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Abstract

We consider an enhanced version of the well-kwown “Petrov-Galerkin”
projection in Hilbert spaces. The proposed procedure, dubbed “multi-
slice” projector, exploits the fact that the sought solution belongs to
the intersection of several high-dimensional slices. This setup is for ex-
ample of interest in model-order reduction where this type of prior may
be computed off-line. In this note, we provide a mathematical char-
acterization of the performance achievable by the multi-slice projector
and compare the latter with the results holding in the Petrov-Galerkin
setup. In particular, we illustrate the superiority of the multi-slice ap-
proach in certain situations.

Nous considérons une version améliorée de la projection de “Petrov-
Galerkin” dans un espace de Hilbert. La procédure proposée, appelée
“projecteur multi-tranches”, exploite le fait que la solution recherchée
appartient à l’intersection de plusieurs tranches de hautes dimensions.
Dans cette note, nous fournissons une caractérisation mathématique
des performances atteignables par le projecteur “multi-tranches” et
comparons les résultats obtenus à ceux existants dans le contexte des
projections de Petrov-Galerkin. Nous illustrons ainsi la supériorité de
l’approche multi-tranches dans certaines situations.

1 Introduction

Let H be a Hilbert space with inner product 〈·, ·〉 and induced norm
‖·‖. We focus on the following variational formulation:

Find h⋆ ∈ H such that a(h⋆,h) = b(h) ∀h ∈ H, (1)

where a : H × H → R is a bilinear operator and b : H → R a lin-
ear operator. Problem (1) is quite common (it appears for example
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in the weak formulation of elliptic partial differential equations) and
has therefore been well-studied in the literature. In particular, it has
a unique solution under mild conditions, see Lax-Milgram’s and Necas
Theorems in [1, Theorems 2.1 and 2.2].

Unfortunately, solving (1) is generaly an intractable problem. A
popular alternative to compute an approximation of (1) is known as
“Petrov-Galerkin” projection. Formally, this approach consists of ap-
proximating (1) by the following problem:

Find ĥPG ∈ Vn such that a(ĥPG,h) = b(h) ∀h ∈ Zm (2)

where Vn ⊂ H is a linear subspace of dimension n and Zm ⊂ H is
a linear subspace of dimension m ≥ n. Since the dimension of Vn

and Zm are finite, (2) admits a simple algebraic solution under mild
conditions. In the literature of model reduction (see e.g., [1]), Petrov-
Galerkin approximation is at the core of the family of “projection-
based” reduced models.

In this note we elaborate on an alternative projection procedure
exploiting several approximation subspaces. Indeed, in the context of
model-order reduction, standard strategies to evaluate a good approx-
imation subspace Vn, e.g., reduced basis [1] or proper orthogonal de-
composition [2], typically generate a sequence of subspaces {Vk}

n

k=0

and positive scalars {ǫ̂k}
n

k=0 such that

V0 ⊂ V1 ⊂ . . . ⊂ Vn (3)

and

dist(h⋆, Vk) ≤ ǫ̂k, k = 0 . . . n. (4)

Clearly, (4) provides some useful information about the location of h⋆

in H since it restrains the latter to belong to the intersection of a set
of low dimensional slices, i.e.,

h
⋆ ∈ ∩n

k=0Sk, (5)

where

Sk = {h : dist(h, Vk) ≤ ǫ̂k}, k = 0 . . . n. (6)

In standard Petrov-Galerkin projection (2), only Vn is used and the
additional information provided by (5) is discarded. In this work, we
consider a simple methodology to exploit the latter additional infor-
mation into the projection process. More specifically, we focus on the
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following optimization problem1

Find ĥMS ∈ argmin
h∈Vn

m
∑

j=1

(b(zj)− a(h, zj))
2 (7)

subject to dist(h, Vk) ≤ ǫ̂k, k = 0 . . . n,

which can be seen as an extension of the standard Petrov-Galerkin
approach. In particular, the constraints in (7) exploit the prior infor-
mation (4) into the projection process: each constraint imposes that
the solution belongs to some k-dimensional slice Sk. Hence, in the se-
quel, we will dub this procedure as “multi-slice” projection.

