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Abstract. This paper deals with model order reduction of parametrical dynamical systems.
We consider the specific setup where the distribution of the system’s trajectories is unknown but
the following two sources of information are available: (i) some “rough” prior knowledge on the
system’s realisations; (ii) a set of “incomplete” observations of the system’s trajectories. We propose
a Bayesian methodological framework to build reduced-order models (ROMs) by exploiting these
two sources of information. We emphasise that complementing the prior knowledge with the col-
lected data provably enhances the knowledge of the distribution of the system’s trajectories. We
then propose an implementation of the proposed methodology based on Monte-Carlo methods. In
this context, we show that standard ROM learning techniques, such e.g., Proper Orthogonal De-
composition or Dynamic Mode Decomposition, can be revisited and recast within the probabilistic
framework considered in this paper. We illustrate the performance of the proposed approach by
numerical results obtained for a standard geophysical model.

1. Introduction. In many fields of Sciences, one is interested in studying the
spatio-temporal evolution of a state variable characterised by a differential equation.
Numerical discretisation in space and time leads to parameterised high-dimensional
systems of equations of the form:{

xt = ft(xt−1, θ),

x1 = g(θ),
(1.1)

where xt ∈ Rn is the state variable, θ ∈ T denotes some parameters and ft : Rn×T →
Rn, g : T → Rn. Because (1.1) may correspond to very high-dimensional systems,
computing a trajectory {xt}Tt=1 may lead to unacceptable computational burdens in
some applications.

As a response to this bottleneck, reduced-order models (ROMs) aim at providing
“good” approximations of the trajectories of (1.1) (in some particular regimes of
interest) via strategies only requiring significantly-reduced computational resources.
Among the most familiar reduction techniques, let us mention Galerkin projection
using proper orthogonal decomposition (POD) [19] or reduced basis [26], low-rank
dynamic mode decomposition (DMD) [6, 17, 21], second-order nonlinear operator
approximation [25], balanced truncation [2] or Taylor expansion [14].

All the techniques mentioned above presuppose (explicitly or implicitly) the knowl-
edge of the trajectories that the ROM should accurately approximate. In many contri-
butions, such a knowledge is characterised by the (so-called) solution manifold defined
as

M = {x = (x1 · · ·xT ) ∈ Rn×T : x obeys (1.1) for some θ ∈ T }, (1.2)

see e.g., [8]. In this paper, we consider a slightly more general setting by assuming
that the set of trajectories to reduce are specified by a probability density on x, say
pX.1 Unlike the standard formulation (1.2), density pX then provides information
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1The latter density can for example be defined via (1.1) by imposing a probability density on
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on both the set of trajectories of interest (which corresponds to pX 6= 0) and their
probability of occurence.

Unfortunately, in practice a precise knowledge of pX is usually not available. In
this paper, we thus address the following question: how to build a good ROM for the
trajectories specified by pX when only a rough knowledge of latter density is available
but some partial observations of the trajectories are available? More specifically, we
will assume that we have the following two sources of information at our disposal in
the ROM construction process:

• a surrogate density p̃X: this density gathers all the information the practi-
tioners may have about the system of interest. This density is very general in
the sense it can be of any form and it does not need to satisfy any particular
constraints. For example, one may know that the trajectories of interest
obey (1.1) for some parameters included in the set T̃ . However, the true
parameter set T and the distribution of θ over this set may be unknown. In
this case, the surrogate density p̃X could for example be defined via (1.1) by
using a uniform distribution on θ over T̃ .

• incomplete observations on the target trajectories: we assumed that “incom-
plete” observations of the trajectories are available; these observations, say
y, are supposed to obey a known conditional model pY|X. The term “incom-
plete” refers to the fact a realisation x of pX cannot be unequivocally recov-
ered from its observation y by inverting the observation model. This situation
occurs for instance when only a subset of components of x are observed or
when the observations are corrupted by some noise. As an applicative ex-
ample, in geophysics, meteorological sensors only provide low-resolution and
noisy observations of the atmosphere state.

The main goal of this paper is therefore to propose a methodology taking ben-
efit from these two sources of information to build a “good” ROM for trajectories
distributed according to pX.

Before describing the contributions of this paper, we provide an overview of some
state-of-the-art methodologies dealing with the problem of ROM construction from
incomplete observations. The first contribution dealing with this type of problem is
the “Gappy POD” technique proposed by Everson and Sirovich in [13]. The authors
propose to construct an approximation subspace for trajectories distributed according
to pX relying on the observed components of x. However, this method releases poor
ROM approximations as soon as some directions of the space embedding the trajec-
tories of interest are never observed [15]. This is for example the case when these
trajectories are incompletely observed through the same observation model.

In order to circumvent this issue, recent works combine an observation model with
a surrogate density, in the case of the reduction of a static high-dimensional system.
On the one hand, several authors propose this observation and prior knowledge com-
bination in a noise-free deterministic setting. In [24], the authors suggest to iteratively
enrich the ROM by using point-wise estimates obtained from linear observations and
a surrogate model. In [18], the authors propose to refine this approach by including
the uncertainty inherent to the point-wise estimates in the reduction process. Stable
recovery guarantees are also provided from a worst-case perspective. On the other
hand, several works have investigated the context of combining noisy observations
with a probabilistic prior. The methodologies naturally rely in this case on poste-
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rior probabilities [10, 11, 29]. More precisely, in [11], the author feed a reduced-basis
technique with samples of the posterior. In [10, 29], an optimal low-dimensional sub-
space projection of the posterior distribution is inferred based on its local Gaussian
structure.

In this paper, we propose a general data-driven methodology for the reduction
of parametric dynamical systems, exploiting incomplete observations. The proposed
procedure exploits the two sources of information mentioned previously, namely: (i) a
surrogate probabilistic characterisation of the trajectories of interest, (ii) incomplete
observations of these trajectories. The proposed ROM construction relies on the
minimisation of the expectation of a bound on the error between the true and reduced
trajectories. The expectation relies on a new data-enhanced surrogate density, say p̂X,
inferred from the initial surrogate p̃X and the partial observations. An approximated
solution to this minimisation problem is effectively computed using Monte-Carlo (MC)
and Sequential Monte-Carlo (SMC) techniques. The proposed approach relies on the
following assumptions:

• stability of ROM inference when using the surrogate p̃X in place of pX,
• tightness of the error bound,
• accuracy of the expectation approximation by MC and SMC techniques.

These properties are discussed and empirically assessed in the context of our numerical
simulations. The present work complements and generalises the works [10, 11, 18, 24,
29] in two main respects: it proposes a methodology extending these works to the case
of dynamical systems; it provides a Bayesian framework generalising any standard
ROM construction to the setup where trajectories to be reduced are not fully known.

