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Abstract. The state-of-the-art algorithm known as kernel-based dynamic mode decomposition
(K-DMD) provides a sub-optimal solution to the problem of reduced modeling of a dynamical system
based on a finite approximation of the Koopman operator. It relies on crude approximations and
on restrictive assumptions. The purpose of this work is to propose a kernel-based algorithm solving
exactly this low-rank approximation problem in a general setting.

1. Introduction. Consider a high-dimensional system of the form:{
xt = ft(xt−1),

x1 = θ,
(1.1)

where the xt’s belonging to Rp constitute a state trajectory, ft : Rp → Rp, and
θ ∈ Rp denotes an initial condition. Computing trajectories for many values of the
initial condition may be an intractable task for large p. Among reduced modeling
methods, dynamic mode decomposition (DMD) [4, 7, 9, 10, 11] is a popular frame-
work for the linear approximation of the trajectories of (1.1). It can be extended to
the approximation of non-linear behaviors by finite approximation of the Koopman
operator using a decomposition known as extended DMD (EDMD) [3, 8, 12, 13]. In
this paper, we will focus on the latter approximation.

1.1. Koopman Operator Approximation. We present in this section re-
duced models based on the finite approximation of the Koopman operator.

This class of reduced models presuppose the knowledge of a set of n ≥ p functions
ψi ∈ L2(Rp) forming Ψ = (ψ1 · · ·ψn)ᵀ ∈ (L2(Rp))n, an n-dimensional vector-valued
function.1 Given this knowledge, reduced models based on an approximation of the
Koopman operator determine (according to some optimality criterion specified in Sec-
tion 1.2) a matrix Âk ∈ Rn×n of rank at most k ≤ p, yielding a set of approximations
{x̃t(θ)}t of the states {xt(θ)}t of (1.1) according to

x̃t(θ) = Ψ−1(Ψ(x̃t(θ))),

Ψ(x̃t(θ)) = ÂkΨ(x̃t−1(θ)),

Ψ(x̃1(θ)) = Ψ(θ).

(1.2)

We have assumed in (1.2) that there exists an inverse function Ψ−1 ∈ (L2(Rn))p such
that Ψ−1(Ψ(x̃t(θ))) = x̃t(θ). We justify in Appendix A the fact that matrix Âk in
(1.2) can be seen under a certain condition2 as a finite approximation of the Koopman
operator. The computational gain brought by (1.2) can be seen by considering the
eigen-decomposition

Âk = ΞΛΞ−1, (1.3)

∗INRIA Centre Rennes - Bretagne Atlantique, campus universitaire de Beaulieu, 35042 Rennes,
France (patrick.heas@inria.fr, cedric.herzet@inria.fr)

1The number of components of this vector-valued function is possibly infinite. However, in order
to simplify the presentation, we will all along the paper define formally infinite dimensional vectors
using notations for vector spaces of finite dimension n with n→∞.

2The condition is that function Ψ should be chosen so that its image is an invariant vector space
of the Koopman operator.
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Columns of matrices (Ξ−1)ᵀ = (ξ1 · · · ξn) ∈ Cn×n and Ξ = (ζ1 · · · ζn) ∈ Cn×n are left
and right eigen-vectors associated to the Jordan matrix Λ ∈ Cn×n of rank at most
k [5]. Indeed, using this decomposition, recursion (1.2) can be rewritten as

x̃t(θ) = Ψ−1(ΞΛt−1Ξ−1Ψ(θ)). (1.4)

Assuming that Âk is diagonalisable, then Λ = diag(λ1 · · ·λn) and it is easy to see
that (1.4) becomes 

x̃t(θ) = Ψ−1

rank(Âk)∑
i=1

ζiνi,t

 ,

νi,t = λt−1
i ϕ̃i(θ),

(1.5)

with ϕ̃i = ξᵀi Ψ ∈ L2(Rp), see details on this derivation in Appendix A. Note that if
Ψ−1 is linear, then the first equation of (1.5) simplifies to

x̃t(θ) =

rank(Âk)∑
i=1

νi,tµi, with µi = Ψ−1ζi ∈ Cp. (1.6)

The ϕ̃i’s, the µi’s and the λi’s are known respectively as approximations of the i-th
Koopman eigen-function, eigen-mode and eigen-value [12]. Note that by bartering the
original system (1.1) by the reduced model (1.6), the computational cost necessary
to compute a trajectory for a given initial condition θ, which we will refer to as the
“on-line complexity”, has been lowered to at most O(pk), as long as we can compute
the ϕ̃i(θ)’s within a complexity scaling linearly in p. It is also independent of the
trajectory length T . If we further assume that the evaluation of Ψ−1 does not increase
the on-line complexity, the linear scaling with respect to the ambient dimension p is
preserved in the reduced model (1.5).

1.2. Data-Driven Construction. We consider a data-driven approach to build
“off-line” reduced model (1.5). It presupposes a data set from which we can esti-

mate matrix Âk. Assume a data set of representative trajectories {xt(θi)}T,Nt=1,i=1 so-
called snapshots of the high-dimensional system corresponding to N initial conditions
{θi}Ni=1. Inspired by the low-rank approximations introduced in [4, 7], we consider

a generalisation of the problem in [12, 13]: matrix Âk targets the solution of the
low-rank EDMD approximation problem

A?k ∈ arg min
A:rank(A)≤k

‖ΨY −AΨX‖2F , (1.7)

where matrices in Rn×m with m = N(T − 1)

ΨX = (Ψ1
1:T−1 · · ·ΨN

1:T−1) and ΨY = (Ψ1
2:T · · ·ΨN

2:T ),

are defined as Ψi
t1:t2 = (Ψ(xt1(θi)) · · ·Ψ(xt2(θi))) and ‖ · ‖F refers to the Frobenius

norm. Let us remark that in its original formulation, matrix Âk targeted the solution
of the following unconstrained problem3

arg min
A∈Rn×n

‖ΨY −AΨX‖2F . (1.8)

3Note that the standard DMD approximation problem is a particularisation of (1.8) in the case
Ψ is chosen so that Ψ(xt(θi)) = xt(θi) for i = 1, · · · , N and t = 1, · · · , T [12].
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This is an unconstrained least-square problem. The solution ΨYΨ†X of rank m is in
this case simply obtained by singular value decomposition (SVD) [11]. The solution

ΨYΨ†X is also a solution A?k of problem (1.7) in the case k ≥ m, see [6]. The algorithm
proposed [6] solves problem (1.7) for an arbitrary value of k: considering the vectors
Ψ(xt(θi)) in place of the vectors xt(θi), it is straightforward to obtain a closed-form
expression of A?k. Moreover, the solution is computed with an off-line complexity
linear in n.

