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Abstract. This work studies the linear approximation of high-dimensional dynamical systems
using low-rank dynamic mode decomposition (DMD). Searching this approximation in a data-driven
approach can be formalised as attempting to solve a low-rank constrained optimisation problem. This
problem is non-convex and state-of-the-art algorithms are all sub-optimal. This paper shows that
there exists a closed-form solution, which can be computed in polynomial time, and characterises the
`2-norm of the optimal approximation error. The theoretical results serve to design low-complexity
algorithms building reduced models from the optimal solution, based on singular value decomposi-
tion or low-rank DMD. The algorithms are evaluated by numerical simulations using synthetic and
physical data benchmarks.
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1. Introduction.

1.1. Context. The numerical discretisation of a partial differential equation
parametrised by its initial condition often leads to a very high dimensional system of
the form: {

xt = ft(xt−1),

x1 = θ,
(1.1)

where xt ∈ Rn is the state variable, ft : Rn → Rn, and θ ∈ Rn denotes an initial
condition. In some context, e.g., for uncertainty quantification purposes, one is inter-
ested by computing a set of trajectories corresponding to different initial conditions
θ ∈ Θ ⊂ Rn. This may constitute an intractable task due to the high dimensionality
of the space embedding the trajectories. For instance, in the case ft is linear, the
overall complexity necessary to compute a trajectory with model (1.1) can scale at
worst in O(Tn2), which is prohibitive for large values of the dimension n and of the
trajectory length T .

To overcome this issue, reduced models aim to approximate the trajectories of
the system for a range of regimes determined by a set of initial conditions [6]. A
common approach is to assume that the trajectories of interest are well approximated
in a low-dimensional subspace of Rn. In this spirit, many tractable approximations
of model (1.1) have been proposed in the literature, the most common ones being
Petrov-Galerkin projections [26]. These methods are however intrusive in the sense
they require the knowledge of the equations ruling the high-dimensional system.

Alternatively, there exist non-intrusive data-driven approaches. In particular,
linear inverse modeling [25], principal oscillating patterns [12], or more recently, dy-
namic mode decomposition (DMD) [5, 15, 17, 28, 30] propose approximations of the
unknown function ft by a linear and low-rank operator. This linear framework has
been extended in [7] to the quadratic approximation of ft. Although a linear frame-
work may be in appearance limited, it has recently obtained a new surge of interest
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because of its prominent role in decompositions known as extended DMD or kernel-
based DMD [3, 20, 31, 32, 33]. The latter decompositions can characterise non-linear
behaviors under certain conditions [16].

A reduced model based on a low-rank linear approximation uses a matrix Âk ∈
Rn×n of rank at most k ≤ n which substitutes for function ft as{

x̃t = Âkx̃t−1

x̃1 = θ
, (1.2)

where elements of {x̃t}Tt=1 denote approximations of the trajectories {xt}Tt=1 satisfying
(1.1). Obviously, a brute-force evaluation of a trajectory approximation with (1.2)
will not induce a low computational cost: the complexity scales as O(Tn2). However,
exploiting the fact that matrix Âk has a rank at most equal to k, this complexity,
which we will qualify of on-line, can be significantly lowered. An on-line complexity
scaling in O(Tr2 + rn) is reach if we can determine off-line the matrices R, L ∈ Rn×r
and S ∈ Rr×r with k ≤ r ≤ n such that trajectories of (1.2) correspond to those
obtained with the r-dimensional recursion

z1 = Lᵀθ

zt = Szt−1

x̃t = Rzt

. (1.3)

The equivalence of systems (1.2) and (1.3) implies that
∏t
i=1 Âk = R(

∏t
i=1 S)Lᵀ. We

remark that if S ∈ Rr×r is a block diagonal matrix and in particular a Jordan matrix,
the on-line complexity to run reduced-model (1.3) scales at worst in O(s2T+rn) where
s denotes the maximum size of the blocks. In the case S is a diagonal matrix, then
trajectories of (1.3) can be computed with the advantageous on-line complexity of
O(rn), i.e., linear in the ambient dimension n, linear in the reduced-model intrinsic
dimension r and independent of the trajectory length T .

To enjoy this low on-line computational effort, it is first necessary to compute
off-line a proper matrix Âk in (1.2) and deduce parameters R, L and S at the core
of reduced model (1.3). We will refer to the term off-line complexity for the latter
computational cost. A standard choice for Âk is to select the best trajectory approx-
imations in the `2-norm, for initial conditions in the set Θ ⊂ Rn: matrix Âk in (1.2)
targets the solution of the following minimisation problem

arg min
A:rank(A)≤k

∫
θ∈Θ

T∑
t=2

‖xt(θ)−At−1θ‖22, (1.4)

where ‖ · ‖2 denotes the `2-norm. A reduced model of the form of (1.3) based on a
low-rank minimiser of (1.4) can then be deduced from its eigen-decomposition: R and
L are set as the right and left eigen-vectors and S as the matrix of eigen-values.

Since we focus on non-intrusive data-driven approaches, we will assume that we
do not know the exact form of ft in (1.1) and we only have access to a set of represen-
tative trajectories {xt(θi)}Tt=1, i = 1, ..., N so-called snapshots, obtained by running
the high-dimensional system for N different initial conditions {θi}Ni=1 in the set Θ.
Using these snapshots, we consider a discretised version of (1.4), which corresponds
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to the constrained optimisation problem studied in [5, 15]: matrix Âk now targets the
solution

A?k ∈ arg min
A:rank(A)≤k

T,N∑
t=2,i=1

‖xt(θi)−Axt−1(θi)‖22, (1.5)

where we have substituted At−1θi in (1.4) by Axt−1(θi). By bartering a polynomial
objective function for a quadratic one, we consider in (1.5) a simpler constrained
least-square problem. This optimisation problem is however still non-convex due to
the low-rank constraint.

In the light of (1.3) and (1.5), we introduce the terminology used in the liter-
ature [5, 15, 17, 28, 30]. Let columns of R and L be the dominant right and left
eigen-vectors of Âk and let S be the diagonal matrix gathering the first k eigen-
values. Given this choice for matrices R, L and S, the term “low-rank DMD” of
system (1.1) denotes the reduced model (1.3) in the case Âk = A?k, while the term

“DMD” denotes this reduced model in the case Âk is the solution of problem (1.4)
without the low-rank constraint.

1.2. Problematic. This work deals with the off-line construction of reduced
models of the form of (1.3). It focuses on the following questions. Can we compute
in polynomial time a solution of (1.5)? How to compute efficiently the parameters
R, L and S of (1.3) and in particular the low-rank DMD of (1.1)? We discuss in what
follows these two problematics.

Solver for problem (1.5). There has been in the last decade a resurgence of
interest for low-rank solutions of linear matrix equations in noise-free [9, 27] or noisy
[18, 19, 14] settings. This class of problems includes (1.5) as an important particular
case. Problems in this class are generally non-convex and accessing to theirs solutions
in polynomial time is often out of reach.

Nevertheless, certain instances with a very special structure admit closed-form
solutions [24, 22]. This occurs typically when the solution can be deduced from the
Eckart-Young theorem [8]. Surprisingly, previous works [5, 15] presuppose that prob-
lem (1.5) is difficult and does not admit a closed-form solution. Therefore, several
sub-optimal approaches have been proposed in the literature. The most straightfor-
ward approach is to approximate the soluton of problem (1.5), proceeding in two
independent steps [15, 30]: in a first step, an unconstrained version of (1.5) (or of a
similar problem) is solved; in a second step, a k-th order approximation of the lat-
ter solution is obtained either by truncating its SVD or its eigen-decomposition, or
by solving a sparse approximation problem. As an alternative, some works propose
to approximate problem (1.5) by a regularised version of the unconstrained problem
[20, 33]. A regularisation of interest is obtained by particularising convex relaxation
techniques to problem (1.5). The relaxed problem may recover exactly the solution A?k
under certain condition [9, 18, 19, 23, 27]. Finally, some works tackle directly the con-
strained minimisation problem. Authors in [5, 15] suggest to approach the targeted
solution A?k relying on the assumption that snapshots belong to a pre-determined
subspace. Authors in [14] propose an iterative hard thresholding approach with guar-
antees of exact recovery of A?k under certain conditions.