The practical interest of the multi-slice approach has already been
emphasized in several contributions. In [3, 4] we presented some ap-
plications of the multi-slice decoder to the problem of model-order re-
duction of parametric partial differential equations. In [5] and [6], the
authors showed that multi-slice decoder can be of interest to enhance
the performance of the “empirical interpolation method” or the simula-
tion of Navier-Stokes equations. “Multi-slice” prior information of the
form (5) has also been considered in [7] for data assimilation. How-
ever, in the latter contribution, the decoder considered by the authors
differs from (7) since the solution is no longer constrained to belong to
the low-dimensional subspace Vn.

In this note we provide a mathematical characterization of the per-
formance achievable by the multi-slice decoder (7). More specifically,
we derive an “instance optimality property” relating the projection er-
ror ‖ĥMS − h⋆‖ to the distance between h⋆ and the different approxi-
mation subspaces Vk. Our result is presented in Theorem 2 in the next
section.

2 Performance guarantees

One of the reasons which has ensured the success of Petrov-Galerkin
projection is the existence of strong theoretical guarantees, e.g., Cea’s
Lemma [1, Lemma 2.2] or the Babuska’s Theorem [1, Theorem 2.3].
In this section we derive a similar result for the multi-slice decoder
(7). The standard result associated to Petrov-Galerkin projection is
recalled in Theorem 1 whereas our characterization of the multi-slice
decoder (7) is presented in Theorem 2. We conclude this section by
providing two examples in which the multi-slice projector leads to bet-

1In this note we assume that constraints are available ∀k ∈ {1 . . . n}. All the derivations
presented in this paper may nevertheless be easily extended to the case where constraints
in (7) are only available for some k ∈ {1 . . . n}.
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ter guarantees of reconstruction than the standard Petrov-Galerkin
approach.

We first introduce some quantities of interest. First, we let {vj}
n

j=1

and {zj}
m

j=1 be orthonormal bases (ONBs) of the subspaces Vn and

Zm, respectively. We define {aj}
m

j=1 as the Riesz’s representers of

{a(·, zj)}
m

j=1. We denote by {σj}
n

j=1 the set of singular values (sorted

in their decreasing order of magnitude) of the Gram matrix

G = [〈ai,vj〉]i,j ∈ R
m×n. (8)

With these notations, the well-known Babuska’s theorem (in a Hilbert
space) can be formulated as follows:

Theorem 1 (Babuska’s Theorem). If σn > 0 then the solution of (2)
is unique and satisfies

∥

∥

∥h
⋆ − ĥPG

∥

∥

∥ ≤
σ1

σn

dist(h⋆, Vn). (9)

See for example [8] for a proof of this result. Hereafter we provide
a similar characterization of the performance of the multi-slice projec-
tor (7). In order to state our result we need to introduce the following
quantities. We first define the short-hand notations2

ǫk = dist(h⋆, Vk), (10)

and

γ = sup
h∈V ⊥

n
,‖h‖=1





m
∑

j=1

〈aj ,h〉
2





1

2

. (11)

Moreover, we define

δj =

n
∑

k=1

|xkj |(ǫ̂k−1 + ǫk−1), (12)

where xkj are the elements of the matrix X appearing in the singular
value decomposition of G, that is G = UΛXT, where U ∈ R

m×m,
X ∈ R

n×n are orthogonal matrices and Λ ∈ R
m×n is the diagonal

matrix of singular values {σj}
n

j=1.