1.3. Contribution. But the algorithm proposed in [6] to solve (1.7) and to build
(1.5) becomes in general intractable in the case n� p. This configuration is recurrent
for many definitions of function Ψ. To circumvent this intractability for large values of
n, authors in [13] propose to use the kernel trick [2] and derive an algorithm baptised
kernel-based DMD (K-DMD), featuring an advantageous off-line complexity linear
in p and independent of n. However, as proposed in [13], the K-DMD algorithm
computes a sub-optimal solution of (1.7) and builds a crude approximation of (1.5)
in most cases. The lack of optimality of the algorithm originates from :

i) the assumption that Ψ−1 is linear;
ii) the assumption that matrix ΨX is full-rank;
iii) the assumption that the eigen-mode µi belongs to the span of the xt(θi)’s;
iv) the ignorance of the low-rank constraint in problem (1.7).

This work shows how to solve exactly problem (1.7) and how to build an optimal
Koopman operator approximation (1.5) using kernel-based computation and elimi-
nating these crude assumptions.

The paper is organised as follows. In the next section, we describe the optimal
solution of the low-rank EDMD problem (1.7) introduced in [6]. We also detail the
kernel-based algorithm proposed in [13] and point out the assumptions depriving the
computed solution of optimality. In Section 3, we then present our exact kernel-
based solution. In particular, we show that the eigen-vectors of the problem solution
admit a low-dimensional representation and design an algorithm accordingly. We
finally evaluate in Section 4 the performance of the proposed algorithm in terms
of the reduced-model approximation error and compare to state-of-the-art methods.
Conclusions are given in Section 5.

2. Preliminaries. In this section, we present state-of-the-art methods in or-
der to i) build exactly reduced model (1.5) with standard techniques manipulating
vectors in Rn; ii) provide an approximation of this reduced model using the K-DMD
algorithm, which manipulates vectors in Rp. We begin by introducing some notations.

2.1. Some Notations. We wil adopt the following notations. Ik will denote
the k-dimensional identity matrix. The SVD of a matrix M ∈ Rp×q with p ≥ q will
be noted as M = UMΣMV

ᵀ
M with UM ∈ Rp×q, VM ∈ Rq×q and ΣM ∈ Rq×q so that

Uᵀ
MUM = V ᵀ

MVM = Iq and ΣM is diagonal. The columns of matrices UM and VM will
be denoted UM = (u1

M · · ·u
q
M ) and VM = (v1

M · · · v
q
M ) while diagonal components of

matrix ΣM will be ΣM = diag(σM,1, · · · , σM,q) with σM,i ≥ σM,i+1 for i = 1, · · · , q−1.
To keep the presentation as simple as possible, the SVD definition is given for matrices
in Rp×q with p ≥ q. However, results presented in this work can be extended without
any difficulty to the case p < q by using an alternative definition of the SVD. The
Moore-Penrose pseudo-inverse of matrix M is then defined as M† = VMΣ†MU

ᵀ
M , where
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Σ†M = diag(σ†M,1, · · · , σ
†
M,q) with

σ†M,i =

{
σ−1
M,i if σM,i > 0

0 otherwise
.

The orthogonal projector onto the span of the columns (resp. of the rows) of ma-

trix M will be denoted by PM = MM† = UMΣMΣ†MU
ᵀ
M (resp. PMᵀ = M†M =

VMΣ†MΣMV
ᵀ
M ) [5]. The element at the i-th row and j-th column of a matrix M will

be denoted as M(i,j). We define matrix X (resp. Y) in Rp×m, whose i-th column is
defined as the application of Ψ−1 on the i-th column of ΨX (resp. of ΨY). Using
short-hand notations, we will write X = Ψ−1ΨX and Y = Ψ−1ΨY.

2.2. An Optimal Solution to Low-Rank EDMD [6]. Let the columns of
matrix P̂ ∈ Rn×k be the left singular vectors {uiZ}mi=1 associated to the k largest
singular values of matrix

Z = ΨYPΨᵀ
X
∈ Rn×m. (2.1)

Theorem 2.1 ([6]). Problem (1.7) admits the solution

A?k = P̂ P̂ ᵀΨYΨ†X, (2.2)

and the approximation error is

‖ΨY −A?kΨX‖2F =

m∑
i=k+1

σ2
Z,i +

m∑
i=i∗

m∑
j=1

σ2
ΨY,j

(
(viΨX

)ᵀvjΨY

)2

, (2.3)

with i∗ = rank(ΨX) + 1.

As shown by this therorem, the solution of (1.7) is in fact the orthogonal projec-

tion of the unconstrained problem solution ΨYΨ†X onto the span of the first k left
singular vectors of a matrix Z. This matrix is defined as the multiplication of ΨY by
the projector onto the span of the rows of ΨX.

From these theoretical results, it is straightforward to adapt [6, Algorithm 3]
in order to compute the parameters of the reduced model (1.5) and the low-rank
approximation x̃t(θ). The adaptation simply consists in setting ΨX and ΨY in place
of X and Y in the proposed algorithm. We remark that the methods proposed for
EDMD in [12] or [13], which do not rely on kernel-based computation, also provide
the optimal solution (2.2), but only in the case k ≥ m and matrix ΨX is full-rank.
The adapted algorithm will be characterised by an off-line and on-line complexity
scaling as O(m2(m + n)) and O(kn), i.e., linearly with respect to n. Nevertheless,
the complexity of any of the algorithms mentionned above is prohibitive in the case
n� p.