In summary, none of the state-of-the-art approaches guarantee optimality in gen-
eral.
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Computation of R, L and S in (1.3). The second problem concerns the compu-
tation of matrices R, L and S in (1.3), and in particular the computation of low-rank
DMD from the solution A?k ∈ Rn×n. It is not clear that this will not imply a pro-
hibitive computational burden for large n. Indeed the brute-force computation of the
SVD or the eigen-decomposition of a matrix in Rn×n requires a complexity scaling at
worst as O(n3). Hopefully, since the range of the rows and the range of the columns
of A?k belong to a low-dimensional subspace of Rn, the left and right eigen-vectors
or singular vectors associated to the non-zero eigen-values or singular values can be
computed with a reduced complexity [10]. Exploiting this idea, the authors in [30, 32]
propose a method for computing matrices R and S in DMD based on the eigen-
decomposition of a square matrix of size T (N − 1), involving a linear complexity in
n. For low-rank DMD, an analogous low-complexity algorithm approximates R and
S (i.e., the right eigen-vectors and associated eigen-values of A?k) [15]. In the case
k � T (N − 1) and for a large value of the number of snapshots N or the trajectory
length T , the authors in [32] suggest to rely on Krylov methods to approximate R
and S, involving a quadratic instead of a cubic complexity in N .

In summary, no state-of-the-art methods enable the exact computation of all
low-rank DMD parameters (i.e., of R, L and S) with a linear complexity in n, inde-
pendently of N or T .

1.3. Contributions. The contribution of this paper is twofold. First, we show
that the special structure of problem (1.5) enables the closed-form characterisation of
an optimal solution A?k, from which we can deduce an efficient polynomial-time solver.
Besides, we also characterise the optimal approximation error in (1.5). Second, us-
ing this closed-form solution A?k, we provide low-complexity algorithms computing
reduced models and in particular the low-rank DMD of (1.1).

The paper is organised as follows. In Section 3, we provide a review of state-of-
the-art techniques to solve the constrained optimisation problem (1.5) and compute
low-rank DMD. Section 4 details an analytical solution for problem (1.5), characterises
the optimal approximation error and provides an efficient algorithm to compute this
solution. Given this optimal solution, we provide algorithms to compute exactly
and with a low off-line complexity SVD-based reduced model and low-rank DMD.
Finally, using a synthetic and a physical data benchmark, we compare in Section 5
the proposed algorithms with state-of-the-art. We draw conclusions in a last section.

2. Notations. We will use in the following some matrix notations. The upper
script ·ᵀ will refer to the transpose operator. Ik will denote the k-dimensional identity
matrix. All along the paper, we will make extensive use of the SVD of a matrix M ∈
Rp×q with p ≥ q: M = UMΣMV

ᵀ
M with UM ∈ Rp×q, VM ∈ Rq×q and ΣM ∈ Rq×q

so that Uᵀ
MUM = V ᵀ

MVM = Iq and ΣM is diagonal. The columns of matrices UM
and VM will be denoted UM = (u1

M · · ·u
q
M ) and VM = (v1

M · · · v
q
M ) while diagonal

components of matrix ΣM will be ΣM = diag(σM,1, · · · , σM,q) with σM,i ≥ σM,i+1

for i = 1, · · · , q − 1. The Moore-Penrose pseudo-inverse of matrix M is then defined
as M† = VMΣ†MU

ᵀ
M , where Σ†M = diag(σ†M,1, · · · , σ

†
M,q) with

σ†M,i =

{
σ−1
M,i if σM,i > 0

0 otherwise
.

The orthogonal projector onto the span of the columns (resp. of the rows) of ma-

trix M will be denoted by PM = MM† = UMΣMΣ†MU
ᵀ
M (resp. PMᵀ = M†M =
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VMΣ†MΣMV
ᵀ
M ) [10].

We also introduce additional notations to derive a matrix formulation of the low-
rank estimation problem (1.5). We gather consecutive elements of the i-th snapshot
trajectory between time t1 and t2 in matrix Xi

t1:t2 = (xt1(θi) · · ·xt2(θi)) and form
large matrices X,Y ∈ Rn×m with m = N(T − 1) as

X = (X1
1:T−1 · · ·XN

1:T−1) and Y = (X1
2:T · · ·XN

2:T ).

In order to be consistent with the SVD definition and to keep the presentation as
simple as possible, this work will assume that m ≤ n. However, all the result presented
in this work can be extended without any difficulty to the case m > n by using an
alternative definition of the SVD.

3. State-Of-The-Art for Solving for (1.5) and Building (1.3). We begin
by presenting state-of-the-art methods solving approximatively the low-rank minimi-
sation problem (1.5). In a second part, we will make an overview of algorithms for
the construction of reduced models of the form of (1.3) including low-rank DMD.

3.1. Standard Candidate Solutions for (1.5). Using the notations intro-
duced previously, we want to solve problem (1.5) rewritten as

A?k ∈ arg min
A:rank(A)≤k

‖Y −AX‖2F , (3.1)

where ‖ · ‖F refers to the Frobenius norm.

3.1.1. Truncation of the Unconstrained Solution. By removing the low-
rank constraint, (3.1) becomes a least-squares problem admitting the solution YX†,
see [30]. We remark that the latter matrix of rank at most m is also solution of
problem (3.1) for k = m, i.e.,

A?m = YX†, (3.2)

and that the cost function at this point vanishes if rank(X) = m. This solution

is computable using the SVD of X: A?m = YVXΣ†XU
ᵀ
X. An approximation of the

solution of (3.1) satisfying the low-rank constraint rank(A) ≤ k with k < m can then
be obtained by a truncation of the SVD or the eigen-decomposition of A?m using k
terms.

Since this method relies on the SVD of X ∈ Rn×m, it leads to a complexity scaling
as O(m2(m+ n)).

3.1.2. Approximation by Projected DMD. The so-called “projected DMD”
proposed in [28] as a low-dimensional approximation of A?m is further investigated
by the authors in [15] in order to approximate A?k. It assumes that columns of AX
are in the span of X. This assumption is formalised in [15, 28] as the existence of
Ac ∈ Rm×m, the so-called companion matrix of A parametrised by m coefficients,1

1The particular parametrisation of the companion matrix

Ac =


0 α1

1 0 α2

. . .
. . .

...
1 0 αm−1

1 αm

 ∈ Rm×m,

depending on m coefficients {αi}mi=1 follows from the fact that by definition the first m− 1 columns
of Y are the last m− 1 columns of X, see details in [28].
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such that

AX = XAc. (3.3)

Under this assumption, we obtain from (3.3) a low-dimensional representation of A
in the span of UX,

Uᵀ
XAUX = Ãc, (3.4)

where Ãc = ΣXV
ᵀ
XA

cVXΣ†X ∈ Rm×m. An approximation of A?k is obtained in [15]
by plugging (3.3) in the cost function of problem (3.1) and by computing the m
coefficients of matrix Ac minimising this cost. Noticing the invariance of the Frobenius
norm to unitary transforms, it is straightforward to see that this is equivalent to solve
the problem

arg min
Ãc:rank(ÃcΣX)≤k

‖Uᵀ
XYVX − ÃcΣX‖2F . (3.5)

Assuming X is full-rank, the solution is simply given by the Eckart-Young theorem [8]
as the SVD representation of matrix B = Uᵀ

XYVX truncated to k terms multiplied

by matrix Σ†X. Denoting by B̃ this truncated decomposition, we finally obtain the
following approximation of (3.1)

A?k ≈ UXB̃Σ†XU
ᵀ
X. (3.6)

This method relies on the SVD of X ∈ Rn×m and B ∈ Rm×m. It thus involves a
complexity scaling as O(m2(m+ n)).

