € D, are available in numerical solvers. Unfortunately,

X
y _ ¥
Ttne = ‘j—y

4Without loss of generality we assume that 0 » € D because this config-
uration can always be achieved by dual scaling, see [7, Section 3.4].



simply using 8 = 6 in Theorem 1 (as implicitly done in
[13]) typically leads to poor results for the following reason:
in most cases the cardinality of acts(@y/) is equal to 1 and
y(é a) thus corresponds to a half-line in R™; on the other
hand, the cardinality of acts (8} ) is often much larger’ than 1
and )(@%) is a high-dimensional cone in R™; hence, we are
likely to fail finding y’ € V() close to'y € Y(8%).

To deal with this issue, an approach (implicitly) con-
sidered in [14] consists in approximating acts (é ) by
supp (X, ) in the definition of y(éx) (see (10)), where X is
a finite-precision approximation of x3,. Unfortunately, such
an approximation may lead to a violation of the hypotheses
of Theorem 1 and this approach is then no longer ensured to
lead to a safe screening test.

We propose a solution to this issue in Section 6 by deriv-
ing a new safe sphere test relaxing the constraint of a perfect
knowledge of %, while allowing for a fine tuning of y’. In
the next section, we recall the expressions of the GAP sphere
test which constitutes one of the building blocks of the result
presented in Theorem 2.

5. THE GAP SPHERE TEST

In [15], the authors used another route to derive a safe sphere
test: they exploited the dual gap between the primal and
the dual functions of the LASSO problem. More specifi-
cally, they showed that the following inequality holds for any
primal-dual feasible points (x, 6):

165(y) = Oll; < V2A"2(Px(y,x) — Da(y.0)).  (12)

It immediately follows that the sphere S(qgap, r'gap) With

Qgap = 0, (13)
T'gap = \/2)\72(P>\(y7x) - D)\(Ya 0))7

and x > 0, 8 € D, defines a safe sphere test. The GAP
sphere test has been shown to lead to very impressive results.
In particular, the radius of the sphere 74, tends to zero as
(x, @) converges to (x%, 63).

Because the GAP sphere (13) is safe for any primal-dual
feasible point, it might be interesting to compare it with the
FNE sphere test defined in (11) for (x, 0) = (x},,0%/), A #
A. The next lemma, whose proof is available in our technical
report [18], provides an answer to this question:

Lemma 1. Assume one wants to solve (1) for a given A > 0
and a primal-dual solution (x%,,0%,), X # N < Apmag, is
available. Then, there exists y' € ) (03,) such that the FNE
sphere defined in (11) and the GAP sphere defined in (13) with
(x.0) = (x3,.03) verify

S(qfne7 Tfne) C S(qgap7 Tgap)a (14)

SFrom (6), we have that card {acts (6% ) } > card{supp (x})}.

that is the FNE sphere is strictly included in the GAP sphere.
In particular, (14) holds when y' is a minimizer of T,e over

Y(0%)-

The inclusion (14) implies that any zero identified by the
GAP test will also be identified by some FNE test. Hence,
as far as a primal-dual optimal point (x3},,03,) is available,
Lemma 1 suggests that using FNE rather than GAP screening
tests may be rewarding. We discuss the implementation of
FNE tests based on the approximate knowledge of (x3,, 6%,)
in the next section.

6. RELAXED FNE SPHERE TESTS

Motivated by Lemma 1, it may be tempting to derive FNE
sphere tests by setting & = 03, with A ~ ). Unfortunately,
as discussed at the end of Section 4, one has to face to the
problem of the finite precision of 83, in practical numerical
solvers.

In the next theorem, we provide a solution to this issue by
deriving a relaxed version of the FNE sphere test:

Theorem 2. Let x and 0 be primal and dual feasible points
and let

y =)\0 + Ax. (15)
Then,

||0; - qfne”Q S Ttne + Tslack (16)

where Qene and T, are defined in (11) and
Tlack = (X)l/Q\/Z x(i)(1 — a]'@)

A proof of this result can be found in the technical re-
port associated to this paper [18]. It essentially relies on the
arguments developed in Theorem 1 and the use of the GAP
inequality (12).