Using these notations, our result reads:

2
ǫk thus represents the true distance from h

⋆ to Vk. We note that this quantity is
usually unknown to the practitioner. This is in contrast which ǫ̂k which represents the
prior information available to the practitioner but is only an upper bound on ǫk.
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Theorem 2. Let h⋆ be a solution of (1) verifying (5). Then any

solution ĥMS of (7) verifies

∥

∥

∥h
⋆ − ĥMS

∥

∥

∥ ≤











(

∑n

j=ℓ+1 δ
2
j + ρ δ2ℓ + ǫ2n

)
1

2

if
∑n

j=1 σ
2
j δ

2
j ≥ 4γ2ǫ2n,

(

∑n

j=1 δ
2
j + ǫ2n

)
1

2

otherwise,

(13)

where ℓ is the largest integer such that

n
∑

j=ℓ

σ2
j δ

2
j ≥ 4γ2ǫ2n, (14)

and ρ ∈ [0, 1] is defined as

ρσ2
ℓ δ

2
ℓ +

n
∑

j=ℓ+1

σ2
j δ

2
j = 4γ2ǫ2n. (15)

Moreover, if σn > 0, (7) admits a unique solution.

A proof of Theorem 2 is detailed in Section 3.

We conclude this section by particularizing the results stated in
Theorems 1 and 2 to different setups. In particular, we emphasize two
situations3 where the multi-slice projection has much better recon-
struction guarantees than its Petrov-Galerkin counterpart. In order to
ease the comparison between the bounds stated in Theorems 1 and 2,
we consider the case where {aj}

m

j=1 is an ONB. We note that in such
a case, we have σ1 ≤ 1 and γ ≤ 1.

Example 1. We first assume that X = In in the singular-value de-
composition of G. We set ǫ̂j = ǫj and assume that

ǫj =







1 j = 0 . . . n− 3,

ǫ
1

2 j = n− 2, n− 1,
ǫ j = n,

(16)

for some ǫ ≪ 1. Moreover, we let

σj =







1 j = 1 . . . n− 3,

ǫ
1

2 j = n− 2, n− 1,
ǫ j = n.

(17)

3The two setups considered below correspond to those exposed in [7, Section 3.2].
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In this setup, the upper bound (9) of Theorem 1 becomes:

∥

∥

∥
ĥPG − h⋆

∥

∥

∥
≤ σ−1

n dist(h⋆, Vn) = ǫ−1ǫ = 1. (18)

On the other hand, because X = I, we have

δj = ǫ̂j−1 + ǫj−1 = 2ǫj−1. (19)

The index ℓ appearing in Theorem 2 is smaller or equal to n− 1 since

σ2
nδ

2
n = σ2

n(2ǫn−1)
2 = 4ǫ3 ≪ 4ǫ2,

σ2
n−1δ

2
n−1 = σ2

n−1(2ǫn−2)
2 = 4ǫ2,

and thus

σ2
n−1δ

2
n−1 + σ2

nδ
2
n ≥ 4ǫ2 ≥ 4γ2ǫ2 (20)

since γ ≤ 1. The upper bound in Theorem 2 becomes

∥

∥

∥h
⋆ − ĥMS

∥

∥

∥ ≤
(

δ2n−1 + δ2n + ǫ2n
)

1

2 ,

=
(

4ǫ+ 4ǫ+ ǫ2
)

1

2 ,

≤ 3ǫ
1

2 . (21)

Hence the bound in the multi-slice setup (21) can be arbitrarily small
as compared to (18) when ǫ → 0.

Example 2. We now consider X = n− 1

2 1n×n where 1n×n is an n×n

matrix of 1’s. We set ǫ̂j = ǫj and assume that

ǫj =







1
2 j = 0,

1
2(n−1) j = 1 . . . n− 1,

ǫ j = n,

(22)

for some ǫ ≪ n−1 (Note that we must have: ǫ ≤ 1
2(n−1) by definition).

Moreover, we let

σj =

{

σ j = 1 . . . n− 1,
ǫ2 j = n,

(23)

for some 1 ≥ σ > ǫ whose value will be specified below.
With these choices, the upper bound (9) of Theorem 1 becomes:

∥

∥

∥ĥPG − h⋆
∥

∥

∥ ≤ σ−1
n dist(h⋆, Vn) = ǫ−2ǫ = ǫ−1. (24)
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On the other hand, we have

δj =

n
∑

k=1

|xkj |(ǫ̂k−1 + ǫk−1),

= 2n− 1

2

n
∑

k=1

ǫk−1,

= 2n− 1

2 . (25)