The rest of this paper is organised as follows. Section 2 first introduces the target
problem and presents its surrogate analog. Section 3 then discusses implementation
issues and the MC simulation techniques used to obtain a tractable method. Section 4
continues by detailing the particularisation of this methodology to the context of
Galerkin projections or low-rank linear approximations. The ability of the method
to take into account uncertainty is discussed at the end of this section. A numerical
evaluation of the proposed methodology is exposed in Section 5 and conclusions are
finally drawn in a last section.

We will use in what follows some notations. Random vectors will be denoted by
uppercase letters (as X) and their realisations by lowercase letters (as x). Boldface
letters (as x) will indicate matrices, and will be uppercase (as X) for random matrices.
pX will refer to the probability density of X. When there is no ambiguity, the density
subscript will be omitted to lighten notations, i.e., pX(x) = p(x). The symbol ‖ · ‖F
and ·ᵀ will respectively refer to the Frobenius norm and the transpose operator; ik
will denote the k-dimensional identity matrix. The definition of the Kullback-Leibler
distance between two densities pX and p̃X is

KL(pX, p̃X) =

∫
p(x) log

p(x)

p̃(x)
dx

2. Target and Surrogate Problems. In this section, we describe the main
elements characterising our ROM construction problem. We first define the perfor-
mance criterion that the ROM should ideally optimise when the target density pX is
known. We then discuss how to modify this target problem when only a surrogate
density p̃X is known but some incomplete observations y of the realisations of pX are
available.
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The model-order reduction problem can essentially be formulated as follows: for
any choice of θ ∈ T , find an (easily-computable) approximation x̃ of x, where x is
specified by (1.1). Most ROM techniques for dynamical models encountered in the
literature impose that x̃ obey a recursion of the form:{

x̃t = f̃t(x̃t−1, θ,u),

x̃1 = g̃(θ,u),
(2.1)

where f̃t : Rn × T × U → Rn and g̃ : T → Rn are some functions specifying the
ROM via the choice of parameters u ∈ U . The nature of f̃t, g̃ and u depends on the
family of ROMs one considers. We give two examples of choices for f̃t, g̃ and u in
Sections 4.1 and 4.2. For now, the only ingredient the reader should keep in mind is
that, given a family of reduced models, the ROM is fully characterised by the choice
of the parameters u ∈ U .

In this respect, we will assume hereafter that an ideal choice for u is given by

u? = arg min
u∈U

{∫
p(x)‖x− x̃(u)‖2F dx

}
, (2.2)

that is, the choice of the ROM parameters should be such that they minimise the mean
square approximation error over the target density pX. Here, the notation x̃(u) refers
to the fact x̃ is a function of u. Note that it is also a function of parameter x, since x̃
depends on θ which is itself related to x through the constraint (1.1). Unfortunately,
when pX is unknown, evaluating u? according to (2.2) is not possible. One possible
option to solve this problem may be to substitute pX in (2.2) by its surrogate density
p̃X, that is

u? = arg min
u∈U

{∫
p̃(x)‖x− x̃(u)‖2F dx

}
. (2.3)

This formulation does however not take into account the possible presence of obser-
vations y of the realisations x of pX. In this paper, we thus propose the following
alternative surrogate problem:

u? = arg min
u∈U

{∫
p̂(x)‖x− x̃(u)‖2F dx

}
, (2.4)

where p̂X is defined as

p̂(x) =

∫
p̂(x|y)p(y) dy, (2.5)

with

p̂(x|y) =
p(y|x)p̃(x)∫
p(y|x′)p̃(x′) dx′

. (2.6)

We note that p̂X obeys the standard relationship between a joint density and its
marginal. More specifically, we have from elementary probability theory that p(x) =∫
p(x,y) dy =

∫
p(x|y)p(y) dy. Since pX|Y depends on pX and is therefore unknown,

we propose to substitute this quantity by the surrogate posterior p̂X|Y defined in
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(2.6). Similarly, the latter surrogate verifies the standard definition of the posterior
probability pX|Y with the difference that the target prior pX has been replaced by
p̃X.

On top of these intuitive arguments motivating the definition of p̂X, the following
result provide a theoretical justification to (2.5)-(2.6):

Proposition 2.1. Let p̂X defined as in (2.5)-(2.6). Then we have2

KL(pX, p̂X) ≤KL(pX, p̃X)−KL(pY, p̂Y), (2.7)

where

p̂(y) =

∫
p(y|x)p̃(x) dx. (2.8)

Proof : The result is a consequence of the following inequalities:

KL(p(x), p(k)(x))
(a)
=

∫
p(x)

(
log p(x)− log p̂(x)

)
dx,

(b)
=

∫
p(x)

(
log p(x)− log p̃(x)− log

∫
p(y|x)

p(y)

p̂(y)
dy
)
dx,

(c)

≤
∫
p(x)

(
log p(x)− log p̃(x)−

∫
p(y|x) log

p(y)

p̂(y)
dy
)
dx,

(d)
=

∫
p(x)

(
log p(x)− log p̃(x)

)
−
∫
dyp(y)

(
log p(y)− log p̂(y)

)
dx,

where (a) follows from the definition of the Kullback-Leibler distance, (b) from the
definition of p̂X in (2.5)-(2.6), (c) is a consequence of the Jensen’s inequality, and (d)
follows from

∫
p(y|x)p(x) dx = p(y). �

The operational meaning of Proposition 2.1 is as follows: as far as the Kullback-
Leibler distance is considered, the approximation of pX by p̂X may only be as good as
the approximation of pX by our surrogate p̃X. Moreover, when KL(pY, p̂Y) > 0, the
proposed approximation p̂X leads to a strict improvement of the initial surrogate p̃X,
that is KL(pX, p̂X) < KL(pX, p̃X). On the one hand, p̂Y can be understood as the
distribution that the observations should obey if the state variable x was distributed

2The proof of the result stated in Proposition 2.1 requires some additional technical assumptions.
In order to keep the result stated in this proposition as simple as possible to the practitioner, we
mention these assumptions in this footnote. The proposition holds as long as p̂Y satisfies

supp(pY|XpY)
(e)

⊆ supp(p̂Y)
(f)

⊆ supp(pY), ∀x.

In particular, if for all x the density pY|X has an infinite support, then these inclusions are guaranteed
by the definition of pY and p̂Y. This sufficient condition is satisfied for example in the case where
pY|X is a model with Gaussian additive noise. Let us detail the necessity of e) and f). Inclusion e)

is needed for the existence of the integral
∫
p(y|x)

p(y)
p̂(y)

dy, which we have assumed to obtain (b). On

the other hand, to obtain (c) we have applied the Jensen inequality with the strictly convex function

−log on the interval of strictly positive reals. Thus, we need to check that ∀y we have
p(y)
p̂(y)

> 0 and

in particular that
p(y)
p̂(y)

6= 0, which is guaranteed by inclusion f).
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according to p̂X. On the other hand, pY corresponds to the actual distribution of the
collected observations y. Since KL(pY, p̂Y) = 0 if and only if pY(y) = p̂Y(y) (almost
everywhere), we see that p̂X leads to a strict improvement over p̃X as soon as the
empirical distribution of the collected data deviates from the surrogate p̂Y.