2.3. The K-DMD Algorithm [13]. The idea followed in [13] to face the case
n � p is to derive a kernel-based method to approximate the eigen-decomposition
of the solution of (1.7) for k ≥ m. This method known as K-DMD is detailed in
Algorithm 1. It relies on the kernel-trick presented in Appendix B. It therefore only
applies for functions Ψ ∈ (L2(Rp))n, such that there exists a kernel function h :
Rp ×Rp → R computing the scalar product h(y, z) = Ψ(y)ᵀΨ(z) for any y, z ∈ Rp.
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Algorithm 1 : K-DMD [13]

inputs: The xt(θi)’s and some θ
1) Compute Ψᵀ

XΨX, Ψᵀ
YΨY, Ψᵀ

YΨX and Ψᵀ
XΨ(θ) with the kernel trick [2].

2) Get (VΨX
,ΣΨX

) by eigen-decomposition of Ψᵀ
XΨX.

3) Get (VΨY
,ΣΨY

) by eigen-decomposition of Ψᵀ
YΨY .

4) Compute the eigen-vectors {ξ̃i}mi=1 and eigen-values {λ̃i}mi=1 of RΨᵀ
YΨXRᵀ,

with R = Σ†ΨX
V ᵀ

ΨX
.

5) Estimate eigen-functions {ϕ̃i(θ)}mi=1 using (2.4).
6) Compute the pseudo-inverse of Ξ̃−1

m = (ξ̃1 · · · ξ̃m)ᵀ.
7) Estimate eigen-modes {µi}mi=1 using (2.8).
output: x̃t(θ)’s using (1.6) with νi,t = λ̃t−1

i ϕ̃i(θ).

Analysing the K-DMD algorithm, we see that left eigen-vectors of the solution
A?m = ΨYΨ†X, are determined by the eigen-vectors {ξ̃i}mi=1 and eigen-values {λ̃`,i}mi=1

of the smaller matrix RΨᵀ
YΨXRᵀ with R = Σ†ΨX

V ᵀ
ΨX

. Indeed, as we will show in

Proposition 3.1, the left eigen-vectors of A?m are {UΨX
ξ̃i}mi=1 in the case ΨX is full

rank. Using the fact that UΨX
= ΨXR

ᵀ, a consequence is that the i-th Koopman
eigen-function approximation ϕ̃i(θ) evaluated at any point θ ∈ Rp is

ϕ̃i(θ) = ξᵀi Ψ(θ) = ξ̃ᵀi RΨᵀ
XΨ(θ). (2.4)

Gathering approximations of the form (2.4), where Ψ(θ) is identified to the different
columns of ΨX, we obtain

Ξ−1
m ΨX = Ξ̃−1

m ΣΨX
V ᵀ

ΨX
, (2.5)

with (Ξ−1
m )ᵀ = (ξ1 · · · ξm) ∈ Cn×m, (Ξ̃−1

m )ᵀ = (ξ̃1 · · · ξ̃m) ∈ Cm×m. K-DMD features
advantageous off-line and on-line complexities scaling as O(m2(m+ p)) and O(mp).

However, the estimated eigen-modes constitute potentially poor approximations.
Indeed, the µj ’s in (1.6) are set as minimisers in Cp of the square of the `2-norm of
the reconstruction error

‖xit+1 −
m∑
j=1

λjξ
ᵀ
j Ψ(xit)µj‖22, (2.6)

for any data pair (xit, x
i
t+1) satisfying (1.1). Rewritten in matricial form using (2.5),

minimising this error norm leads to a least-square problem,

arg min
µ1,··· ,µm

‖Y −
(
µ1 · · · µm

)
diag(λ̃`,1 · · · λ̃`,m)Ξ−1

m ΨX‖2F . (2.7)

whose solution is the approximation(
µ1 · · · µm

)
≈ YRᵀ((Ξ̃m)−1)†diag(λ̃†`,1, · · · , λ̃

†
`,m). (2.8)

Therefore we see that this approximation becomes exact only in the case the
µj ’s belong to the span of Y. Furthermore, we note that even in this case, the K-
DMD algorithm relies on two important assumptions: i) Ψ−1 is linear so that the
minimisation problem (2.6) is consistent, ii) matrix ΨX needs to be full-rank.
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3. The Proposed Upgrade. We detail in this section our optimal kernel-based
DMD (OK-DMD) algorithm building exactly reduced model (1.5). It relies on the
optimal solution A?k of (1.7) given by Theorem 2.1. The proposed algorithm, which
presents a complexity linear in p and independent of n, can be applied in a general
setting and is relieved from all state-of-the-art limitations. To achieve the design
of such an algorithm, we first need to introduce some theoretical material. We be-
gin by showing that the eigen-vectors of the solution A?k admit a low-dimensional
representation.

3.1. Eigen-Decomposition of A?k. Our kernel-based method relies on the fol-
lowing proposition. Let {ξi}ki=1 and {ζi}ki=1 denote the left and right eigen-vectors
of A?k associated to its at most k non-zero eigen-values {λi}ki=1. We assume A?k is

diagonalisable. We redefine {(ξ̃i, λ̃`,i)}ki=1 and {(ζ̃i, λ̃r,i)}ki=1 respectively as the k
eigen-vectors and eigen-values of the smaller matrices

(Ã`,k)ᵀ = RΨᵀ
YΨY SΨᵀ

YΨXRᵀ ∈ Rm×m, (3.1)

Ãr,k = CΨᵀ
YΨY RᵀRΨᵀ

XΨY Cᵀ ∈ Rm×m, (3.2)

with matrices S, C ∈ Rm×m given by

S = PΨᵀ
X
VZdiag(σ−2

Z,1, · · · , σ
−2
Z,k, 0, · · · , 0)V ᵀ

ZPΨᵀ
X
,

C = diag(σ−1
Z,1, · · · , σ

−1
Z,k, 0, · · · , 0)V ᵀ

ZPΨᵀ
X
.

Moreover, let the columns of matrix P̂ ∈ Rn×k be the left singular vectors associated
to the k largest singular values of Z given in (2.1).

Proposition 3.1. For i = 1, · · · , k, the left and right eigen-vectors of A?k and
its eigen-values satisfy

ξi = UΨX
ξ̃i and ζi = P̂ ζ̃i with λi = λ̃`,i = λ̃r,i.