There are two main differences between Theorems 1 and
2. First, the definition of y’ in Theorem 2 is a relaxed version
of the one in Theorem 1. More specifically, unlike in Theo-
rem 1, Theorem 2 does not require that the positions of the
nonzero elements in x correspond to indices in acts(0). Sec-
ond, the radius of the sphere defined in (16) is larger than the
one defined in (9): the extra term in (16), 751ack, penalizes the
violation of the complementary slackness condition (4). This
term disappear as soon as supp(x) C acts(0). In particular,
if (x,0) = (x3,,60%), we have rgacc = 0 and (16) corre-
sponds to the standard FNE test defined in Theorem 1. In this
sequel, we will refer to the screening methods deriving from
Theorem 2 as “Robust FNE” (RFNE) tests.

We next consider the RFNE sphere test obtained by par-
ticularizing Theorem 2 to y’ defined as follows:

y' = arg min re, 17)
FEV(8)



with

VO)=SFeR™:No\+ >

i€supp(Xy)

a;x(i), x>0,

and (X, 0 ») are some finite-precision approximation of
(x5,0%). In practice, (X, 65) can for example correspond
to the output of the numerical solver at a given iteration or,
in a sequential implementation, to (an approximation of)
(x%/,03) with X > X. We assess the performance of such a
sphere test in the next section.

7. SIMULATION RESULTS

In this section, we assess the performance of the screening
test presented in Section 6. We compare our approach to the
GAP sphere test which is currently the most competitive safe
method of the state of the art.

Our simulation setup is as follows. The entries of A €
R128%512 are drawn from a uniform distribution on [0, 1]. The
columns of A are then normalized such that ||a;||, = 1 for
all i. y = Ax where x is a vector with 50 nonzero el-
ements whose amplitude is drawn from a uniform distribu-
tion on [0,1]. We consider a sequential implementation of
LASSO where the solution of (1) has to be computed for
M/ Amaz = 0.95 x 1072/T=1 ¢ ¢ {1,...,T — 1} and
T = 30. For each )\;, we search for a solution of (1) with
a FISTA procedure [5] initialized with the solution obtained
for \;_; (warm start). The solver is run until a duality gap
P(y,%»,) — D(y,8,,) smaller than ¢ = 1077 is reached.
For each value of \;, we apply a dynamic screening strategy
as suggested in [19,20]: a screening test is carried out every
10 iterations by exploiting the output (Xy,,6,,) of FISTA;
the zeros which have been identified are removed from the
problem.

Fig. 1 illustrates the proportion of zeros (with respect to
the total number of zeros in x3 ) identified by the GAP and
the proposed RFNE sphere test. The z-axis (resp. y-axis)
corresponds to the logarithm of the ratio (\;/Apaz) ' (resp.
the number of iterations). One can notice that the proposed
RFENE test allows for the identification of many more ze-
ros of x3 than the GAP method at the very first iteration
of the numerical solver. This can be understood as follows.
The first screening test performed when considering problem
(1) with \; is based on (f(,\t,é,\t) = (i/\t,l,éx\t,l) where
(Xx,_,,0», ,) is the final approximation of (xx,_,,0%,,)
computed by FISTA; now, provided the FISTA solver has
reached a fair convergence, the gap in the complementary
slackness condition (and thus rg,cx in (16)) must be very
small. In this case, the RFNE test presented in Section 6 is
close to the FNE test in (11). We can thus expect the result
in Lemma 1 to apply, that is the (R)FNE sphere is strictly in-
cluded in the GAP sphere. This is indeed what we observe in
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Fig. 1. Proportion of zeros identified by the screening procedures
as a function of — log;(At/Amax) (z-axis) and the (log,, of the)
number of iterations (y-axis): GAP (top) and safe FNE (bottom).

terms of screening performance in Fig. 1. On the other hand,
during the subsequent iterations, the two screening methods
have similar performance. We have run simulations in differ-
ent setups and with different dictionaries (not presented here
for conciseness) and always observed this same behavior.

8. CONCLUSIONS

In this paper we proposed a new safe sphere screening test,
namely RFNE. Our method generalizes state of the art meth-
ods and is ensured to be safe. It relies on estimated primal-
dual solutions rather than exact ones which are unreachable in
practice. We compared the proposed method to the best safe
sphere test of the state of the art, namely GAP. We showed
that RFNE performs at least as well as GAP in terms of zeros
identification. Moreover, RFNE is able to identify far many
more zeros at early iterations of the resolution process.
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