We can notice that p̂X depends on the observations y via the distribution pY
in (2.5). The precise knowledge of pY is however inaccessible in most experimental
setups and in order to build p̂X, the practitioner can only access to a finite set of
realisations of the observed random variable. We will detail in the following how p̂X
is approximated from this finite set of observations.

3. Implementation Issues. The target problem exposed in the previous sec-
tions is intractable directly. Its resolution will rely on several levels of approximations.
They are detailed bellow.

3.1. MC Approximation. In practice, we are often faced to the lack of knowl-
edge of the density pY. Nevertheless, a practitioner has often access to a finite set of
observations

{y(i) ∈ Rm×T ; i = 1, · · · , D},

composed of realisations assumed independent and identically distributed (i.i.d.) ac-
cording to the density pY. Relying on these observations, we propose to approximate
the marginalisation integral (2.5) using a standard MC technique. This leads to the
following approximation of the cost function in problem (2.4)∫

p̂(x)‖x− x̃(u)‖2F dx '
1

D

D∑
i=1

∫
p̂(x|y(i))‖x− x̃(u)‖2F dx. (3.1)

We remark that, by introducing this MC approximation, observations y(i) now appear
explicitly in the ROM inference problem, on the contrary to the cost function in
problem (2.4) which only exhibits a dependence to the unknown density pY. It is well
know that the right hand side of equation (3.1) is an unbiased estimate of the left
hand side with an error variance evolving as O(D−1).

3.2. SMC Approximation. In the general case, the density p̂x|y(i) appearing
in (3.1) is not closed-form and we can often not compute analytically posterior expec-
tations. We pursue an approximation of this density for i = 1, ..., D by an empirical
measure of the form

p̂(x|y(i)) ' 1

N

N∑
j=1

w(i,j)δξ(i,j)(x), (3.2)

which relies on a set of N samples {ξ(i,j)}Nj=1 and weights {w(i,j)}Nj=1 with ξ(i,j) =

(ξ
(i,j)
1 · · · ξ(i,j)T ) ∈ Rn×T and w(i,j) ∈ R+. This leads to an approximation of the cost

function in problem (2.4) by the weighted sum∫
p̂(x|y(i))‖x− x̃(u)‖2F dx ≈

1

N

N∑
j=1

w(i,j)‖ξ(i,j) − x̃(u)‖2F , (3.3)

and combining approximations (3.1) and (3.3), we obtain∫
p̂(x)‖x− x̃(u)‖2F dx '

1

DN

D∑
i=1

N∑
j=1

w(i,j)‖ξ(i,j) − x̃(u)‖2F . (3.4)
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In the case of dynamical systems, p̂X|Y in (3.3) often exhibits a nested structure
which can be sampled in a sequential manner. In particular, the surrogate density p̃X
often takes the form of a Markov chain defined by a transition kernel and an initial
density {

p̃(xt|xt−1) = πt(xt, xt−1),

p̃(x1) = η1(x1),
(3.5)

which will imply the density factorisation

p̃(x) = η1(x1)

T∏
t=2

πt(xt, xt−1). (3.6)

SMC techniques are particularly well suited to this context and constitute tractable
methods able to compute efficiently the set of N samples and weights {ξ(i,j), w(i,j)}Nj=1

involved in (3.2) or (3.3). Among the variety of SMC techniques, the most known
methods are sequential importance sampling or bootstrap particle filtering [12]. These
algorithms exploit an observation model admitting the factorisation

pY|X =

T∏
t=1

pYt|Xt
. (3.7)

where the random matrix Y = (Y1 · · ·YT ) gathers the observed variable at the T
different temporal indexes. For large N , approximation (3.3) by SMC techniques is
accurate in the sense it will yield an unbiased (or asymptotically unbiased) estima-
tion of the posterior expectation in the case ‖x − x̃(u)‖2F is a bounded function of
x. Moreover, under this boundedness hypothesis, the variance of the estimation error
will decrease at the rate of O(N−1), see e.g., [9]. However, in general, the error norm
is not bounded. Although, progress has been recently accomplished in this direc-
tion [1], extending these asymptotical unbiased properties and convergence results to
the case of unbounded test functions has not been done yet in the context of SMC
approximations.

3.3. Practical Identification of a Minimiser. With the simplifications pro-
posed in Sections 3.1 and 3.2, our surrogate optimisation problem takes the form:

u? = arg min
u∈U

{
D∑
i=1

N∑
j=1

w(i,j)‖ξ(i,j) − x̃(u)‖2F

}
. (3.8)

Unfortunately, (3.8) is typically3 a non-convex optimisation problem. Hence, design-
ing polynomial-time optimisation procedures ensuring the identification of a global
minimiser u? of (3.8) for any problem instance is usually out of reach. In other to
circumvent this issue, two different approaches are usually suggested in the literature:
(i) resorting to local optimisation procedures; (ii) optimising an upper bound of the
cost function in (3.8).

The local optimisation procedures encountered in practice usually derive from
iterative gradient descent methods. When the ROM approximation x̃(u) satisfies

3That is for most choices of functions f̃t and g̃ encountered in practice. See also Sections 4.1 and
4.2.
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a recursion as (2.1), these methods can be efficiently implemented by using adjoint
procedures, see for example [16, 22]. The drawback of local optimisation procedures
is however that they are prone to converge to local optimum of the cost function. In
many situations, this behavior may prevent these methods from delivering a solution
close to the global minimiser u?, leading in turn to poor reduction performance.

In order to circumvent this problem, another approach pursued in the literature
consists of optimising an upper-bound of the cost function, that is

u? = arg min
u∈U
{J(u)}, (3.9)

where J(u) is such that

D∑
i=1

N∑
j=1

w(i,j)‖ξ(i,j) − x̃(u)‖2F ≤ J(u) ∀u ∈ U . (3.10)

Of course, the minimisers of (3.9) usually differ from those of (3.8). Nevertheless, if

the behavior of J(u) is “not too far” from the one of
∑D
i=1

∑N
j=1 w

(i,j)‖ξ(i,j)−x̃(u)‖2F ,
one may expect the minimisers of (3.9) to be good approximations of the solutions of
(3.8). Moreover, the numerical optimisation (3.9) may be far easier than the one of
the initial optimisation problem (3.8). We will provide two instances of such scenarios
in Section 4.