This proposition gives a closed-form expression to the left eigen-vectors of A?k, the
solution of (1.7). Its proof detailed in Appendix C. It exploits the factorisation of the
closed-form solution A?k given in [6]. Using (2.4), we deduce from Proposition 3.1 a
closed-form i-th Koopman eigen-function approximation ϕ̃i(θ) for i = 1, · · · , k at any
point θ ∈ Rp. Moreover, this proposition provides an analytical expression for the
ζi’s, the right eigen-vectors of A?k and supply the related eigen-values. Nevertheless,
we must be cautious with the normalisation of the eigen-vectors. We verify after
some simple algebraic calculus that the condition ξᵀi A

?
kζi = λi (i.e., the normalisation

ζᵀi ξi = 1) is ensured if ζ̃i is rescaled to satisfy ζ̃ᵀi Eξ̃i = 1, with

E = Σ†ZV
ᵀ
ZPΨᵀ

X
PΨᵀ

Y
Ψᵀ

YΨXR. (3.3)

The elements of the set {(ξi, ζi, λi)}ki=1 issued from the eigen-decomposition of
A?k correspond to the parameters of the reduced model in (1.5). Relying on Propo-
sition 3.1, the computation of these parameters can be obtained through the eigen-
decomposition {(ξ̃i, ζ̃i, λi)}ki=1. The latter is tractable (in the sense that the complex-
ity is independent of the dimension n) and can be done within a complexity linear in
p by using the kernel-trick.
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3.2. Kernel-Based Inversion. Nevertheless, to achieve the design of the sought
algorithm of complexity independent of n, it remains to provide a manner to compute
Ψ−1(ζiνi,t) in (1.5) without resorting explicitly to vectors in Rn. A way to achieve
this goal is to exploit the structure of Ψ and of its inverse Ψ−1.

We remark that

P̂ = ΨYPΨᵀ
X
VZ(diag

(
σZ,1 · · · σZ,k 0 · · ·

)
)†,

which implies that (1.4) can be rewritten as

x̃t(θ) = Ψ−1(
∑
i

ζiλ
t−1
i ϕi(θ)),

= Ψ−1(
∑
i

P̂ ζ̃iλ
t−1
i ϕi(θ)),

= Ψ−1(ΨYG), (3.4)

with matrix G ∈ Rm×k defined as

G = Cᵀ(ζ̃1 · · · ζ̃k) diag(λ̃t−1
`,1 · · · λ̃

t−1
`,k )(ϕ̃1(θ) · · · ϕ̃k(θ)). (3.5)

The computation of Ψ−1(ΨYG) can often be done within a linear complexity in p,
independently of n, as illustrated by the following particular cases. We recall that
we have denoted the kernel computing the scalar product of vectors in (L2(Rp))n by
h : Rp × Rp → R; (y, z) → h(y, z) = Ψ(y)ᵀΨ(z). We detail in the following the
computation of Ψ−1(ΨYG) in O(p) for two standard class of kernel. We also present
the computation for a logarithmic kernel, which will serve in our numerical evaluation.

i) Polynomial kernels. The most simple situation occurs when Ψ−1 is linear.
In this case we simply get that

Ψ−1(ΨYG) = YG. (3.6)

This simplification occurs for the particular case of polynomial kernels of the
form

h(y, z) = (1 + yᵀz)γ , (3.7)

where y, z ∈ Rp and γ is a positive scalar. It is easy to see that in this case
y ∈ Rp is up to a multiplicative factor a component of Ψ(y) ∈ Rn, implying
that Ψ−1 is linear, see Appendix B. Therefore in this case (3.6) holds.

ii) Gaussian kernels.
Using a Taylor expansion of the exponential function, it is straightforward to
show that (unormalized) Gaussian kernels of the form

h(y, z) = exp

(
−‖y − z‖

2
2

2σ2

)
, (3.8)

correspond to scalar products Ψ(y)ᵀΨ(z) of infinite vectors in (L2(Rp))n with
n =∞ but countable, written formally as

Ψ(y) =

(
exp

(
−‖y‖

2
2

2σ2

)
, exp

(
−‖y‖

2
2

2σ2

)
yᵀ

σ1!
, exp

(
−‖y‖

2
2

2σ2

)
(y2)ᵀ

σ22!
, · · ·

)ᵀ

.
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We have used the short-hand notation yγ = (yγ(1) · · · y
γ
(p))

ᵀ ∈ Rp for γ ∈ R.

We notice that the inverse function Ψ−1(z) evaluated at any point z =
(z(1), z(2), z(3), · · · )ᵀ ∈ Rn can be identified as the vector σ

z(1)
(z(2), · · · , z(p+1))

ᵀ.

We deduce after some calculation that we have

(Ψ−1(ΨYG))(j,`) =

∑m
i=1 wiY(j,i)G(i,`)∑m

i=1 wiG(i,`)
, (3.9)

with the weights

wi = exp

(
−
∑p
r=1(Y(r,i))

2

2σ2

)
.

iii) Logarithmic kernel.
Consider a logarithmic kernel defined for vectors y = (y(1) · · · y(p))

ᵀ ∈ Rp and
z ∈ Rp of components greater than −1 as

h(y, z) = (log(y + 1))ᵀ log(z + 1), (3.10)

where we have used the short-hand notation

log(y + 1) = (log(y(1) + 1) · · · log(y(p) + 1))ᵀ.

The kernel corresponds in this case to vectors of functions Ψ(y) = log(y +
1) ∈ Rn with n = p. Using an notation analogous to the logarithm for the
exponential of a vector, we notice that we simply have Ψ−1(z) = exp(z)− 1
at a point z ∈ Rn. We easily deduce that for entries of Y greater than −1
we have

(Ψ−1(ΨYG))(j,`) =

m∏
i=1

(
Y(j,i) + 1

)G(i,`) − 1. (3.11)

We see that for these three particular cases, computing Ψ−1(ΨYG) only implies
the evaluation of a function of the entries of matrix Y. Therefore the computation is
done within a linear complexity in p, independently of n.