3.1.3. Approximation by Sparse DMD. The authors in [15] also propose
a two-stage approach they call “sparse DMD”. It consists in solving two indepen-
dent problems. The first stage consists in computing the eigen-decomposition of the
approximated solution (3.6) for k = m. This first stage yields eigen-vectors ζi, for
i = 1, · · · ,m. In a second stage, the authors assume that a linear combination of
k out of the m computed eigen-vectors can approximate sufficiently accurately the
data. This assumption serve to design a relaxed convex optimisation problem us-
ing a `1-norm penalisation.2 Solving this problem, they obtain k eigen-vectors and
their associated coefficients. Let us note that the approximation error induced by the
sparse DMD method will always be greater than the one induced by the projected
approach3.

2We note that the penalisation coefficient must be adjusted to induce m − k coefficients nearly
equal to zero.

3Exploiting orthogonality and the invariance of the Frobenius norm to unitary transforms, we
obtain ‖Y −XÃc‖2F = ‖Uᵀ

XYVX − ÃcΣX‖2F + ‖(U⊥X)ᵀY‖2F , where the columns of U⊥X contain the
n−m vectors orthogonal to UX. Moreover, any companion matrix Ac obviously satisfies

min
Ãc:rank(ÃcΣX)≤k

‖Uᵀ
XYVX − ÃcΣX‖2F ≤ ‖U

ᵀ
XYVX −AcΣX‖2F ,

and this inequality is in particular verified by the companion matrix solving the sparse DMD problem.
Taking the minimum over the set of low-rank companion matrices, we therefore obtain that

‖Y − ÂkX‖2F = min
Ãc:rank(ÃcΣX)≤k

‖Uᵀ
XYVX − ÃcΣX‖2F + ‖(U⊥X)ᵀY‖2F ≤ ‖Y − Âk,0X‖2F ,

where Âk denotes the low-rank solution (3.6) given by the projected approach and Âk,0 denotes the
solution given by the sparse DMD method.
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This method relies on the resolution of a `1-norm minimisation problem con-
structed from the computation of the approximation (3.6) and on its eigen-decomposition.

The latter can be deduced from the eigen-decomposition of BΣ†X ∈ Rm×m. The over-
all compexity scales in O(m2(m+ n)).

3.1.4. Approximation by Solving Regularised Problems. Some works pro-
pose to approximate (3.1) by a regularised version of the unconstrained problem. In
this spirit, Tikhonov penalisation [20] or penalisation enforcing structured sparsity
[33] have been proposed. However, these choices of regulariser are arbitrarily and
do not rely on sound theoretical basis. In contrast, the solution of (3.1) may under
certain conditions be recovered by the following quadratic program

A?k ≈ arg min
A∈Rn×n

‖Y −AX‖2F + α‖A‖∗, (3.7)

where ‖ · ‖∗ refers to the nuclear norm.4 In the latter optimisation problem, α ∈
R+ represents an appropriate regularisation parameter determining the rank of the
solution of (3.7). The conditions under which the approximation (3.7) becomes exact
are expressed in the theoretical works [19, 14] in terms of a so-called restricted isometry
property that must be satisfied by the linear operator which maps A ∈ Rn×n to
AX ∈ Rn×m. Program (3.7) is a convex optimisation problem which can be solved
by standard convex optimisation techniques [2], or using dedicated algorithms as
proposed in [23].

The algorithms solving (3.7) typically involve a complexity per iteration scaling
as O(mnk), i.e., linear with respect to the number m of snapshots on the contrary to
the other state-of-the-art approaches

3.1.5. Approximation by Singular Value Projections. In [14], the authors
propose an iterative hard thresholding approach to solve a generalisation of (3.1).
This algorithm, called singular value projections (SVP), refines the candidate solution
iteratively by adapting a classical projected descent gradient. The projection onto
the non-convex set {A ∈ Rn×n : rank(A) ≤ k} is computed efficiently by SVD. A
guarantee for the exact recovery of A?k is obtained under a condition based on the
restricted isometry property.

The algorithm possesses a complexity per iteration scaling as O((k +m)2n).

3.2. Standard Methods for Building Reduced-Model (1.3). In this sec-
tion, we present state-of-the-art methods to compute reduced models of the form of
(1.3) from the approximation of A?k, denoted in what follows by Âk.

3.2.1. SVD-Based Approach. This approach presupposes the knowledge of a
factorisation of the form

Âk = PQᵀ with P,Q ∈ Rn×r, (3.8)

where r ≤ n. Assuming this structure, we note that trajectories of (1.2) can be
fully determined by the r-dimensional recursion (1.3) with R = P †, L = P and
S = QᵀP . According to Section 1.1, the on-line complexity to compute this recursion
is O(r2T + rn).

Of course, by SVD of Âk it is always possible to compute matrices satisfying (3.8)
with r = rank(Âk). However, a brute-force computation of the SVD of Âk ∈ Rn×n

4The nuclear norm or trace norm of a matrix is the sum of its singular values.
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may be prohibitive since it requires a complexity scaling at worst as O(n3). Hopefully,
there often exist other possible choices satisfying (3.8) and the complexity can often
be lowered to O(r2(r + n)) with rank(Âk) ≤ r ≤ m. For example, in the case Âk
is obtained by the truncated approach (see Section 3.1.1), we can simply build a
reduced model of the form (1.3) by setting P = UY and Qᵀ = ΣYV

ᵀ
YX† in (3.8).

In the case Âk is obtained by projected DMD (see Section 3.1.2), we can build this

reduced model using the factorisation P = UX and Qᵀ = B̃Σ†XU
ᵀ
X. In the case Âk is

obtained by sparse DMD (see Section 3.1.3), we can build this reduced model using
the latter factorisation where B̃ is substituted by the approximation of B by a matrix
composed of k of its columns, where the column indexes are determined by solving
the sparse problem. Approaches based on SVP (see Section 3.1.5) naturally provide
a factorisation of Âk of the form of (3.8). Indeed, these algorithms iteratively enrich
the k-term SVD representation of the solution Âk, through singular value projections
[14]. Unfortunately, regularised approaches (Section 3.1.4) may not naturally exhibit
such a factorisation.

3.2.2. Approach by Eigen-Decomposition: Low-Rank DMD. An efficient
reduced model may be obtained by rewriting (1.2) in terms of the eigen-decomposition
of the linear approximation Âk

Âk = RSLᵀ. (3.9)

with L, R ∈ Cn×r and S ∈ Cr×r is a Jordan-block matrix [10] with r = rank(Âk).
Using this decomposition, recursion (1.2) can be rewritten as

x̃t = RSt−1Lᵀθ. (3.10)

From the definition of R, L and S, we obtain a direct equivalence of reduced model
(3.10) with recursion (1.3). We note L = (ξ1 · · · ξr) and R = (ζ1 · · · ζr), where ξi ∈ Cn
and ζi ∈ Cn are the i-th left and right eigen-vector of Âk. Assuming that Âk is
diagonalisable5, we have S = diag(λ1, · · · , λr) and (3.10) becomes

x̃t =

rank(Âk)∑
i=1

ζiνi,t,

νi,t = λt−1
i ξᵀi θ, for i = 1, · · · , rank(Âk)

(3.11)

where λi ∈ C is the i-th (non-zero) eigen-values of Âk. As mentioned previously, in
the literature the latter reduced model is called DMD or low-rank DMD, depending
if Âk is an approximation of problem (3.1) for k = m or k < m [31]. As detailed in
Section 1.1, (3.11) is the most efficient reduced model in terms of on-line complexity,
since it scales as O(rn), with r = rank(Âk) ≤ k versus at best O(r2T + rn) for the
SVD-based reduced model presented in the last section.