In the sequel, we will exclusively focus our attention on methodologies based on
the optimisation of an upper bound. This is motivated by the fact that, by using
this approach, several methodologies known in the reduced-model community can be
revisited and extended in the probabilistic framework considered in this paper. Nev-
ertheless, the methodologies based on local optimisation procedure could be applied
in a similar way in the framework discussed in this paper.

4. Two Examples. In this section, we illustrate how the procedure presented
in Section 3 particularises to two different families of ROMs. In particular, we will
emphasise that these particularisations can be seen as generalisations, in a proba-
bilistic framework, of well-known ROM techniques, namely POD and DMD. We also
discuss how they can be seen as generalisations of standard ROM constructions based
on point estimates.

4.1. Galerkin Projection. The low-rank approximation called Galerkin pro-
jection of the dynamics (1.1) is obtained by projecting xt’s onto a subspace spanned
by the columns of some matrix u ∈ Rn×k with orthonormal columns and where k < n,
see e.g., [27]. More precisely, it consists in a recursion{

zt = uᵀft(uzt−1, θ),

z1 = uᵀg(θ),
(4.1)

defining a sequence of k-dimensional variables {zt ∈ Rk}Tt=1. Because k < n, system
(4.1) is usually either tractable or efficient methods can be used to simplify computa-
tion [3, 5]. Once recursion (4.1) has been evaluated, an approximation of state xt can
simply be obtained as x̃t = uzt. Recursion (4.1) is thus a particularisation of (2.1)
with

f̃t(x̃t−1, θ,u) = uuᵀft(uuᵀx̃t−1, θ),

g̃(θ) = uuᵀg(θ).
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Setting f̃t and g̃ as above implies that (3.8) with the admissible set

U = {u ∈ Rn×k|uᵀu = ik} (4.2)

is a non-convex minimisation problem exhibiting a complex sequential structure. Un-
fortunately, no polynomial-time optimisation methods can ensure the identification
of a global minimiser in this context. We resort instead to the optimisation of the
following upper bound of the cost function in (3.8)

J(u) = c
∑
i

∑
j

w(i,j)‖ξ(i,j) − uuᵀξ(i,j)‖2F (4.3)

where c > 0. Indeed, using a generalisation of Céa’s lemma, we obtain

‖x− uuᵀx‖2F ≤ ‖x− x̃(u)‖2F ≤ c ‖x− uuᵀx‖2F . (4.4)

for any x ∈ Rn×T and with the constant c independent of u. This bound is tight for
small c, since it encloses from above and below the error norm. The upper bound
in (4.4) is obtained under the assumption that the mapping Rn×T → Rn×T ,x →
(x1,−f1(x1) + x2,−f2(x2) + x3, · · · ,−fT−1(xT−1) + xT ) is strongly monotone and
that it is Lipshitz-continuous for bounded arguments [7, Theorem 5.3.4]. We remark
that the optimisation of the bound (4.3) can be seen as a POD-like problem, where
standard snapshots are substituted by weighted samples obtained by MC and SMC
simulations.

Problem (3.9) with the upper bound (4.3) and the admissible set (4.2) admits a
closed-form solution u?. Indeed, a well-known result is that the columns of matrices
u? are the eigenvectors of matrice ccᵀ where

c = (
√
w(1,1)ξ(1,1) · · ·

√
w(D,N)ξ(D,N)) ∈ Rn×TDN ,

associated to its k largest eigenvalues [20]. In practice, eigenvectors of interest can be
derived from the eigen-decomposition of the smaller matrix cᵀc, see [17, Remark 1].

Finally, from the convergence results of MC and SMC techniques exposed in sec-
tion 3.1 and 3.2, we deduce the following proposition:

Proposition 4.1. For any positive integer k ≤ TDN the eigenvectors corre-
sponding to the k largest eigenvalues of matrix ccᵀ are unbiased estimators of the
columns of the matrix solving (3.9) with the upper bound (4.3) and the admissible set
(4.2).

4.2. Low-Rank Linear Approximation. A low-rank linear approximation of
the dynamics (1.1) is a particularisation of (2.1) to

f̃t(x̃t−1, θ,u) = ux̃t−1,

g̃(θ) = g(θ), (4.5)

parameterised by some matrix u ∈ Rn×n of rank lower or equal to k ≤ n. Let
its singular value decomposition (SVD) be u = wuσuvᵀ

u, with wu,vu ∈ Rn×k and
σu ∈ Rk×k so that wᵀ

uwu = vᵀ
uvu = ik and σu is diagonal. The n-dimensional

reduced states {x̃t}Tt=1 are fully determined by the following recursion,{
zt = (vuσu)ᵀwuzt−1,

z2 = (vuσu)ᵀwᵀ
ug(θ),

(4.6)
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only involving k-dimensional variables. By multiplying both sides of (4.6) by wu, we
obtain low-rank approximations x̃t = wuzt of the n-dimensional states xt defined in
(1.1).

Setting f̃t and g̃ as in (4.5) and the admissible set

U = {u ∈ Rn×n| rank(u) ≤ k} (4.7)

induces a non-convex problem (3.8) due to the low-rank constraint and the sequential
structure of (4.5). The global minimiser is out of reach in this context. Here again, we
choose to resort to the optimisation of the following upper bound of the cost function
in (3.8)

J(u) = c

D,N∑
i=1,j=1

w(i,j)
T∑
t=2

‖ξ(i,j)t − uξ
(i,j)
t−1 ‖2F (4.8)

where c > 0. Indeed, for any x ∈ Rn×T , it is shown in Appendix A that assuming
there exists λ ∈ R such that ‖u‖2,2 ≤ λ, the ROM error can be bounded as

T∑
t=2

‖xt − uxt−1‖22 ≤ ‖x− x̃(u)‖2F ≤ c
T∑
t=2

‖xt − uxt−1‖22, (4.9)

with a constant c > 0 function of λ. As in the previous example, this bound is tight
as long as c is small since it encloses from above and below the error norm.