8



3.3. Proposed Algorithms.

Algorithm 2 : OK-DMD

inputs: The xt(θi)’s and some θ
1) Compute steps 1) and 2) of Algorithm 1
2) Compute (VZ,ΣZ) by eigen-decomposition of ZᵀZ with Z given by (2.1).
3) Compute matrix (Ã`,k)ᵀ given in (3.1) and compute eigen-vector / eigen-value

couples {(ξ̃i, λ̃`,i)}ki=1.

4) Compute matrix Ãr,k given in (3.2) and compute eigen-vector / eigen-value

couples {(ζ̃i, λ̃r,i)}ki=1.

5) Rescale ζ̃i’s so that ζ̃iE ξ̃i = 1, with E given in (3.3).
6) Compute eigen-functions {ϕ̃i(θ)}ki=1 using (2.4).
7) Compute x̃t(θ) = Ψ−1(Ψ(Y)G) with G given in (3.5), using either (3.6), (3.9)
or (3.11).
output: x̃t(θ)’s.

3.3.1. The OK-DMD Algorithm. We have now gathered all the ingredients
necessary to design Algorithm 2. It computes the approximation (1.5) using the
solution of the low-rank EDMD problem (1.7), based only on computation with vectors
in Rp. Its off-line and on-line complexities scale as O(m2(m+ p)) and O(p(k+m2)),
which are comparable to the state-of-the-art K-DMD algorithm.

We finally remark that, if we consider instead the solution of the unconstrained
EDMD problem (1.8), the approximation (1.5) is simply obtained using the OK-DMD
algorithm in the particular case where k ≥ m. The algorithm can be further simplified
if we assume that the matrices ΨX and ΨY are full rank. Indeed, in this case we have
that PΨᵀ

X
= PΨᵀ

Y
= Im and that Z = ΨY. The assumptions lighten the expressions

of several matrices as presented in Algorithm 3. In particular, we recover in this case
the matrix (Ã`m)ᵀ = RΨᵀ

YΨXRᵀ used for eigen-decomposition at the core of the
K-DMD algorithm.

3.3.2. The Low-Rank K-DMD Algorithm. We propose now a low-rank ex-
tension of the K-DMD algorithm [13]. The idea is to design an algorithm exploiting
the optimal solution (2.2) of the low-rank EDMD problem, but relying on the eigen-
mode approximation of K-DMD (steps 6) -7) in Algorithm 1). Therefore, as for
K-DMD, this extension detailed in Algorithm 4 will produce a sub-optimal solution,
on the contrary to OK-DMD. Its off-line complexity will scale as O(m2(m + p)) as
for K-DMD or OK-DMD. However, its on-line complexities will scale as O(pk), that
is slightly lower than for these two algorithms. Besides, it will be useful in our nu-
merical evaluation to isolate the eigen-mode approximation error from the error due
to ignoring constraints in problem (1.7).

4. Numerical Evaluation. We describe in the following the benchmark used
for the evaluation of the proposed algorithms.

4.1. Experimental Setup. To build the reduced models, we use snapshots
produced by a a mixture of a linear and a non-linear dynamical model. The data is
composed of trajectories of the dynamics (1.1) satisfying the model

f(xt−1) = (xt−1 + 1)β − 1, β ∈ R. (4.1)
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Algorithm 3 : OK-DMD, case k ≥ m = rank(ΨX) = rank(ΨY)

inputs: The xt(θi)’s and some θ
1) Compute step 1) and 2) of Algorithm 2.
2) Compute (VΨY

,ΣΨY
) through the eigen decomposition of Ψᵀ

YΨY .

3) Compute matrices (Ã`,k)ᵀ = RΨᵀ
YΨXRᵀ and Ãr,k = (C†)ᵀRᵀRΨᵀ

XΨY Cᵀ

with C = Σ†ΨY
V ᵀ

ΨY
.

4) Compute the eigen-vectors and eigen-values {(ξ̃i, λ̃`,i)}ki=1 and {(ζ̃i, λ̃r,i)}ki=1.

5) Rescale the ζ̃i’s so that ζ̃iE ξ̃i = 1, where E = CΨᵀ
YΨXR.

6) Compute steps 6) and 7) of Algorithm 2.
output: x̃t(θ)’s.

Algorithm 4 : Low-rank K-DMD

inputs: The xt(θi)’s and some θ
1) Compute step 1) to 3) of Algorithm 2
2) Compute step 5) to 7) of Algorithm 1
output: x̃t(θ)’s using (1.6) with νi,t = λ̃t−1

i ϕ̃i(θ).

More precisely, xt(θi)’s for i = 1, · · · , N/2 (resp. for i = N/2 + 1, · · · , N) correspond
to the particular cases β = τ (resp. β = α) with τ = 1 (resp. α ∈ {−1, 1, 2, 3}). For
instance, in the case α = 2, the xt(θi)’s will be a mixture of trajectories of a linear
model and a quadratic model. The components of the initial conditions, i.e., the
θi’s for i = 1, · · · , N/2, are drawn independently according to the standard normal
distribution and we set θi+N/2 = θi for i = 1, · · · , N/2. We finally modify r out of
the m trajectories so that we have either rank(X) = m− r or rank(ΨX) = m− r.

We assess the gain in performance brought by learning the reduced model with
OK-DMD by a comparison with state-of-the-art methods. Our benchmark is com-
posed of the following algorithms:

• the original K-DMD proposed in [13] (Algorithm 1)
• the low-rank DMD algorithm proposed in [6]
• the low-rank extension of K-DMD (Algorithm 4)
• the OK-DMD (Algorithm 2)

Let Ỹ ∈ Rp×m be a matrix whose i-th column is x̃2(θ) given by (1.5) where θ is
identified to the i-th column of X. We will compare the approximations produced by
the different algorithms in terms of the normalised error norm

‖Y − Ỹ‖F /‖Y‖F . (4.2)

In particular, for reduced models based on low-rank DMD, this criterion simplifies into
‖Y −A?kX‖F /‖Y‖F , where A?k given in (2.2) is the optimal solution for Ψ identified
to the identity operator.