However, the eigen-decomposition of a matrix in Rn×n is in general prohibitive
as it implies at worst an off-line complexity of O(n3). But for most approximations,
this off-line complexity can be significantly reduced as the matrix Âk is low-rank and
its rows and columns span specific low-dimensional subspaces. In particular, for an
approximation obtained by truncation of A?m (see Section 3.1.1), matrices R and S

5Diagonalisability is assured if all the non-zero eigenvalues are distinct. This condition is however
only sufficient and the class of diagonalisable matrices is larger [13].
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can be computed with an off-line complexity scaling as O(m2(m + n)) by exploiting
the SVD of X, see details in [30]. As detailed in [15], an approximation of R is deduced
with the same complexity in the case Âk is obtained by projected DMD (see Section
3.1.2) exploiting the eigen-vectors of the solution of (3.5). The amplitude νi,t (related
to S and L) is then obtained in a second stage by solving a convex optimisation
problem with an iterative gradient-based method. An approximation using sparse
DMD presented in Section 3.1.3 implies the same computation of matrix R followed
by a sparse convex minimisation problem to obtain amplitudes νi,t (related to S and
L). The latter procedure does not increase the off-line complexity of the overall
algorithm. No efficient algorithm is provided in the literature for the obtention of
matrices R, L and S in the case Âk is obtained by SVP as described in Section 3.1.5.
However, we can expect from matrix analysis that the eigen-decomposition of A?k can

be efficiently computed taking advantage of the k-term SVD of Âk given by the SVP
algorithm [10]. Finally, unfortunately, the regularised solution presented in Section
3.1.4 does not in general exhibit a clear structure enabling to reduce the complexity
of its eigen-decomposition.

4. The Proposed Approach. The existence of a closed-form solution to prob-
lem (3.1) remains to our knowledge unnoted in the literature, and no exact algorithm
has been proposed yet. The following section intends to fill this gap.

4.1. Closed-Form Solution to (3.1). Let the columns of matrix P̂ ∈ Rn×k be
the left singular vectors {uiZ}ki=1 associated to the k largest singular values of matrix

Z = YPXᵀ ∈ Rn×m, (4.1)

i.e.,

P̂ =
(
u1
Z · · · ukZ

)
. (4.2)

This matrix serve to characterise a closed-form solution to (3.1) given in the following
theorem.

Theorem 4.1. Problem (3.1) admits the solution

A?k = P̂ P̂ ᵀYX†. (4.3)

Moreover, the optimal approximation error is given by

‖Y −A?kX‖2F =

m∑
i=k+1

σ2
Z,i +

m∑
i=i∗

m∑
j=1

σ2
Y,j

(
(viX)ᵀvjY

)2

, (4.4)

where i∗ = rank(X) + 1.

Therefore, problem (3.1) can be simply solved by computing the orthogonal pro-
jection of YX†, which is the solution A?m of problem (3.1) for k = m, onto the subspace
spanned by the first k left singular vectors of Z. We detail the proof in Appendix A.
The `2-norm of the error is simply expressed in terms of the singular values of Y
and Z and of scalar products between the right singular vectors of X and Y. The
second term in the right-hand side of (4.4) can be interpreted as the square norm of
the projection of the rows of Y on the orthogonal to the span of the rows of X, i.e.,

m∑
i=i∗

m∑
j=1

σ2
Y,j

(
(viX)ᵀvjY

)2

= ‖Y(Im − PXᵀ)‖2F .
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Algorithm 1 Computation of a minimiser of (3.1)

inputs: (X,Y)

1) Compute the SVD of X = VXΣ†XU
ᵀ
X

2) Compute PXᵀ = VXΣXΣ†XV
ᵀ
X.

3) Compute Z = YPXᵀ .
4) Compute the first k columns of VZ and Σ2

Z, i.e., the first k eigen-vector/eigen-
value of ZᵀZ
5) Compute the columns of P̂ defined as the first k columns of matrix ZVZ Σ†Z
output: A?k = P̂ P̂ ᵀYVXΣ†XU

ᵀ
X

Note that if X is full-rank then we obtain the simplifications P̂ = Im and Z = Y. In
this case i∗ = m+ 1 so that the second term in the right-hand side of (4.4) vanishes
and the approximation error reduces to ‖Y−A?kX‖2F =

∑m
i=k+1 σ

2
Y,i. We remark that

the latter error is independent of matrix X and is simply the sum of the square of the
m− k smallest singular values of Y. This error also corresponds to the optimal error
for the approximation Y by a matrix of rank at most k in the Frobenius norm [8].
Besides we note that the rank of A?k can be smaller than k. Indeed, by the Sylvester’s
theorem [13] we have that

rank(A?k) ≤ rank(YX†) ≤ min(rank(Y), rank(X)),

which shows that the rank of A?k is smaller than k not only if rank(X) or rank(Y)
are smaller than k, but also if rank(YX†) = rank(ΣYV

ᵀ
YVXΣX) < k. Note that the

latter condition does not necessarily imply the former.

4.2. Algorithm Solving Problem (3.1). We show hereafter how to compute
the solution (4.3) by using a product of easily-computable matrices.

The left singular vectors associated to the k largest singular values of matrix Z
correspond to the first k (real and orthonormal) eigen-vectors of matrix ZZᵀ. Matrix
ZZᵀ is of size n× n. Since n is typically very large, this prohibits the direct compu-
tation of an eigen-value decomposition. But it is well-known that the eigen-vectors
associated to the non-zero eigen-values of matrix ZZᵀ ∈ Rn×n can be obtained from
the eigen-vectors and eigen-values of the smaller matrix ZᵀZ ∈ Rm×m. Indeed, using
the SVD of Z,

Z = UZΣZV
ᵀ
Z ,

we see that the columns of matrix UZ ∈ Rn×m are the eigen-vectors of ZZᵀ while the
columns of matrix VZ ∈ Rm×m are the eigen-vectors of ZᵀZ. Since VZ is unitary, we
obtain that the sought vectors are the first k columns of UZ, i.e., of ZVZ Σ†Z.

In the light of this remark, it is straightforward to design Algorithm 1, which will
provide the matrices to compute efficiently the solution A?k of (3.1) as the product of

the following matrices P̂ P̂ ᵀYVXΣ†XU
ᵀ
X. This algorithm requires the computation of

an SVD of matrix X ∈ Rn×m, an eigen-decomposition of matrix ZᵀZ ∈ Rm×m and
matrix multiplications involving m2 vector products in Rn or Rm. The complexity of
the different step of this algorithm is therefore scaling as O(m2(m+ n)). Obviously,
computing each entry of A?k ∈ Rn×n in Algorithm 1 would imply a complexity scaling
as O(n2k). This would be prohibitive for large n. However, as detailed in the next
section, this is not necessary to build reduced models (1.3) or (3.11).
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Algorithm 2 SVD-based reduced model

inputs: (X,Y)
1) Compute P̂ performing step 1 to 5 of Algorithm 1.
2) Compute Q̂ using (4.5).
outputs: L = P̂ , R = P̂ ᵀ, S = Q̂ᵀP̂ .

Algorithm 3 Low-rank DMD

inputs: (X,Y)
1) Compute step 1 to 5 of Algorithm 1 and use (4.5) to obtain Q̂.
2) Let r = rank(A?k) and solve for i = 1, · · · , r the eigen-equations

(Q̂ᵀP̂ )wri = λiw
r
i and (P̂ ᵀQ̂)w`i = λiw

`
i ,

where wri , w
`
i ∈ Ck and λi ∈ C such that |λi+1| ≥ |λi|.

3) Compute for i = 1, · · · , r the right eigen-vectors and left eigen-vector

ζi = λ−1
i P̂ Q̂ᵀP̂wri and ξi = λ−1

i Q̂w`i . (4.6)

4) Rescale the ξi’s so that ξi
T ζi = 1.

outputs: L = (ξ1 · · · ξr), R = (ζ1 · · · ζr), S = diag(λ1, · · · , λr).