We remark that the optimisation of the bound (4.8) over the domain (4.7) can be
seen as a low-rank DMD-like problem, where standard snapshots are substituted by
weighted samples obtained by MC and SMC simulations. The optimisation of this
upper bound admits a closed-form solution as detailed below. Indeed, constituting
matrices a,b ∈ Rn×(T−1)DN as

a = (
√
w(1,1)ξ

(1,1)
1:T−1 · · ·

√
w(D,N)ξ

(D,N)
1:T−1),

b = (
√
w(1,1)ξ

(1,1)
2:T · · ·

√
w(D,N)ξ

(D,N)
2:T ),

with the notations ξ
(i,j)
`:m = (ξ

(i,j)
` · · · ξ(i,j)m ), the optimisation problem can be rewritten

in the synthetic form

u? ∈ arg min
u∈U
‖b− ua‖2F , (4.10)

where U is given by (4.7). As shown recently in [17, Theorem 3.1], this problem
admits a closed-form solution u? = ppᵀba†, where the columns of p ∈ Rn×k are
real orthonormal eigenvectors associated to the largest eigenvalues of matrix bbᵀ,
and where a† = vaσ

−1
a wᵀ

a is the Moore-Penrose pseudo-inverse of a. We note that
this solution can be efficiently computed by SVDs, as detailed in [17, Algorithm 1].
Finally, we deduce the following proposition from the convergence results of MC and
SMC techniques exposed in section 3.1 and 3.2:

Proposition 4.2. For any positive integer k ≤ (T − 1)DN , an unbiased estima-
tor of a solution of (4.10) is u? = ppᵀba†.
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4.3. Comparison with ROM Based on Point Estimates. We show that
the ROM parameter u? inferred in Section 4.1 and 4.2 differs from the parameter
inferred relying on point estimates [28, 24]. The latter approach consists in building
the ROM from estimates of the state, say x̂(i), computed for i = 1, ..., D by combining
the received observation y(i) and the surrogate p̃X. A common choice to obtain these
estimates is to rely on the minimum mean square error (MMSE) estimator

x̂(i) =

∫
x p̂(x|y(i)) dx.

The parameter of a ROM based on MMSE point estimates is then obtained by solving

arg min
u∈U

{
D∑
i=1

‖x̂(i) − x̃(u)‖2F

}
. (4.11)

In what follows, we will refer to this particular choice of estimator when invoking
ROM based on point estimates.

Analogously to our approach, we may obtain an unbiased (or asymptotically
unbiased) approximation of the MMSE estimator using an SMC technique

x̂(i) ' 1

N

N∑
j=1

w(i,j)ξ(i,j). (4.12)

Comparing (3.8) with the optimisation problem (4.11) where the x̂(i)’s are approxi-
mated with (4.12), we see that our approach can be seen as a generalisation of a point
estimate approach where the approximation of p̂X|Y relies on N particles rather than
on a single one.

Let us further detail the differences between the two approaches. Note that matrix
ccᵀ or matrices baᵀ and aaᵀ introduced previously are MC and SMC approximations
of matrices of the form∫

p(y)dy

∫
p̂(x|y) x1+`:Txᵀ

1:T−`dx, ` ∈ {0, 1}, (4.13)

where we have used the notations x`:m = (x` · · ·xm) ∈ Rn×(m−`+1). In particular,
according to (3.1), matrices (4.13) are approximated in our methodology by a MC
technique yielding

1

D

D∑
i=1

∫
p̂(x|y(i)) x1+`:Txᵀ

1:T−`dx,

which can be decomposed as

1

D(T − `)

D,T∑
i,t=1+`

(∫
p̂(x|y(i))

(
xt−` − x̂(i)t−`

)(
xt − x̂(i)t

)ᵀ
dx + (x̂

(i)
t−`)(x̂

(i)
t )ᵀ

)
,

(4.14)

where we have introduced the MMSE point estimates

x̂
(i)
t−` =

∫
p̂(x|y(i))xt−` dx, ` ∈ {0, 1}.
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Note that the first term inside the brackets is the cross-covariance relative to p̂(x|y(i))
of vectors Xt−` and Xt, while the second term is the second-order moment of this
density. ROM based on point estimates rely only on the second-order moment and
ignore cross-covariance terms. They approximate matrices (4.13) by

1

D(T − `)

D,T∑
i,t=1+`

(x̂
(i)
t−`)(x̂

(i)
t )ᵀ. (4.15)

Of course, these matrix are identical to (4.14) in the case of vanishing cross-covariances.
However, in the general case (4.15) may constitute poor approximations of (4.13).
Making a correspondence between cross-covariances and uncertainty, this suggests
that the proposed method integrates uncertainty relative to point estimates in the
ROM inference process.

5. Numerical Evaluation. We propose to assess the proposed methodology
with a standard physical model known as Rayleigh-Bénard convection. After in-
troducing the parametric partial differential equation inducing the high-dimensional
system, we propose different variations of the ROM building problem. They differ
from each other by their probabilistic models pX, p̂X and pY|X. Based on this setup,
we finally evaluate the performance of four different sampling strategies for building
a ROM in our uncertain context.

5.1. The Physical Setup. We consider a Rayleigh-Bénard convective system [4].
An incompressible fluid is contained in a bi-dimensional cell and is subject to periodic
boundary conditions. The states of interest are the trajectories of the temperature
and of the velocity in the cell.

We introduce the following notations to state the evolution equations: the dif-
ferential operators ∇ = (∂s1 , ∂s2)ᵀ, ∇⊥ = (∂s2 ,−∂s1)ᵀ and ∆ = ∂2s1 + ∂2s2 denote
the gradient, the curl and the Laplacian with respect to the two spatial dimensions
(s1, s2); the operator ∆−1 is the formal representation of the inverse of ∆. Convection
is driven by the two following coupled partial differential equations: at any point of
the unit cell s = (s1, s2) ∈ [0, 1]2 and for any time t ≥ 1, we have{

∂tb(s, t) + v(s, t) · ∇b(s, t)− ρ∆b(s, t)− ρν∂s1τ(s, t) = 0,

∂tτ(s, t) + v(s, t) · ∇τ(s, t)−∆τ(s, t)− ∂s1∆−1b(s, t) = 0,
(5.1)

where τ(s, t) ∈ R and v(s, t) ∈ R2 are the temperature and the velocity and where
the buoyancy b(s, t) ∈ R satisfies

v(s, t) = ∇⊥∆−1b(s, t).

The parameters ρ and ν appearing in (5.1) have the following physical meaning.
The Rayleigh number ν ∈ R+ controls the balance between thermal diffusion and
the tendency for a packet of fluid to rise due to the buoyancy force. The Prandtl
number ρ ∈ R+ measures the relative importance of viscosity compared to thermal
diffusion. These parameters also controlsthe coupling of the buoyancy evolution with
the thermal diffusion process. In particular for ν = 0 or ρ = 0, the system is decoupled
in the sense that the evolution of buoyancy is independent of the temperature.

At initial time t = 1, the fluid in the cell is still and subject to a difference of
temperature between the bottom and the top. We set the initial condition to:

b(s, 1) =πb sin(as1) sin(πs2) + εb, (5.2)

τ(s, 1) =πτ cos(as1) sin(πs2)− πτ ′ sin(2πs2) + ετ ,
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where πb, πτ , πτ ′ and a ∈ R are parameters. This initial condition is equal to the
solution of the Lorenz attractor [23] up to the additive terms ε = (εb, ετ )ᵀ.