By choosing σ such that (we remind the reader that σn−1 = σ by defi-
nition (23))

σ2
n−1δ

2
n−1 + σ2

nδ
2
n = 4ǫ2, (26)

we obtain that index ℓ appearing in Theorem 2 is smaller or equal to
n− 1 since γ ≤ 1. The upper bound in Theorem 2 then reads

∥

∥

∥h
⋆ − ĥMS

∥

∥

∥ ≤
(

δ2n−1 + δ2n + ǫ2n
)

1

2 ,

=
(

4n−1 + 4n−1 + ǫ2
)

1

2 ,

≤ 3n− 1

2 , (27)

where the last inequality follows from our initial assumption ǫ ≪ n−1.

3 Proof of Theorem 2

In this section, we provide a proof of the result stated in Theorem 2.
We first note that problem (7) is equivalent to finding the minimum of
a quadratic function over a closed bounded subset of Vn. A minimizer
thus always exists. Moreover, the unicity of the minimizer stated at the
end of Theorem 2 follows from the strict convexity of the cost function
when σn > 0.

In the rest of this section, we thus mainly focus on the derivation
of the upper bound (13). Our proof is based on the following steps.

First, since ĥMS ∈ Vn, we have that

∥

∥

∥h
⋆ − ĥMS

∥

∥

∥

2

=
∥

∥

∥PVn
(h⋆)− ĥMS

∥

∥

∥

2

+
∥

∥P⊥
Vn

(h⋆)
∥

∥

2
,

=
∥

∥

∥PVn
(h⋆)− ĥMS

∥

∥

∥

2

+ ǫ2n, (28)

where PVn
(·) (resp. P⊥

Vn
(·)) denotes the orthogonal projector onto Vn

(resp. V ⊥
n ). We then derive an upper bound on ‖PVn

(h⋆)− ĥMS‖
2 as

follows:
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• We identify a set D such that PVn
(h⋆)− ĥMS ∈ D in Section 3.1.

We then have ‖PVn
(h⋆)− ĥMS‖

2 ≤ supd∈D‖d‖
2
.

• We derive the analytical expression of supd∈D‖d‖
2

as a function
of the parameters {ǫk}

n

k=1, {ǫ̂k}
n

k=1 and {σk}
n

k=1.

Combining these results, we obtain (13)-(15).

3.1 Definition of D

We express D as the intersection of two sets D1 and D2 that we define
in Sections 3.1.2 and 3.1.3 respectively. In order to properly define
these quantities, we introduce some particular ONBs for Vn and Wm =

span
(

{aj}
m

j=1

)

in Section 3.1.1.

3.1.1 Some particular bases for Vn and Wm

Let

G = UΛXT (29)

be the singular value decomposition of the Gram matrix defined in
(8), where U ∈ R

m×m and X ∈ R
n×n are orthonormal matrices and

Λ ∈ R
m×n is the diagonal matrix of singular values. We denote by

{σj}
n

j=1 the set of singular values of G sorted in their decreasing order
of magnitude.

We define the following bases for Vn and Wm:

v∗
j =

n
∑

i=1

xijvi, (30)

a∗
j =

m
∑

i=1

uijai, (31)

where U ∈ R
m×m and X ∈ R

n×n are the orthonormal matrices ap-
pearing in (29). We note that

{

v∗
j

}n

j=1
is an ONB whereas

{

a∗
j

}m

j=1

is not necessarily orthonormal. By definition,
{

v∗
j

}n

j=1
and

{

a∗
j

}m

j=1

enjoy the following desirable property:

〈

a∗
i ,v

∗
j

〉

=

{

σj if i = j

0 otherwise.
(32)
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3.1.2 Definition of D1

Let us define D1 as

D1 =







d =

n
∑

j=1

βjv
∗
j :

n
∑

j=1

σ2
jβ

2
j ≤ 4γ2ǫ2n







, (33)

where γ is defined in (11). We show hereafter that PVn
(h⋆)−ĥMS ∈ D1.