4.3. Algorithms for Building Reduced-Model (1.3). Given the closed-form
expression (4.3) of the optimal low-rank linear approximation A?k, we present in what
follows two algorithms. The first one builds an SVD-based reduced model while the
second one computes low-rank DMD. We introduce to this aim matrix

Q̂ = (P̂ ᵀYX†)ᵀ ∈ Rn×k, (4.5)

with matrix P̂ given in (4.2).

4.3.1. SVD-Based Reduced Model. Noticing that P̂ † = P̂ ᵀ, from the ex-
pression of A?k it is straightforward to build an SVD-based reduced model taking the

form of recursion (1.3) by setting r = k with L = P̂ , R = P̂ ᵀ and S = Q̂ᵀP̂ . This
simple reduced-model construction is presented in Algorithm 2. As it relies on the
first five steps of Algorithm 1, the off-line complexity to build this SVD-based re-
duced model goes as O(m2(m+ n)).Therefore, the computational cost is the same as
for state-of-the-art algorithms. As mentioned in Section 3.2.1, the on-line complexity
to run it then goes as O(Tk2 + kn).

4.3.2. Low-Rank DMD. We remark that the solution (4.3) is the product of
matrices in Rn×k and in Rn×m. Therefore we can expect from matrix analysis that
eigen-vectors of A?k belong to a k-dimensional subspace [10]. Indeed, as shown in
the following proposition, the parameters of low-rank DMD (3.11) can be computed
without any approximation by eigen-decomposition of some matrices in Rk×k. The
proof of this proposition is given in Appendix C.

Proposition 4.2. Assume A?k is diagonalisable. The components of the set

{ζi, ξi, λi}
rank(A?

k)
i=1 generated by Algorithm 3 are the right eigen-vectors, the left eigen-

vectors and the eigen-values related to the non-zero eigen-values of A?k. Moreover they
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satisfy ξᵀi A
?
kζi = λi.

Assuming A?k is diagonalisable, this proposition justifies Algorithm 3, which de-
duces the right and left eigen-vectors and eigen-values ofA?k from the eigen-decomposition
of two matrices in Rk×k.

On sus of calling Algorithm 1, Algorithm 3 performs in step 2 the eigen-decomposition
of matrix (Q̂ᵀP̂ ) ∈ Rk×k and its transpose and computes in step 3 matrix multiplica-
tions involving r× n vector products in Rm, with r = rank(A?k) ≤ k ≤ m. Therefore,
the additional off-line complexity due to Algorithm 3 scales at worst as O(k3 +m2n)).
We remark that this complexity presents in the case k � m an advantage in com-
parison to state-of-the-art approaches scaling as O(m2(m + n)). However, the over-
all off-line complexity necessary to build the low-rank DMD reduced model will be
bounded by the complexity associated to the five steps of Algorithm 1, which scales as
O(m2(m+n)). Nevertheless, let us mention that an overall off-line complexity scaling
as O(k3+m2n)) can be preserved if we accept to barter the exact eigen-decomposition
computation in step 4 of Algorithm 1 by an approximation relying on Krylov meth-
ods, as suggested in [32]. The latter approximation may be worth for large values of
m. Once this reduced model is built, as mentioned previously, low-rank DMD can be
run with an on-line complexity scaling as O(rn) with r = rank(A?k), i.e., linear in n
and independent of T , which represents a great advantage compared to the previous
SVD-based reduced model.

5. Numerical Evaluation. In what follows, we evaluate three different ap-
proaches for computing low-rank DMD, namely

• method a) denotes the proposed optimal approach, i.e., the SVD-based re-
duced model given by Algorithm 2 or equivalently low-rank DMD given in
Algorithm 3,

• method b) denotes a low-rank DMD approximation based on the k-th order
truncation of SVD of the unconstrained problem solution (3.2) [30],

• method c) denotes a low-rank DMD approximation based on the projected
approach, i.e., the k-th order approximation (3.6) [15].

Rather than evaluating the error norm committed by the reduced model, i.e., the
error norm of the target problem (1.4), we are interested in the capabilities of the
different algorithms to solve the proxy (1.5) (or equivalently (3.1)) for this problem.
Therefore, the performance is measured in terms of the cost of the proxy (3.1) for this
problem, i.e., the normalised error norm

‖Y − ÂkX‖F
‖Y‖F

with respect to k, where k denotes the bound on the rank constraint in problem (3.1).
Besides, in the analysis perspective adopted most often in the literature on DMD, we
are interested in evaluating the capabilities of the algorithms to compute accurately
the parameters L, R and S of reduced models of the form of (1.3).

Convex relaxation approaches and iterative hard thresholding algorithms have
been omitted in the present evaluation because there does not exist in the literature
algorithms coding the recovery of Âk yet. We do not provide a comparison with the
sparse DMD approach for two reasons. The first one is practical: as formulated in [15],
it is not obvious to tune the regularisation coefficient to induce k-term representations
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for k = 1, · · · ,m. The second reason is theoretical: the error norm induced by the
sparse DMD method will always be greater than the one induced by the projected
approach, see Section 3.1.3. Concerning method b), we chose to evaluate low-rank
DMD based on SVD truncation of the unconstrained solution A?m (rather than on the
truncation of its eigen-decomposition) because among two-stage approaches, it is by
construction the most performant reduced model in terms of the error norm chosen
for evaluation.

We begin by evaluating the low-rank approximations using a toy model and then
continue by assessing their performance for the reduction of a Rayleigh-Bénard con-
vective system [4]. We finally evaluate Algorithm 3 and in particular the influence
of noise on the capability of the method to extract accuratly the ζ ′is in the low-rank
DMD reduced model (3.11).

5.1. Synthetic Experiments with a Toy Model.

We set n = 50 and m = 40 and consider a low-dimensional subspace of r = 30
dimensions. Matrices X and Y, are generated using (1.1) and three different defini-
tions for ft:

• setting i): ft(xt−1) = Gxt−1, where G is chosen so that the exists Ac satis-
fying GX = XAc,

• setting ii): ft(xt−1) = Fxt−1,
• setting iii): ft(xt−1) = Fxt−1 + Fdiag(xt−1)diag(xt−1)xt−1.

Matrices introduced above are random matrices of rank r defined as F =
∑r
i=1 ϕiϕ

ᵀ
i

and G = X†FX, where the ϕi’s are n-dimensional independent samples of the stan-
dard normal distribution. The pseudo-inverse X† is computed from the SVD of X.
We draw the initial condition θ according to the same distribution. The first setting
is a linear system satisfying the assumption made in the projected approach [28, 15].
The two next settings do not make this assumption and simulate respectively linear
and cubic dynamics.

The performance of the three methods are displayed in Figure 5.1. As predicted
by our theoretical results, method a), i.e., the proposed algorithm, yields the smallest
error norm. The deterioration of the error norm for method b) shows that a two-
stage approach is sub-optimal. The error norm increase is moderate in these toy
experiments. We mention that, although not displayed in the figure, the gap with
the optimal solution becomes important for k < 30 if we choose to truncate the
eigen-decomposition6 of A?m instead of its SVD.

Moreover, the experiments show that as expected method c), i.e., the low-rank
projected approach, achieves the optimal performance as long as the assumption
GX = XAc holds, i.e., for setting i). If the assumption is not satisfied, i.e., in set-
ting ii) and iii), the performance of the projected approach deteriorates notably for
k > 10. Nevertheless, we notice that method c) leads to a slight gain in performance
compared to method b) up to a moderate rank (k < 5).

Finally, as expected, the linear operator used to generate the snapshots is accu-
rately recovered by method a) and method b) for k ≥ r.