We apply a a finite difference scheme on (5.1) to obtain a discrete system of the

form of (1.1) with xt =

(
bt
τt

)
∈ Rn, and n = 1024, where bt’s and τt’s are spatial

discretisations of buoyancy and temperature fields at time t. This discretised system
constitutes the target model we want to reduce.

5.2. Benchmark Problems. We consider different variations of the problem
of ROM construction for unknown pX. For given trajectories length T and number
of observations D, the benchmark problems are variations of the definition of the
probabilistic models pX, p̃X and pY|X.

We begin by specifying pX. Let θ1 = (a, πb, πτ , πτ ′)
ᵀ ∈ R4 and θ2 = (εb, ετ )ᵀ ∈

R40 parameterise the initial condition x1 using (5.2). Let θ3 = (ρ, ν)ᵀ ∈ R2 parametrise
the dynamics (5.1). We recall that we consider here a discretised version of (5.1) -
(5.2) of the form of (1.1), which is parameterised by θ = (θ1, θ2, θ3). We specify
the density pX through the definition of a probabilistic model for parameter θ and
the use of the model (1.1). Note that pX is in this configuration a particularisation
of (3.6) where the transition kernel is a Dirac measure. We choose for θ a uniform
distribution on T = (T1, T2, T3). The set T1 is chosen so that initial conditions live
at a distance at most of γ from a 10-dimensional subspace of R1024. The set T2 is a
centred ball B(0, γ) of R40 of radius γ. We choose the set of parameters T3 ruling the
dynamics to induce either a dynamical decoupling or a coupling of the buoyancy and
the temperature.

The surrogate density p̃X is defined in an analogous manner to pX. The only
difference with the definition of density pX is that parameter θ is drawn according to
a surrogate uniform distribution on T̃ = (T̃1, T2, T3) with T̃1 ⊃ T1. More precisely, we
fix T̃1 so that the x̃1’s live at a distance at most of γ from a 20-dimensional subspace
of R1024.

Let us finally specify the conditional density pY|X. It is chosen to be a Gaussian
distribution with uncorrelated components so that it admits the factorisation (3.7)
where Yt|Xt = xt is normally distributed according to N (hxt, ζ

2in) with h ∈ Rn/2×n
and ζ ∈ R+. Matrix h is chosen to be a discrete approximation of the convolution
by a sinus cardinal kernel so that it represents an ideal low-pass filter degrading the
resolution by a factor 2.

Using this configuration, we are able to generate D i.i.d. realisations {x(i), i =
1, · · · , D} of pX by uniformly sampling the set (T1, T2, T3) and using model (1.1). Sam-

pling the density p(yt|x(i)t ) then yields to the set of observations {y(i), i = 1, · · · , D}.

We are now ready to present the benchmark problems. We want to judge of
the influence of the following parameters: the trajectories length T , the number of
observations D, the noise variance ζ2, the structure of the distribution on the initial
condition (a subspace, i.e., T2 = {0}, or a high-dimensional slice, i.e., T2 = B(0, γ)
with γ > 0) and the range of T3, i.e., of the Prandtl number ρ and the Reynolds
number ν, which control the system diffusivity and coupling. We thus consider five
different ROM construction problems according to the following setups:

i) D = 30 , T = 2, ζ = 0, γ = 0, ρ = 0 and ν = 30,
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ii) identical to setup (i) but with the noise variance ζ2 set to induce a peak-to-
signal-noise-ratio around 26,

iii) identical to setup (ii) but with a uniform distribution on a high-dimensional
slice for the initial distribution, i.e., γ = 10−3,

iv) identical to setup (iii) but with longer trajectories (T = 5) and fewer obser-
vations (D = 10),

v) identical to setup (iv) but with a Prandtl number of ρ = 0.03 and a Reynolds
number in the interval ν ∈ [30, 300].

The choice of (T,D) = (2, 30) and T = (5, 10) will be justified in the Section 5.4.

5.3. ROMs and Sampling Algorithms. We consider the two examples of re-
duced models exposed previously and their idealised version, namely:

• ROM-1, a low-rank linear approximation, presented in Section 4.2,
• ROM-2, a POD-Galerkin approximation, presented in Section 4.1,
• ideal ROM-1, approximation x̃t = uxt−1 for t = 2, ..., T and x̃1 = x1 where u

is the parameter of ROM-1, i.e., the orthogonal projection of x′ts on ROM-1
approximation subspace4

S1(u) = Rn × im(uwu)× · · · × im(uwu)︸ ︷︷ ︸
T−1 times

. (5.3)

• ideal ROM-2, approximation x̃t = uuᵀxt for t = 1, ..., T where u is the
parameter of ROM-2, i.e., the orthogonal projection on the approximation
subspace of ROM-2

S2(u) = im(u)× · · · × im(u)︸ ︷︷ ︸
T times

. (5.4)

According to lower bounds in (4.4) and (4.9), ROM-1 and ROM-2 will necessarily
be less or as accurate as ideal ROM-1 and ideal ROM-2. The loss in accuracy be-
tween the ROMs and their idealised versions corresponds to the error committed by
the ROMs outside their approximation subspaces.

We evaluate different sampling algorithms for building a ROM in our uncertain
context. The parameter u of the ROMs are obtained using Proposition 4.1 (resp.
Proposition 4.2) for ROM-2 and ideal ROM-2 (resp. for ROM-1 and ideal ROM-1 )
with a definition of matrices a, b and c specific to the sampling algorithm. In the
context of our SMC simulations, we observe that a number of particle N = 40 is
reasonable. Indeed, increasing this number does not impact significantly the value of
the inferred ROM parameter. The sampling strategies are as follows.

4Note that the distance of x ∈ Rn×T to the subspace S1 is

inf
(x′1,...,x

′
T
)∈S1(u)

T∑
t=1

‖xt − x′t‖2 = inf
(z1,...,zT−1)∈Rk×(T−1)

T∑
t=2

‖xt − uwuzt−1‖2,

=

T∑
t=2

‖xt − uwuw
ᵀ
uu
†xt‖2,

and that this distance vanishes if xt = uwuw
ᵀ
uu
†xt = uxt−1 for t = 2, ..., T .
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• Sampling the target density pX. ROMs are built relying on samples drawn ac-
cording to the density pX (supposed unknown). Matrices a, b ∈ Rn×(T−1)D
and c ∈ Rn×TD are set in this case to

a = (x
(1)
1:T−1 · · ·x

(D)
1:T−1),

b = (x
(1)
2:T · · ·x

(D)
2:T ),

c = (x
(1)
1:T · · ·x

(D)
1:T ).

with x
(i)
t1:t2 = (x

(i)
t1 · · ·x

(i)
t2 ) where x

(i)
t denotes the state generating observation

y
(i)
t .