Let us first consider the intermediate set

S =
{

h : f(h) ≤ γ2ǫ2n
}

, (34)

where f(h) =
∑m

j=1(b(zj)− a(h, zj))
2

is the cost function appearing
in the variational formulation of multi-slice projector (7).

Clearly PVn
(h⋆) ∈ S because

f(PVn
(h⋆)) =

m
∑

j=1

(

b(zj)− a(PVn
(h⋆), zj)

)2

=

m
∑

j=1

(

〈aj ,h
⋆〉 −

〈

aj , PVn
(h⋆)

〉)2

=
m
∑

j=1

(〈

aj , P
⊥
Vn

(h⋆)
〉)2

≤ γ2
∥

∥P⊥
Vn

(h⋆)
∥

∥

2

≤ γ2ǫ2n. (35)

Moreover, ĥMS ∈ S. This can be seen from the following argu-
ments. First, PVn

(h⋆) is a feasible point for problem (7), that is

dist(PVn
(h⋆), Vk) ≤ ǫ̂k for k = 0 . . . n. (36)

Indeed, rewriting h⋆ as

h⋆ =
n
∑

j=1

〈vj ,h
⋆〉vj + z, (37)
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where z ∈ V ⊥
n , we have

ǫ̂k ≥ dist(h⋆, Vk)

=
∥

∥P⊥
Vk
(h⋆)

∥

∥

=

∥

∥

∥

∥

∥

∥

n
∑

j=k+1

〈vj ,h
⋆〉vj + z

∥

∥

∥

∥

∥

∥

=

√

√

√

√

√

∥

∥

∥

∥

∥

∥

n
∑

j=k+1

〈vj ,h
⋆〉vj

∥

∥

∥

∥

∥

∥

2

+ ‖z‖
2

≥

∥

∥

∥

∥

∥

∥

n
∑

j=k+1

〈vj ,h
⋆〉vj

∥

∥

∥

∥

∥

∥

=
∥

∥P⊥
Vk

(

PVn
(h⋆)

)∥

∥

= dist(PVn
(h⋆), Vk). (38)

The first inequality follows from our initial assumption h
⋆ ∈ ∩n

k=0Sk.

The third equality is true because z ∈ V ⊥
n . Now, since ĥMS is a

minimizer of f(h) over the set of feasible points, we have f(ĥMS) ≤

f(PVn
(h⋆)) ≤ γ2ǫ2n and therefore ĥMS ∈ S.

We finally show that ĥMS ∈ S and PVn
(h⋆) ∈ S implies PVn

(h⋆)−

ĥMS ∈ D1. Let us first note that, if h ∈ Vn, the cost function f(h) can
be rewritten as:

f(h) =
m
∑

j=1

(b(zj)− a(h, zj))
2

=

m
∑

j=1

(〈aj ,h
⋆〉 − 〈aj ,h〉)

2
,

=

m
∑

j=1

(〈

a∗
j ,h

⋆
〉

−
〈

a∗
j ,h

〉)2
,

=

n
∑

j=1

(〈

a∗
j ,h

⋆
〉

− σj

〈

v∗
j ,h

〉)2
+

m
∑

j=n+1

〈

a∗
j ,h

⋆
〉2
, (39)

where the third equality follows from the fact that {aj}
m

j=1 and
{

a∗
j

}m

j=1

differ up to an orthonormal transformation; the last equality is a con-
sequence of (32) and the fact that h ∈ Vn by hypothesis.

We note that PVn
(h⋆)−ĥMS can be written as

∑n

j=1 βjv
∗
j by setting

10



βj =
〈

v∗
j , PVn

(h⋆)
〉

−
〈

v∗
j , ĥMS

〉

. Therefore, we have

n
∑

j=1

σ2
jβ

2
j =

n
∑

j=1

(

σj

〈

v∗
j , PVn

(h⋆)
〉

− σj

〈

v∗
j , ĥMS

〉)2

,

=

n
∑

j=1

(

σj

〈

v∗
j , PVn

(h⋆)
〉

−
〈

a∗
j ,h

⋆
〉

− σj

〈

v∗
j , ĥMS

〉

+
〈

a∗
j ,h

⋆
〉

)2

,

≤2

n
∑

j=1

(

σj

〈

v∗
j , PVn

(h⋆)
〉

−
〈

a∗
j ,h

⋆
〉)2

+ 2

n
∑

j=1

(

σj

〈

v∗
j , ĥMS

〉

−
〈

a∗
j ,h

⋆
〉

)2

,

≤2f(PVn
(h⋆)) + 2f(ĥMS),

≤4γ2ǫ2n,

where the first inequality follows from the standard inequality (a+b)2 ≤
2(a2 + b2), the second from (39), and the last one from the fact that