6As pointed out previously, this alternative two-stage method is voluntarily not displayed to
lighten the presentation.
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5.2. Physical Experiments. Rayleigh-Bénard model [4] constitutes a bench-
mark for convective system in geophysics. It is also famous because of its three-
dimensional Galerkin projection, known as the “Lorenz reduced system”. The so-
lution of the latter system, when plotted, resembles a butterfly [21]. Convection is
driven by two coupled partial differential equations. In order to introduce the model,
we need to introduce differential operators. Let ∇ = (∂s1 , ∂s2)ᵀ, ∇⊥ = (∂s2 ,−∂s1)ᵀ

and ∆ = ∂2
s1 + ∂2

s2 denote the gradient, the curl and the Laplacian with respect to
the two spatial dimensions (s1, s2). Let operator ∆−1 be the inverse of ∆. Boundary
conditions are periodic along s1 and of Dirichlet type7 along s2. At any point of the
unit cell s = (s1, s2) ∈ [0, 1]2 and for any time t ≥ 1, the temperature τ(s, t) ∈ R, the
buoyancy b(s, t) ∈ R and the velocity v(s, t) ∈ R2 in the cell satisfy{

∂tb(s, t) + v(s, t)ᵀ∇b(s, t)− σ∆b(s, t)− σν∂s1τ(s, t) = 0,

∂tτ(s, t) + v(s, t)ᵀ∇τ(s, t)−∆τ(s, t)− ∂s1∆−1b(s, t) = 0,
(5.1)

where velocity is in equilibrium with buoyancy according to

v(s, t) = ∇⊥∆−1b(s, t).

The regime of the convective system is parametrised by two quantities: 1) the Rayleigh
number ν ∈ R+, which balances thermal diffusion and the tendency for a packet of
fluid to rise due to the buoyancy force; 2) the Prandtl number σ ∈ R+ which controls
the importance of viscosity compared to thermal diffusion.

In our experiments, we assume the initial condition takes the form of a solution of
a Lorenz reduced model [21]. This initial condition, corresponding to a still fluid with
a difference of temperature between the bottom and the top of the cell, is defined as

b(s, 1) =κb sin(abs1) sin(πs2), (5.2)

τ(s, 1) =κτ1 cos(aτs1) sin(πs2)− κτ2 sin(2πs2).

It is easy to verify that for this parametrisation and in the particular case where ν = 0
and κb = σ−1(πa)−2, the non-linear system (5.1) simplifies into a linear evolution of
the temperature driven by a buoyancy force evolving in time according to a Taylor
vortex [29] {

b(s, t) = σ−1(πab)
−2exp−σπ

2a2bt sin(abs1) sin(πs2),

∂tτ(s, t) + v(s, t) · ∇τ(s, t)−∆τ(s, t)− ∂s1∆−1b(s, t) = 0.
(5.3)

We use a finite difference scheme on (5.1) and obtain a discrete system of the form of

(1.1) with xt =

(
bt
τt

)
∈ Rn, and n = 1024, where bt’s and τt’s are spatial discretisa-

tions of buoyancy and temperature fields at time t.

We assume that we have at our disposal three datasets of snapshots of the discre-
tised system trajectories. More precisely, we choose m = 50 and consider the three
following settings:

7In order to simplify the Fourier-based numerical implementation of the model, we will assume
periodicity for the discretised system in the two spatial directions.
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• setting iv): N = 50 short trajectories (T = 2) of the linear system (5.3)
obtained by fixing the initial condition on temperature (5.2) with random
parameters (aτ , κτ1 , κτ2) and setting ab = 1,

• setting v): N = 5 long trajectories (T = 11) of the linear system (5.3)
obtained by setting randomly parameters (aτ , κτ1 , κτ2) of the initial condition
on temperature and letting ab = 1,

• setting vi): N = 5 long trajectories (T = 11) of the non-linear system
(5.1) obtained by setting parameters (aτ , κb, κτ1 , κτ2) of the initial condition
randomly and letting ab = aτ .

Parameters (aτ , κb, κτ1 , κτ2) are randomly sampled so that each set of initial con-
ditions correspond to N realisations of the uniform distribution over an hyper-cube
of dimensionality r = 10.

The performances of method a) b) and c) are displayed in Figure 5.2 for these
three settings. We first comment on results obtained in setting iv). We remark
that, as expected for the situation T = 2, the error obtained by method a) vanishes
for k ≥ r, i.e., a dimensionality greater than the initial condition dimensionality.
The sub-optimal solution provided by method b) induces an important error which
vanishes only for k = m, i.e., for a dimensionality equal to the number of snapshots.
Concerning method c), it produces a fairly good solution up to k ≤ 8, but the solution
is clearly sub-optimal for greater dimensions and is associated to an error saturating
to a non-negligible value.

In setting v), we have longer sequences (T > 2) so that the dimension embed-
ding the initial condition does not necessarily match the dimension embedding the
snapshots. However, we remark that the optimal solution provided by method a)
induces an error nearly vanishing for k ≥ 10. This attests of the fact that, for this
linear model, trajectories are concentrate near the subspace spanned by the initial
condition. This explains the quasi-optimal performances of method c) which relies on
a strong assumption of linear dependance of snapshots. Method b) is again clearly
sub-optimal and behaves analogously to setting iv).

In the more realistic geophysical setting vi), we see that the optimal performances
achieved by method a) are far from being reached by method b) and c). As in the
linear settings, we observe that the optimal error nearly vanishes for k ≥ 10. However,
we clearly notice that the assumption on which rely method c) is for this non-linear
model invalid, which induces an error saturating to a non-negligible value. We observe
again in this case the poor performance of method b).

5.3. Robustness to Noise. In the following, we intend to evaluate the capa-
bilities of the different methods to extract the parameters of (3.11) in the presence
of noise. To this aim, we build a dataset of N = 5 long trajectories with T = 11
(so that we get m = 50 snapshots) satisfying (3.11) with k = 3 and the parame-
ters {(ξi, ζi, λi)}3i=1. The latter are extracted using Algorithm 3 from the geophysical
dataset described in setting vi). In other words, matrices X and Y are generated
using (1.1) and the model ft(xt−1) = Gxt−1 where

G =
(
ζ1 ζ2 ζ3

)
diag(λ1, λ2, λ3)

(
ξ1 ξ2 ξ3

)ᵀ
.

We then consider the two following configurations:

• setting vii): the original version of this dataset,
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• setting viii): a noisy version, where we have corrupted the snapshots with
a zero-mean Gaussian noise so that the peak-to-signal-ratio8 is 20 dB.

Results are displayed in Figures 5.3 and 5.4. As expected we recover a vanishing
optimal error for method a) in the case k ≥ 3. We observe only a slight increase of the
error in the presence of noise. This attests of the robustness of method a) to noise.
In the noiseless case method c) reproduces almost exactly the optimal behaviour,
while its performance slightly deteriorates for k ≥ 2 in the noisy case. The quasi-
optimal performance of this method in the noise-less setting can be interpreted as the
fact that there exists a matrix Ac such that assumption GX = XAc is nearly valid.
This assumption no longer holds when snapshots are corrupted by noise. Method b)
produces clearly sub-optimal solutions in the noiseless setting. More importantly,
the performance of this method becomes dramatic in the presence of noise. The
deterioration is clearly visible for eigen-vector ζ3 re-arranged in the form of a spatial
map in Figure 5.4. The spatial structure of the eigen-vector estimated by method b)
is completely rubbed out in this noisy setting while it is fairly preserved by method
a) and roughly recovered by method c). This illustrates the usefulness of solving the
low-rank minimisation problem instead of truncating the solution of the unconstrained
problem.

6. Conclusion. This work characterises an optimal solution of the non-convex
problem related to low-rank linear approximation. As shown in Theorem 4.1, the
closed-form solution is in fact the orthogonal projection of the unconstrained problem
solution YX† onto a low-dimensional subspace. This subspace is the span of the
first k left singular vectors of a matrix Z, which is defined as the multiplication of
Y by the projector onto the span of the rows of X. The theorem also provides
a characterisation of the error between the low-rank approximation and the true
trajectory. The expression of the `2-norm of the error is in fact closed-form and
depends on the singular values of Y and Z and on the scalar product between right
singular vectors of X and Y. Based on this theorem, Proposition 4.2 then shows that
the eigen-vectors and eigen-values in low-rank DMD can be deduced from the eigen-
decomposition of matrices in Rk×k, independently from the number of observations.