• Sampling the proposed data-enhanced surrogate density p̂X. ROMs are built
relying on a refined version of the surrogate p̃X defined in (2.5). This density
is approximated using MC and SMC techniques, as presented in Sections 3.1
and 3.2. More precisely, SMC samples are obtained by sequential importance
sampling [12] with η1 as the proposal distribution5. Matrices a, b and c are
defined in Section 4.1 and Section 4.2.

• Sampling the initial surrogate density p̃X. ROMs are built relying on sam-
ples drawn according to p̃X, i.e., ignoring observations. Matrices a, b ∈
Rn×(T−1)DN and c ∈ Rn×TDN are set in this case to

a = (ξ
(1,1)
1:T−1 · · · ξ

(D,N)
1:T−1),

b = (ξ
(1,1)
2:T · · · ξ

(D,N)
2:T ),

c = (ξ
(1,1)
1:T · · · ξ

(D,N)
1:T ).

• Point estimates. ROMs are built relying on MMSE point estimates. Matrices
a, b ∈ Rn×(T−1)D and c ∈ Rn×TD are set in this case to

a = (ξ̂
(1)

1:T−1 · · · ξ̂
(D)

1:T−1),

b = (ξ̂
(1)

2:T · · · ξ̂
(D)

2:T ),

c = (ξ̂
(1)

1:T · · · ξ̂
(D)

1:T ).

with point estimates ξ̂
(i)

t1:t2 = (ξ̂
(i)
t1 · · · ξ̂

(i)
t2 ) given for i = 1, ..., D by

ξ̂
(i)
t =

N∑
j=1

w(i,j)ξ
(i,j)
t ,

for t = 1, ..., T .

5In the case of a small noise variance ζ2, we slightly modify the density η1 in (3.6) to avoid
spreading samples at initial time too far from observations. We force the initial condition samples to
concentrate around the hyperplane h†y1 by substituting sample x̃1 by the orthogonal projection of

(i− h†h)x̃1 + h†(y1 + w),

on the subspace embedding T̃1. We recall that w ∈ Rn is a realisation of a zero-mean and uncorrelated
Gaussian random variable of variance ζ2.
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5.4. Results and Discussion. Figure 5.1 and Figure 5.2 present the perfor-
mances of the different sampling algorithms for building ROM-1, ideal ROM-1, ROM-2
and ideal ROM-2. Figure 5.1 and Figure 5.2 treat respectively problem setups i) to
iii) and setups iv) to v). The plots display the evolution of the average of the error
norm ‖ x − x̃(u) ‖F over the D trajectories which have generated the observations,
with respect to the ROM dimension k.

We have set (T,D) = (2, 30) in Figure 5.1 and (T,D) = (5, 10) in Figure 5.2
to make the error norm comparable in the two figures for a dimension k < 50.
We mention that setting T = 2 (results displayed in Figure 5.1), we obtain that
‖x2 − ux1‖2 = ‖x − x̃(u)‖F for ROM-1, implying that the distance to subspace S1
defined in (5.3) will necessarily be equal to the ROM error norm. ROM-1 will thus be
in this case equivalent to the ideal ROM-1 for any sampling algorithm. This setting
simplifies the understanding and comparison of the different algorithms, as detailed
below. Besides, for T > 2 (Figure 5.2) we can expect a difference of performance
between ROM-1 and ideal ROM-1 , and in particular, the more non-linear the ft’s
in the dynamical model (1.1), the more the difference of performances. Nevertheless,
in our experiments, we will observe that this difference remains reasonable, showing
that inequalities (4.4) and (4.9) are almost equalities (c ' 1), and in consequence this
will provide an experimental justification of the strategy of bounding (rather than
evaluating precisely) the objective function. For legibility purposes, we will display
the performances of ideal ROM-1 and ideal ROM-2 only for the algorithm sampling
the target density.

We observe in our experiments that, for any problem setup and any ROM, sam-
pling the initial surrogate p̃X leads to the poorest peformance. The ROMs built
from point estimates yields to a slight enhancement. Moreover, except in the case of
setup v) and its strong non-linearities, the proposed data-enhanced surrogate leads to
the best approximation accuracy. In what follows, we discuss in details this general
analysis.

Let us begin by some comments on the behaviour of the algorithm sampling the
target density pX for construction of ROM-1, ROM-2 and their idealised versions. As
expected for setups i) and ii) where T = 2, the error of ROM-1 obtained vanishes6 for
a subspace of dimensionality above the initial condition dimension, i.e., for k ≥ 10.
ROM-2 is less accurate because the error vanishes in the best case for k ≥ 20 in the
case of a projection of the trajectory on subspace S2 defined in (5.4) (while it can
vanish for k ≥ 10 for a projection on S1). For setup iii), the initial conditions are
not embedded anymore in a 10-dimensional subspace, but in a slice of thickness γ
and of dimensionality 10 + 40 = 50 around this subspace. As expected, we verify that
the error is equal to zero for k ≥ min(50, D) = 30 (resp. k ≥ min(100, 2D) = 60) in
the case of ROM-1 (resp. ROM-2). In practice, we note that the error vanishes even
around k ≥ 25 (resp. k ≥ 50). The last two settings, i.e., setups iv) and v), imply
longer sequences T = 5. In this situation, the trajectories could be approximated in a
worst-case scenario (scenario of linear independence of states at different times of the
trajectory) using a subspace of dimension (T − 1)D = 40 for ROM-1 (resp. of dimen-
sion TD = 50 for ROM-2). We observe however that this pessimistic scenario does
not occur in practice, especially if non-linearities are moderated (setup iv)). Indeed,

6The computation of an eigendecomposition or the use of SVD induces a machine precision
around 1e− 5 for trajectories computed with ROM-2 or ROM-1.
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between 30 and 40 components (resp. between 35 and 40 components) are sufficient
to obtain a zero approximation error for ROM-1 (resp. ROM-2).

We now compare the performances of algorithms which do not rely on the knowl-
edge of pX, namely the algorithms sampling the initial surrogate, the proposed data-
enhanced surrogate and the algorithm based on point estimates. First, for setups
i) and ii), since the initial surrogate and the proposed data-enhanced surrogate are
defined for an initial condition of dimensionality twice bigger, we verify that ROM-1
(resp. ROM-2) built sampling the initial surrogate or the proposed data-enhanced sur-
rogate cancel the error for k ≥ 20 (resp. k ≥ 40). We can observe that a ROM built
with point estimates is slightly less accurate independently of the dimension k, and in
particular for k ≥ 20 by a factor 5. This error saturation effect is the consequence of
the non-observation of certain components of the trajectories due to the non-trivial
kernel of operator h. In other words, this non-reducible error is due to the fact the
method ignores that point estimates have an infinite variance along directions of the
subspace defined by this kernel.