This criterion of performances measures the capabilities of the methods to repro-
duce the training data using a low-rank approximation. We remark that the low-rank
DMD algorithm provides the optimal linear solution minimising the criterion of in-
terest. On the contrary, for other choice of Ψ, this criterion does not corresponds
necessarily to the objective function to be minimised. It results that low-rank DMD
will be generally favoured according to this criterion, in comparison to kernel-based
methods. But, as we will see in the results, the error norm of kernel-based methods
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can be lowered for well-chosen function Ψ. This function should be chosen so that
it generates a a sufficiently sparse representation of the data. On the other hand,
this criterion does not directly measure the quality of estimation of certain features
of the dynamics. In particular, it does not necessarily reveals the capabilities of the
methods to estimate accurately the first k Koopman eigen-values, as it is done in [13].
Criterion (4.2) seems nevertheless appropriated to our study, since the focus of the
present work is reduced modeling rather than data analysis.

4.2. Results. All figures are plots displaying for the different algorithms the
evolution of the error norm (4.2) committed by the reduced model as a function of
the rank k of the constraint in the approximation problem (1.7).

In particular, Figure 4.1 illustrates the impact of the kernel choice and shows
the influence of the ratio p/m. Each plot of this figure corresponds either to the
polynomial kernel (3.7) with γ = 10, the Gaussian kernel (3.8) with σ = 50 or the
logarithmic kernel (3.10). Each plot also corresponds either to the ratio p/m = 1 or
1000. We set α = 2 (quadratic model) and full-rank matrices X and ΨX (i.e., r = 0).

As expected, we see that OK-DMD is nearly everywhere more accurate than K-
DMD and its low-rank extension. We also often remark a gain in accuracy brought by
using the low-rank K-DMD algorithm instead of its original version. The enhancement
illustrates the importance of considering low-rank constraints in problem (1.7). The
extra gain in accuracy between low-rank K-DMD and OK-DMD can be interpreted
as the fact that the OK-DMD algorithm computes exactly the reduced model (3.4)
instead of making the least-square approximation (2.8). We mention that, in theory,
all these kernel-based algorithms yield identical results in the case Ψ−1 is a matrix
in Rp×n, eigen-modes belong to the span of Y and k = m. This setting occurs at
the abscise k = m = 20 in the top left plot of Figure 4.1. This plot corresponds
to a polynomial kernel (satisfying Ψ−1 ∈ Rp×n) and to a ratio of p/m = 1 (the
span of Y fills in this case the entire state space). We check that at this particular
abscise the difference between error norms of the different algorithms can be neglected.
Moreover, in agreement with (1.2) and (1.7), we observe that an exact reconstruction
is guaranteed for k = m with OK-DMD (or low-rank DMD) but not with K-DMD if
ΨX (or X = Ψ−1(ΨX)) is full-rank.

Increasing the dimensionality p of the state space does not influence too much the
OK-DMD performances. We notice however a moderated gain in accuracy. On the
other hand, the performance of OK-DMD is very sensitive to the choice of kernel. A
polynomial kernel yields poor results, the Gaussian kernel brings some improvement
while the logarithmic kernel induces a vanishing error norm for k ≥ m/2 = 10.
This behaviour follows from the properties of the logarithmic kernel implying that
rank(ΨY) = m/2 and an exact reconstruction with only m/2 components. Indeed, it
is easy to see that the first 10 columns of ΨY are proportional by a factor α = 2 to
the last 10 columns).

Although OK-DMD performs better than the other kernel-based methods, low-
rank DMD is significantly more accurate in the case of polynomial and Gaussian
kernels. As pointed out previously, this is likely to be due to the fact that the ob-
jective function optimised by the DMD algorithm is exactly the criterion used for
evaluation and that for these kernels, function Ψ does not generate a sparse data
representation (on the contrary to the logarithmic kernel).

Figure 4.2 displays the influence of parameter α in the non-linear model (4.1) on
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Fig. 4.1. Influence of the kernel and the ratio p/m. Evaluation of the error norm

‖Y − Ỹ‖F /‖Y‖F as a function of the rank k of the reduced-model approximation. See
details in Section 4.

the algorithms performances for a logarithmic kernel and the ratio p/m = 1. The
evolution of the error norm with respect to the approximation rank is plotted for
α = −1, 1, 2 and 3. We consider also here full-rank matrices X and ΨX (i.e., r = 0).
In order to lighten the presentation we will omit from now the evaluation of low-rank
extension of K-DMD.

The case α = 1 corresponds to a purely linear evolution with the first m/2 first
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Fig. 4.2. Influence of the degree of non-linearity α. Evaluation of the error norm ‖Y −
Ỹ‖F /‖Y‖F as a function of the rank k of the reduced-model approximation for increasing
values of α (from left to right and top to down). See details in Section 4.

columns of ΨY equal to the m/2 last ones. Therefore in this situation we have that
rank(ΨY) = m/2 and we obtain an exact reconstruction with only k = m/2 compo-
nents for any algorithm. For other values of α, we recover behaviours for the different
algorithms which are in agreement with those described in Fig 4.1. We note that the
degree α impacts only slightly the performances of the algorithms making the analysis
and the determination of a global tendency not obvious.

Figure 4.3 illustrates the influence of the rank deficiencies rank(X) = m − r or
rank(ΨX) = m− r with r = 1 for a logarithmic kernel in the case α = 2 and a ratio
p/m = 10. More precisely, the plots correspond respectively to the settings:

a) rank(X) = m− 1, rank(ΨX) = m, rank(Y) = m and rank(ΨY) = m,
b) rank(X) = m, rank(ΨX) = m− 1, rank(Y) = m and rank(ΨY) = m/2.

Unsurprisingly, for setting a),, the error norm for the low-rank DMD decays
very slowly (and in fact the decrease almost vanishes around k ≥ 3). This non-
zero asymptotic behaviour originates from the fact that above a certain value of k,
‖Y − A?kX‖F is dominated by the second term of (2.3). According to Theorem 2.1,
this second term is the sum of the squared singular values of Y, weighted by the
scalar product of the right singular vectors of Y with the right singular vector of X
associated to its zero singular value. Or in simpler words, if Y is full rank, the error
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Fig. 4.3. Influence of rank deficiency. Evaluation of the error norm ‖Y−Ỹ‖F /‖Y‖F as
a function of the rank k of the reduced-model approximation for setting a) where rank(X) < m
(left) and setting b) where rank(ΨX) < m (right). See details in Section 4.

norm has an non-zero asymptotic value because the right singular vector of X, which
is associated to its zero singular value, is in the span of the rows of Y. Because ΨX is
full rank, the OK-DMD algorithm does not suffer from this deficiency and the error
norm behaviour is consistent with our previous analysis. Besides, we observe again
the sub-optimality of the K-DMD algorithm.