These theoretical results yield a method to compute the optimal solution in poly-
nomial time. The results also serve to design algorithms computing optimal low-rank
approximation with a low-computation effort. In particular we propose an algorithm
building exactly low-rank DMD with an off-line complexity going as O(m2(m + n)),
which is the same as for state-of-the-art sub-optimal methods. This reduced model
can then be run with an attractive on-line complexity scaling as O(kn), i.e., indepen-
dently of the trajectory length T .

Finally, we illustrate through numerical simulations in synthetic and physical se-
tups, the significant gain in accuracy brought by the proposed algorithm in comparison
to state-of-the-art sub-optimal approaches.

8The peak-to-signal-ration is defined as 20 log10
maxt,i ‖xt(θi)‖∞

σ
, where σ denotes the standard

deviation of the Gaussian law.
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Appendix A. Proof of Theorem 4.1.

We begin by showing the first part of the theorem, namely that A?k = P̂ P̂ ᵀYX†

is a solution of (3.1).

We first prove the existence of a minimiser of (3.1). Let us show that we can
restrict our attention to a minimisation problem over the set

A = {Ã ∈ Rn×n : rank(Ã) ≤ k, Im(Ãᵀ) ⊆ Im(X)}.

Indeed, we remark that any matrix A ∈ {Ã ∈ Rn×n : rank(Ã) ≤ k} can be decom-
posed in two components: A = A‖ + A⊥ where A‖ belongs to the set A, such that
columns of A‖ are orthogonal to those of A⊥, i.e., A⊥(A‖)ᵀ = 0. From this construc-
tion, we have that rows of A⊥ are orthogonal to rows of X. Using this decomposition,
we thus have that ‖Y−AX‖2F = ‖Y−A‖X‖2F . Moreover, because of this orthogonal
property, we have that rank(A) = rank(A‖) + rank(A⊥) so that rank(A‖) ≤ rank(A).
In consequence, if A is a minimiser of (3.1), then A‖ is also a minimiser since it leads
to same value of the cost function and since it is admissible: rank(A‖) ≤ rank(A) ≤ k.
Therefore, it is sufficient to find a minimiser over the set A.

Now, according to the Weierstrass’ theorem [2, Proposition A.8], the existence is
guaranteed if the admissible set A is closed and the objective function ‖Y−AX‖2F is
coercive. Let us prove these two properties. We first show that A is closed. According
to [11, Lemma 2.4], the set of low-rank matrices is closed. Moreover, it is well-known
that a linear subspace of a normed finite-dimensional vector space is closed [1, Chapter
7.2], so that the set of matrices A = {Ã ∈ Rn×n : Im(Ãᵀ) ⊆ Im(X)} is closed.
Since A is the intersection of two closed sets, we deduce that A is closed. Next,
we show coercivity. Let us consider the SVD of any A ∈ A: A = UAΣAV

ᵀ
A , where

ΣA = diag(σA,1 · · ·σA,k). From the definition of the Frobenius norm, we have for any

A ∈ A, ‖A‖F = (
∑k
i=1 σ

2
A,i)

1/2. We remark that ‖A‖F → ∞ if a non-empty subset
of singular values, say {σA,j}j∈J , tend to infinity. Therefore, we have

lim
‖A‖F→∞:A∈A

‖Y −AX‖2F = lim
‖A‖F→∞:A∈A

‖Y‖2F − 2 trace(Y ᵀAX) + ‖AX‖2F ,

= lim
‖A‖F→∞:A∈A

‖AX‖2F ,

= lim
‖A‖F→∞:A∈A

‖ΣAV ᵀ
AX‖

2
F ,

= lim
σA,j→∞:A∈A,j∈J

n∑
j=1

σ2
A,j‖XᵀvjA‖

2
2 =∞.

The second equality is obtained because the dominant term when ‖A‖F → ∞ is the
quadratic one ‖AX‖2F . The third equality follows from the invariance of the Frobe-
nius norm to unitary transforms while the last equality is obtained noticing that
‖XᵀvjA‖2 6= 0 because vjA ∈ Im(X) since A ∈ A. This shows that the objective func-
tion is coercive over the closed set A. Thus, using the Weierstrass’ theorem, this shows
the existence of a minimiser of (3.1) in A and thus in {Ã ∈ Rn×n : rank(Ã) ≤ k}. We
will no longer restrict our attention to the domain A in the following and come back
to the original problem (3.1) implying the set of low-rank matrices.

We next remark that problem (3.1) can be rewritten as the unconstrained min-
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imisation

A?k ∈ arg min
A=PQᵀ:P,Q∈Rn×k

‖Y −AX‖2F . (A.1)

In the following we will use the first-order optimality condition of problem (A.1) to
characterise its minimisers. A closed-form expression for a minimiser will then be
obtained be introducing an additional orthonormal property. The first-order optimal-
ity condition and the additional orthonormal property are presented in the following
lemma, which is proven in Appendix B.

Lemma A.1. Problem (A.1) admits a solution such that

P ᵀP = Ik (A.2)

XYᵀP = XXᵀQ. (A.3)

To find a closed-form expression of a minimiser of (A.1), we need to rewrite
condition (A.3). We can prove that this condition is equivalent to

PXᵀYᵀP = XᵀQ. (A.4)

Indeed, we can show by contradiction that (A.3) implies that, for any solution of the
form PQᵀ, there exists Z ∈ Rm×k such that

PXᵀYᵀP + Z = XᵀQ, (A.5)

with columns of Z in ker(X). Indeed, if PXᵀYᵀP + Z 6= XᵀQ, then by multiplying
both sides on the left by X we obtain PXXYᵀP + XZ = PXXYᵀP 6= XXᵀQ. Since
PX is the orthogonal projector onto the subspace spanned by the columns of X, the
latter relation implies that XYᵀP 6= XXᵀQ which contradicts (A.3). This proves
that (A.3) implies (A.5).

Now, since columns of the two terms in the left-hand side of (A.5) are orthogonal
and since columns of the matrix in the right-hand side are in the image of Xᵀ, we
deduce that the only admissible choice is Z with columns belonging both to ker(X)
and Im(Xᵀ), i.e., Z is a matrix full of zeros. Therefore, we obtain the necessary
condition (A.4).

We have shown on the one hand that (A.3) implies (A.4). On the other hand,
by multiplying on the left both sides of (A.4) by X, we obtain (A.3) (XPXᵀ = X
because XX† is the orthogonal projector onto the space spanned by the columns of
X). Therefore the necessary conditions (A.3) and (A.4) are equivalent.

We are now ready to characterise a minimiser of (3.1). According to Lemma A.1,
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we have

min
A∈Rn×n:rank(A)≤k

‖Y −AX‖2F

= min
(P̃ ,Q̃)∈Rn×k×Rn×k

‖Y − P̃ Q̃ᵀX‖2F s.t.

{
P̃ ᵀP̃ = Ik

XYᵀP = XXᵀQ
,

(A.6)

= min
(P̃ ,Q̃)∈Rn×k×Rn×k

‖Y − P̃ Q̃ᵀX‖2F s.t.

{
P̃ ᵀP̃ = Ik

PXᵀYᵀP = XᵀQ
,

= min
P̃∈Rn×k

‖Y − P̃ P̃ ᵀYPXᵀ‖2F s.t. P̃ ᵀP̃ = Ik, (A.7)

= min
P̃∈Rn×k

‖(Y − P̃ P̃ ᵀY)PXᵀ + Y(Im − PXᵀ)‖2F s.t. P̃ ᵀP̃ = Ik,

= min
P̃∈Rn×k

‖Z− P̃ P̃ ᵀZ‖2F + ‖Y(Im − PXᵀ)‖2F s.t. P̃ ᵀP̃ = Ik.