Second, we observe a moderate loss of accuracy for setup ii), which attests that
the data-based algorithms seem to be robust to moderate observation noise.

Third, the target distribution defined in setup iii) (taking the form of a high-
dimensional slice) turns out to slightly increase the error above k ≥ 20 by a factor
5 (resp. 2.5) for sampling of the initial surrogate or of the proposed data-enhanced
surrogate (resp. for point estimates). This result can be interpreted as the fact that
the algorithms are robust to the reduction of trajectories which do not necessarily
belong to a subspace, but which are moderately distant from it.

Fourth, we observe in setup iv), that sampling the proposed data-enhanced sur-
rogate or using point estimates induces only a slight deterioration of performances
when compared to the algorithm sampling the target density. On the contrary, while
being reasonable for ROM-2, sampling the initial surrogate yields dramatic results for
ROM-1. This effect can be easily understood: in the case of a low-rank linear approx-
imation, increasing the dimension k is not sufficient to obtain a gain in performance;
in particular, over-estimating the eigenvalues of matrix u? induces by construction of
ROM-1 an exponential increase of the approximation error.

Finally, for setup v), this unstable behaviour affects ROM-1 for any of the al-
gorithms. On the contrary, ROM-2, i.e., POD-Galerkin approximation, seems to be
nearly insensitive to the presence of strong non-linearities in (1.1).

6. Conclusions. We have proposed a general framework for the construction of
ROMs when the set of trajectories of a dynamical system is imperfectly known. This
work assumes that we have the following two sources of information at our disposal:
1) samples of an initial surrogate density characterising the set of trajectories of
the system of interest; 2) a set of incomplete observations on the target trajectories
obeying a known conditional model.

The ROM construction consists in the minimisation of the expectation of the norm
of the error between the true and reduced trajectories. The expectation relies on a
data-enhanced surrogate density obtained in a Bayesian setting combining the initial
surrogate density and the conditional observation model. We show, that under mild
conditions and in term of the Kullback-Leibler distance, the proposed data-enhanced
surrogate is a better approximation of the target density than the initial surrogate.

We stress the need of approximations to efficiently solve this problem and propose
in this context tractable solvers. In particular, we use MC and SMC techniques to
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Fig. 5.1. Algorithms performances for construction of ROM-1 and ideal ROM-1 (on
the left) and ROM-2 and ideal ROM-2 (on the right) for setup i) (above), ii) (middle) and
iii) (below). See details in Section 5.2 and 5.3

characterise our data-enhanced surrogate and propose implementations based on the
minimisation of a bound on the objective function. We illustrate how the proposed
methodology particularises to two different families of ROMs. We show that these
particularisations can be seen as generalisations, in a probabilistic framework, of well-
known ROM techniques, namely POD and low-rank DMD. We also show that they can
be seen as generalisations of standard ROM constructions based on point estimates.

A numerical evaluation, led in the context of the reduction of a geophysical model,
reveals that the proposed methodology enhances state of the art.
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Fig. 5.2. Algorithms performances for construction of ROM-1 and ideal ROM-1 (on
the left) and ROM-2 and ideal ROM-2 (on the right) for setup iv) (above) and v) (below).
See details in Section 5.2 and 5.3

Appendix A. Error Bounds for Low-Rank Linear Approximation. We
hereafter show that the error norm for a low-rank linear approximation of (1.1) can
be bounded as presented in Section 4.2.

To obtain the lower bound in (4.9), we notice that according to (5.3), we have
x̃t ∈ im(uwu) for t ≥ 2, so that each term contributing to the error norm ‖ x −
x̃(u) ‖2F=

∑T
t=2 ‖xt − x̃t(u)‖22 can be decomposed into two orthogonal components

xt − x̃t(u) = uwuwᵀ
uu†xt − x̃t(u)︸ ︷︷ ︸
∈ im(uwu)

+xt − uwuwᵀ
uu†xt︸ ︷︷ ︸

∈ im(uwu)⊥

.

This implies that

T∑
t=2

‖xt − uwuwᵀ
uu†xt‖22 =

T∑
t=2

‖xt − uxt−1‖22 ≤‖ x− x̃(u) ‖2F .

The following result shows that the upper bound in (4.9) can be obtained under
mild assumptions.

Lemma A.1. Assume there exists λ such that ‖u‖2,2 < λ. Then

‖ x− x̃(u) ‖2F ≤ c
T∑
t=2

‖xt − uxt−1‖22,

with c = maxt∈{2,...,T}{
∑T
k=t(1 + 4(k − 1))λ2(k−t)}.
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Proof. Since x̃t = ux̃t−1, we have

‖ x− x̃(u) ‖2F =

T∑
t=2

‖xt − ut−1x1‖22.

Using the triangular inequality and the definition of the induced `2-norm, each term
contribution in this sum can be bounded as follows

‖xt − ut−1x1‖2 ≤
t∑
`=2

‖u`−1xt−`+1 − u`−2xt−`+2‖2,

≤
t∑
`=2

‖u`−2‖2,2‖uxt−`+1 − xt−`+2‖2,

=

t∑
k=2

‖ut−k‖2,2‖uxk−1 − xk‖2.

Therefore, expanding the square of this sum, we obtain

‖xt − ut−1x1‖22 ≤
t∑

k=2

‖ut−k‖22,2‖uxk−1 − xk‖22

+ 2

t∑
i,j=2|i 6=j

‖ut−i‖2,2‖uxi−1 − xi‖2‖ut−j‖2,2‖uxj−1 − xj‖2,

≤
t∑

k=2

‖ut−k‖22,2‖uxk−1 − xk‖22

+ 2

t∑
i,j=2|i 6=j

max{‖ut−i‖22,2‖uxi−1 − xi‖22, ‖ut−j‖22,2‖uxj−1 − xj‖22},

≤
t∑

k=2

‖ut−k‖22,2‖uxk−1 − xk‖22

+ 2

t∑
i,j=2|i 6=j

‖ut−i‖22,2‖uxi−1 − xi‖22 + ‖ut−j‖22,2‖uxj−1 − xj‖22,

≤
t∑

k=2

(1 + 4(t− 1))‖ut−k‖22,2‖uxk−1 − xk‖22.

In consequence, we conclude remarking that

‖ x− x̃(u) ‖2F ≤
T∑
t=2

t∑
k=2

(1 + 4(t− 1))‖ut−k‖22,2‖uxk−1 − xk‖22,

=

T∑
t=2

T∑
k=t

(1 + 4(k − 1))‖uk−t‖22,2‖uxt−1 − xt‖22,

≤ c ‖ x2:T − ux1:T−1 ‖2F ,
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with c = maxt∈{2,...,T}{
∑T
k=t(1+4(k−1))‖uk−t‖22,2} and where the equality has been

obtained by inverting the two sums. �
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