ĥMS ∈ S and PVn
(h⋆) ∈ S.

3.1.3 Definition of D2

Let

δj = ηj + η̂j , (40)

where

ηj =

n
∑

i=1

|xij |ǫi−1,

η̂j =

n
∑

i=1

|xij |ǫ̂i−1, (41)

and the xij ’s are the elements of the matrix X appearing in the SVD
decomposition (29). We define D2 as

D2 =







d =

n
∑

j=1

βjv
∗
j : |βj | ≤ ηj







. (42)

We show hereafter that PVn
(h⋆)− ĥMS ∈ D2.

We first note that if h is feasible for problem (7), we must have
∣

∣

〈

v∗
j ,h

〉∣

∣ ≤ η̂j . (43)

Indeed, if h is feasible, the constraint dist(h, Vk) ≤ ǫ̂k simply writes as

n
∑

j=k+1

〈vj ,h〉
2
≤ ǫ̂2k.

11



In particular, this implies that

|〈vk+1,h〉| ≤ ǫ̂k.

Using the fact that

v∗
j =

n
∑

k=1

xkjvk,

we obtain (43). In a similar way, we can find that

∣

∣

〈

v∗
j , PVn

(h⋆)
〉∣

∣ ≤ ηj , (44)

by using the fact that dist(PVn
(h⋆), Vk) ≤ ǫk from (38).

Let us now show that PVn
(h⋆) − ĥMS ∈ D2. We first note that

PVn
(h⋆)−ĥMS can be written as

∑n

j=1 βjv
∗
j by setting βj =

〈

v∗
j , PVn

(h⋆)
〉

−
〈

v∗
j , ĥMS

〉

. This leads to

|βj | =
∣

∣

∣

〈

v∗
j , PVn

(h⋆)
〉

−
〈

v∗
j , ĥMS

〉∣

∣

∣,

≤
∣

∣

〈

v∗
j , PVn

(h⋆)
〉∣

∣+
∣

∣

∣

〈

v∗
j , ĥMS

〉∣

∣

∣
,

≤ η̂j + ηj = δj ,

where the last inequality follows from (43) and (44).

3.2 Expression of sup
d∈D‖d‖

2

We consider the following problem:

sup
d∈D

‖d‖
2
= sup

β

‖β‖
2

subject to

{ ∑n

j=1 σ
2
jβ

2
j ≤ 4γ2ǫ2n

|βj | ≤ δj
. (45)

If
∑n

j=1 σ
2
j δ

2
j ≤ 4γ2ǫ2n, the first constraint in (45) is always inactive

and the solution simply reads

sup
d∈D

‖d‖
2
=

n
∑

j=1

δ2j . (46)

If
∑n

j=1 σ
2
j δ

2
j ≥ 4γ2ǫ2n, the solution of (45) is given by

sup
d∈D

‖d‖
2
=

n
∑

j=ℓ+1

δ2j + ρ δ2ℓ , (47)

12



where ℓ is the largest integer such that

n
∑

j=ℓ

σ2
j δ

2
j ≥ 4γ2ǫ2n, (48)

and ρ ∈ [0, 1] is defined as

ρσ2
ℓ δ

2
ℓ +

n
∑

j=ℓ+1

σ2
j δ

2
j = 4γ2ǫ2n. (49)

This can be seen by verifying the optimality condition of problem (45).
We note that problem (45) is the same (up to some constants) to the
one considered in [7, Section 3.1]. The solution (47) is therefore similar,
up to some different constants, to the one obtained in that paper.
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