(A.8)

The second equality is obtained from the equivalence between (A.3) and (A.4). The
third equality is obtained by introducing the second constraint in the cost function and
noticing that projection operators are always symmetric, i.e., (PXᵀ)ᵀ = PXᵀ , while
the last equality follows from the definition of Z given in (4.1) and the orthogonality
of the columns of the two terms. Problem (A.8) is a proper orthogonal decomposition
problem with the snapshot matrix Z. The solution of this proper orthogonal decom-
position problem is the matrix P̂ (with orthonormal columns) given in (4.2), see e.g.,
[26, Proposition 6.1]. We thus obtain from (A.7) that

min
A∈Rn×n:rank(A)≤k

‖Y −AX‖2F = ‖Y − P̂ P̂ ᵀYPXᵀ‖2F . (A.9)

Furthermore, we verify that A?k = P̂ Q̂ᵀ with

Q̂ = (Xᵀ)†YᵀP̂ ,

is a minimiser of (A.1). Indeed, we check that (P̂ , Q̂) is admissible for problem (A.6)
since

XXᵀQ̂ = XXᵀ(Xᵀ)†YᵀP̂ = XYᵀP̂ .

We also check using (A.4) that

‖Y − P̂ Q̂ᵀX‖2F = ‖Y − P̂ P̂ ᵀYPXᵀ‖2F ,

i.e., that (P̂ , Q̂) reaches the minimum given in (A.9). In consequence, we have
shown that problem (A.1), and equivalently problem (3.1), admit the minimiser
A?k = P̂ Q̂ᵀ = P̂ P̂ ᵀYX†.

It remains to prove the second part of the theorem, namely the characterisation
of the approximation error. According to standard proper orthogonal decomposition
analysis, see e.g., [26, Proposition 6.1], the first term of the cost function in (A.8)
evaluated at A?k is

‖Z− P̂ P̂ ᵀZ‖2F =

m∑
i=k+1

σ2
Z,i. (A.10)

19



We can rewrite the second term of the cost function (A.8) as

‖Y(Im − PXᵀ)‖2F = ‖ΣYV
ᵀ
YVX(Im − ΣXΣ†X)V ᵀ

X‖
2
F ,

= ‖ΣYV
ᵀ
YVX(Im − ΣXΣ†X)‖2F ,

=

∥∥∥∥∥∥∥
 σY,1(v1

Y)ᵀ

...
σY,m(vmY )ᵀ

(vi∗X · · · vmX
)∥∥∥∥∥∥∥

2

F

,

=

m∑
i=i∗

∥∥∥∥∥∥∥
 σY,1(v1

Y)ᵀ

...
σY,m(vmY )ᵀ

 viX

∥∥∥∥∥∥∥
2

2

,

=

m∑
i=i∗

m∑
j=1

σ2
Y,j((v

j
Y)ᵀviX)2. (A.11)

where the first and second equalities follow from the invariance of the Frobenius norm
to unitary transforms, and more precisely to the multiplication on the left by Uᵀ

Y and
on the right by VX. Gathering error contributions (A.10) and (A.11), we obtain the
sought result. �

Appendix B. Proof of Lemma A.1.
We begin by proving that any minimiser of (A.1) can be rewritten as PQᵀ where

P ᵀP = Ik. Indeed, the existence of the SVD of Ã for any minimiser Ã ∈ Rn×n
guarantees that

‖Y − ÃX‖2F = ‖Y − UÃΣÃV
ᵀ
Ã
X‖2F ,

where UÃ ∈ Rn×k possesses orthonormal columns. Making the identification P = UÃ
and Q = VÃΣÃ we verify that ‖Y − ÃX‖2F = ‖Y − PQᵀX‖2F and that P possesses
orthonormal columns.

Next, any solution of problem PQᵀ of (A.1) should satisfy the first-order opti-
mality condition with respect to the j-th column denoted qj of matrix Q, that is

2[−XYᵀpj +

k∑
i=1

(pᵀi pj)XXᵀqi] = 0,

where the j-th column of matrix P is denoted pj . In particular, a solution with P
possessing orthonormal columns should satisfy

XYᵀpj = XXᵀqj ,

or in matrix form

XYᵀP = XXᵀQ. �

Appendix C. Proof of Proposition 4.2.
We have A?k = P̂ P̂ ᵀYX† = P̂ Q̂ᵀ which implies that

Q̂ᵀP̂ = P̂ ᵀYX†P̂ = P̂ ᵀP̂ P̂ ᵀYX†P̂ = P̂ ᵀP̂ Q̂ᵀP̂ .
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Using the definition of ζi’s and ξi’s in (4.6) and the fact that the wri ’s and w`i ’s are

the right and left eigen-vectors of Q̂ᵀP̂ , we verify that

A?kζi =
1

λi
P̂ Q̂ᵀP̂ Q̂ᵀP̂wri = P̂ Q̂ᵀP̂wri = λiζi,

and that

(A?k)ᵀξi =
1

λi
Q̂P̂ ᵀQ̂w`i = Q̂w`i = λiξi.

Finally, ξᵀi ζi = 1 is a sufficient condition so that ξᵀi A
?
kζi = λi. �
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[3] Budǐsić, M., Mohr, R., Mezić, I.: Applied koopmanism a. Chaos: An Interdisciplinary Journal

of Nonlinear Science 22(4), 047,510 (2012)
[4] Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability. Courier Corporation (2013)
[5] Chen, K.K., Tu, J.H., Rowley, C.W.: Variants of dynamic mode decomposition: boundary

condition, koopman, and fourier analyses. Journal of nonlinear science 22(6), 887–915
(2012)

[6] Cohen, A., Devore, R.: Approximation of high-dimensional parametric PDEs. ArXiv e-prints
(2015)

[7] Cui, T., Marzouk, Y.M., Willcox, K.E.: Data-driven model reduction for the Bayesian solution
of inverse problems. International Journal for Numerical Methods in Engineering 102,
966–990 (2015)

[8] Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychome-
trika 1(3), 211–218 (1936)

[9] Fazel, M.: Matrix rank minimization with applications, stanford university. Ph.D. thesis (2002)
[10] Golub, G., Van Loan, C.: Matrix Computations. Johns Hopkins Studies in the Mathematical

Sciences. Johns Hopkins University Press (2013)
[11] Hackbusch, W.: Tensor spaces and numerical tensor calculus, vol. 42. Springer Science &

Business Media (2012)
[12] Hasselmann, K.: PIPs and POPs: The reduction of complex dynamical systems using prin-

cipal interaction and oscillation patterns. Journal of Geophysical Research: Atmospheres
93(D9), 11,015–11,021 (1988)

[13] Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge university press (2012)
[14] Jain, P., Meka, R., Dhillon, I.S.: Guaranteed rank minimization via singular value projection.

In: Advances in Neural Information Processing Systems, pp. 937–945 (2010)
[15] Jovanovic, M., Schmid, P., Nichols, J.: Low-rank and sparse dynamic mode decomposition.

Center for Turbulence Research Annual Research Briefs pp. 139–152 (2012)
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Fig. 5.1. Error norm as a function of k for setting i), ii) and iii) and for methods a),
b) and c). See details in Section 5.1.
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Fig. 5.2. Error norm as a function of k for setting iv), v) and vi) and for methods a),
b) and c). See details in Section 5.2.
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Fig. 5.3. Error norm as a function of k for setting vii) and viii) and for methods a), b)
and c). See details in Section 5.3.
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ζ3

ζ2

ζ1

Fig. 5.4. Amplitude of eigen-vectors ζ1, ζ2 and ζ3 of the low-rank DMD (3.11) of a
Rayleigh-Bénard system. Left column : reference obtained with method a) in the case of
the noiseless setting vii). Eigen-vector reconstruction in the noisy setting viii) with method
a) (middle left column), method b) (middle right column) and method c) (right column).
Amplitudes are related to temperature (row above) and buoyancy (row below). See details in
Section 5.3.
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