The situation is different in the case of setting b): the error norm related to OK-
DMD saturates, while for low-rank DMD it keeps decaying until the error vanishes.
The analysis can be transposed: the error norm has an non-zero asymptotic value
because the right singular vector of ΨX, which is associated to its zero singular value,
belongs to the span of the right singular vectors of ΨY, which are associated to its m/2
non-zero singular values. As expected, we observe for k < 10 that OK-DMD performs
significantly better than K-DMD. However, for greater values of k, we note that the
error norm obtained with the K-DMD algorithm converges towards the optimal value
obtained with OK-DMD. On the contrary, the good performance of low-rank DMD
is explained by the fact that X is full rank.

5. Conclusion. This work provides an optimal algorithm to solve the low-rank
EDMD problem using kernel-based computation. The idea underlying the method
is to rely on a low-dimensional representation of the left and right eigen-vectors of
the solution A?k of this problem. The representation enables to obtain: i) closed-form
eigen-functions of the Koopman operator approximation, expressed in terms of the
left eigen-vectors of A?k; ii) the reduced model approximation x̃t(θ) for a given initial
condition x1 = θ, given in terms of the right eigen-vectors of A?k and exploiting the
particular structure of the different kernels.

On the contrary to the original K-DMD algorithm, the proposed algorithm called
OK-DMD is optimal in the sense it solves exactly the low-rank EDMD problem and
is relieved from K-DMD restrictive assumptions.

Particularisations of the OK-DMD algorithm are presented respectively for poly-
nomial, Gaussian and logarithmic kernels. The algorithm presents an off-line and
on-line complexity of O(m(p + m2)) and O(p(k + m2)) which is comparable to the
complexity of the state-of-the-art K-DMD algorithm. In particular, it is adequate for
the case p� n, because of the linearity with respect to the ambient dimension p and
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independence of the functional space dimension n.
A numerical evaluation shows the gain brought by the proposed OK-DMD algo-

rithm in comparison to the state-of-the-art. In particular, we show that considering
explicitly the low-rank constraints and computing exactly the parameters of the re-
duced model yield significative improvements. Finally, we also evaluate the influence
of several features on the algorithm performances. In particular we highlight the im-
portance of the kernel, which should be carefully chosen according to the data.

Acknowledgements. This work was supported by the “Agence Nationale de la
Recherche” through the GERONIMO project (ANR-13-JS03-0002).

Appendix A. Obtention of Reduced Models (1.2) and (1.5). We present
hereafter the derivation of (1.2) and (1.5). It relies partially on a reformulation of the
material presented in [12].

The sought reduced models rely on the finite approximation of the Koopman
operator (related to the high-dimensional system (1.1)). We introduce hereafter this
approximation. We will use the dictionary D = {ψ1, · · · , ψn} and its span FD ⊂
L2(Rp). Any function φ ∈ FD can be decomposed as

φ(x) =

n∑
i=1

cφi ψi(x) = cφΨ(x), (A.1)

with the vector-valued function Ψ = (ψ1 · · ·ψn)ᵀ ∈ (FD)n and the row-vector of
coefficients cφ ∈ R1×n. For a vector-valued function Φ ∈ (FD)n, this decomposition
writes in matrix notation as

Φ(x) = cΦΨ(x), (A.2)

with a matrix of coefficients

cΦ =

cφ1
...

cφn

 ∈ Rn×n
We can now justify that Âk in (1.2) can be seen as a finite approximation of the
Koopman operator. The Koopman operator denoted by K is defined for any function
φ ∈ L2(Rp) by the composition

Kφ(xt) = φ(ft(xt)) = φ(xt+1),

or equivalently using the matrix notation (A.2)

KΦ(xt) = Φ(xt+1), (A.3)

for any function Φ ∈ (L2(Rp))n. By decomposing the function Φ(xt) and Φ(xt+1) of
(L2(Rp))n in (FD)n with (A.2), we get on the one hand

KΦ(xt) = K(cΦΨ(xt)),

= cΦKΨ(xt), (A.4)
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where we have exploited the linearity of the Koopman operator, and on the other
hand

Φ(xt+1) = cΦΨ(xt+1). (A.5)

We note that equalities (A.4) and (A.5) rely on the fact that the vector space FD is
an invariant subspace4 of K, i.e., Φ(xt) ∈ (FD)n necessarily implies that Φ(xt+1) ∈
(FD)n. Equality (A.3) then shows that vectors Ψ(xt),Ψ(xt+1) ∈ Rn are linear de-
pendent, so that there exists a matrix A ∈ Rn×n such that

AΨ(xt) = Ψ(xt+1). (A.6)

It follows that we can also write

Φ(xt+1) = cΦAΨ(xt). (A.7)

Using (A.4) and (A.7), equality (A.3) thus yields

cΦKΨ(xt) = cΦAΨ(xt).

Since Φ can be any function of (L2(Rp))n, this implies the representation of the
Koopman operator in (FD)n

KΨ(xt) = AΨ(xt). (A.8)

Then imposing that matrix A is of rank at most k is equivalent to impose that the
Koopman operator approximation belongs to a k-dimensional sub-space of (FD)n. In
particular, by making the approximation

A ≈ Âk,

with Âk of rank at most k, we obtain the second equation of recursion (1.2). Then,
assuming there exists Ψ−1 such that

x = Ψ−1Ψ(x), (A.9)

we obtain the sought reduced-model (1.2).
Now, to obtain reduced model (1.5), we assume that Âk is diagonalisable. Recall

that {ξi}ni=1 are left eigen-vectors of Âk related to the eigen-values {λi}ni=1, where
at most k eigen-values are non-zero. Using the linearity of K and relation (A.8), we
obtain

Kξᵀi Ψ(x) = ξᵀi KΨ(x) ≈ ξᵀi ÂkΨ(x) = λiξ
ᵀ
i Ψ(x), ∀i = 1, · · · , n,

4 Note that in the case vector space FD is not an invariant subspace of K, we need to introduce
a residual function rΦ ∈ (L2(Rp))n\(FD)n. By decomposing the function Φ(xt) and Φ(xt+1) of
(L2(Rp))n in (FD)n with (A.2), we get on the one hand

KΦ(xt) = K(cΦΨ(xt) + rΦ(xt)),

= cΦKΨ(xt) +KrΦ(xt),

where we have exploited the linearity of the Koopman operator, and on the other hand

Φ(xt+1) = cΦΨ(xt+1) + rΦ(xt+1).

Searching an approximation in (FD)n, is then equivalent to neglect the additive residuals. We recover
in this case (A.4) and (A.5).
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which shows that ϕi ∈ FD given by

ϕi(x) = ξᵀi Ψ(x), ∀i = 1, · · · , n,

is an approximation of an eigen-function ofK. Equivalently, the latter can be rewritten
in matrix form as

Υ(x) = Ξ−1Ψ(x), (A.10)

with

Υ(x) =

ϕ1(x)
...

ϕn(x)

 ,

and where we recall that (Ξ−1)ᵀ = (ξ1 · · · ξn) ∈ Cn×n is the conjugate transpose of
the inverse of Ξ = (ζ1 · · · ζn) ∈ Cn×n. Using (A.9) and (A.10), we get

xt = Ψ−1(KΨ(xt−1))

≈ Ψ−1(KΞΥ(xt−1)),

= Ψ−1(ΞKΥ(xt−1)),

= Ψ−1(ΞΛΥ(xt−1)),

where we have exploited the linearity of operator K and the fact that the components
of Υ are eigen-functions. Iterating this recursive decomposition we obtain that

xt ≈ Ψ−1(ΞΛt−1Υ(x1)),

rewritten as

xt ≈ Ψ−1

rank(Âk)∑
i=1

λiζiϕ̃i(x1)

 ,

which is the sought reduced model (1.5).

Appendix B. The Kernel Trick. Assume there exists a kernel function h :
Rp × Rp → R; (y, z) → h(y, z) that computes inner products of vectors of function
Ψ(y),Ψ(z) ∈ Rn for any pair of points y, z ∈ Rp, that is, h(y, z) = Ψ(y)ᵀΨ(z).
This asumption implies that inner products of elements in the functional space are
elements of a reproducing kernel Hilbert space [1]. The kernel trick is a common
technique exploiting this property: inner products of functions in Rn can implicitly
computed within a complexity scaling as O(p) rather than O(n)[2]. In the context of
our EDMD problem, the choice of the kernel h defines Ψ, and therefore determines
the dictionary D = {ψ1, · · · , ψn}. Since this work presuppose the knowledge of D,
we consider the kernel h as a known ingredient of our problem. However, beyond
the focus of the present work, we mention that the optimal choice of kernel, or the
optimal choice of the dictionary, is an open question.

We illustrate the inner product computation with the kernel trick using the poly-
nomial kernel defined in (3.7). In the case γ = 2 and p = 2, the kernel can be evaluated
by a simple inner product in R2. Expanding the kernel, we obtain

h(y, z) = 1 + 2y1z1 + 2y2z2 + 2y1y2z1z2 + y2
1z

2
1 + y2

2z
2
2 ,
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where y = (y1 y2)ᵀ and z = (z1 z2)ᵀ so that we have h(y, z) = Ψ(y)ᵀΨ(z), for

Ψ(y) =
(
1
√

2y1

√
2y2

√
2y1y2 y2

1 y2
2

)ᵀ
.

Therefore the kernel trick avoids here to evaluate explicitly Ψ(y) and Ψ(z) followed
by an inner product in R6.

Appendix C. Proof of Proposition 3.1. Exploiting the SVD of ΨX, the
transpose of the solution (2.2) is

(A?k)ᵀ = UΨX
Σ†ΨX

V ᵀ
ΨX

Ψᵀ
YP̂ P̂

ᵀ.

We begin by proving that the UΨX
ξ̃i’s are right eigen-vectors of (A?k)ᵀ. Using the

definition (3.1), we verify after some algebraic manipulations that

Uᵀ
ΨX

(A?k)ᵀUΨX
= (Ã`,k)ᵀ, (C.1)

so that we have the following equality

(A?k)ᵀUΨX
αi = UΨX

(Ã`,k)ᵀαi.

By setting αi = ξ̃i and exploiting the fact that (ξ̃i, λ̃i) are couples of eigen-vectors
and eigen-values of (Ã`,k)ᵀ, we get that for i = 1, · · · , k

(A?k)ᵀUΨX
ξ̃i = UΨX

(Ã`,k)ᵀξ̃i = λ̃iUΨX
ξ̃i,

which proves that UΨX
ξ̃i and λ̃i are eigen-vectors and eigen-values of (A?k)ᵀ.

We continue by showing that the P̂ ζ̃i’s are right eigen-vectors of A?k. It easy to
verify that

P̂ ᵀA?kP̂ = Ãr,k, (C.2)

with Ãr,k = P̂ΨYΨ†XP̂ so that

A?kP̂ β = P̂ Ãr,kβ,

for any β ∈ Rm. Because ζ̃i are eigen-vectors of Ark, we deduce from the previous
relation that

A?kP̂ ζ̃i = P̂Ark ζ̃i = λ̃ri P̂ ζ̃i.

This proves that the P̂ ζ̃i’s and the λ̃ri ’s are right eigen-vectors and eigen-values of A?k.

Now, because UΨX
is unitary, it follows from (C.1) that λi = λ̃`,i for i = 1, · · · , n.

Moreover, it follows from the definition of A?k that the ζi’s are in the span of the

columns of P̂ , i.e., that every eigen-vector writes P̂α, with some αi ∈ Cm. It follows
from (C.2) that λi = λ̃ri for i = 1, · · · , n. We finally obtain that {λ̃`,i, i = 1, · · · , k} =

{λ̃r,i = 1, · · · , k} = {λi = 1, · · · , k}. �
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