
[13:23 16/7/2010 Bioinformatics-btq301.tex] Page: 1897 1897–1898

BIOINFORMATICS APPLICATIONS NOTE Vol. 26 no. 15 2010, pages 1897–1898
doi:10.1093/bioinformatics/btq301

Genome analysis Advance Access publication June 23, 2010

Cassis: detection of genomic rearrangement breakpoints
Christian Baudet1,2,†, Claire Lemaitre1,3,†, Zanoni Dias2, Christian Gautier1, Eric Tannier1

and Marie-France Sagot1,∗
1Equipe BAMBOO, INRIA Grenoble Rhône-Alpes et Laboratoire de Biométrie et Biologie Évolutive (UMR 5558)
CNRS, Université Lyon 1, F-69100 Villeurbanne, France, 2Institute of Computing, University of Campinas (Unicamp),
Av. Albert Einstein, 1251 - Cidade Universitária, Caixa Postal 6176 - CEP 13083-970, Campinas - São Paulo, Brazil
and 3Université de Bordeaux, Centre de Bioinformatique – Génomique Fonctionnelle Bordeaux, F-33000 Bordeaux,
France
Associate Editor: Alfonso Valencia

ABSTRACT

Summary: Genomes undergo large structural changes that alter
their organization. The chromosomal regions affected by these
rearrangements are called breakpoints, while those which have not
been rearranged are called synteny blocks. Lemaitre et al. presented
a new method to precisely delimit rearrangement breakpoints in
a genome by comparison with the genome of a related species.
Receiving as input a list of one2one orthologous genes found in
the genomes of two species, the method builds a set of reliable
and non-overlapping synteny blocks and refines the regions that are
not contained into them. Through the alignment of each breakpoint
sequence against its specific orthologous sequences in the other
species, we can look for weak similarities inside the breakpoint, thus
extending the synteny blocks and narrowing the breakpoints. The
identification of the narrowed breakpoints relies on a segmentation
algorithm and is statistically assessed. Here, we present the package
Cassis that implements this method of precise detection of genomic
rearrangement breakpoints.
Availability: Perl and R scripts are freely available for download
at http://pbil.univ-lyon1.fr/software/Cassis/. Documentation with
methodological background, technical aspects, download and setup
instructions, as well as examples of applications are available
together with the package. The package was tested on Linux
and Mac OS environments and is distributed under the GNU GPL
License.
Contact: Marie-France.Sagot@inria.fr
Supplementary information: Supplementary data are available at
Bioinformatics online.

Received on March 3, 2010; revised on May 10, 2010; accepted on
June 3, 2010

1 INTRODUCTION
Large scale modifications of the genome, such as inversions
or transpositions of DNA segments, translocations between non-
homologous chromosomes, fusions or fissions of chromosomes
and deletions or duplications of small or large portions are called
rearrangements. They are further involved in evolution, speciation
and also in cancer.

∗To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors
should be regarded as joint First authors.

One crucial step before analysing the rearrangements and their
possible relation with other genomic features is to locate these
events on a genome. In the case of two genomes, it is possible
to identify conserved regions, also known as synteny blocks,
by comparing the order and orientation of orthologous markers
along their chromosome sequences. A region located between two
consecutive synteny blocks on one genome, whose orthologous
blocks are rearranged in the other genome (not consecutive or not
in the same relative orientations), is called breakpoint.

As far as we know, current methods for detecting breakpoints
[Grimm-synteny (Pevzner and Tesler, 2003) Mauve (Darling et al.,
2004), for example] are in fact strategies for detecting synteny
blocks: they provide the coordinates of the breakpoint regions only
as a byproduct, simply by returning regions that are not found in
a conserved synteny. Lemaitre et al. (2008) developed a formal
method that aims to go one step further and to extend the synteny
blocks by focusing on the breakpoints themselves. This method
was shown to improve significantly the precision of breakpoint
locations on mammalian genomes and enables to better characterize
breakpoint sequences and distributions (Lemaitre et al., 2008, 2009)
(see also datasets and comparisons available together with the
package).

The first step of the method is to process a list of orthologous
genes to identify synteny blocks between the genomes of two related
species (a reference genome Gr and a second genome Go). This step
outputs a list of ordered and non-intersecting synteny blocks that are
used to identify the breakpoints. For each breakpoint on the genome
Gr , we can define three sequences: the breakpoint sequence Sr , and
its two orthologous sequences on the second genome Go, SoA and
SoB (Fig. 1).

In a second step, the method aligns the breakpoint sequence Sr
against SoA and SoB and the information provided by the hits of
the alignments is coded along Sr as a sequence of discrete values.
A segmentation algorithm calculates the best segmentation of this
sequence of discrete values into at most three segments: a segment
related with SoA, a segment related with SoB and a central segment
which will represent the refined breakpoint.

2 CASSIS
Cassis is a package which contains the implementation in Perl and
R of the methods developed by Lemaitre et al. (2008).

© The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 at U
niversite V

ictor S
egalen on July 19, 2010 

http://bioinform
atics.oxfordjournals.org

D
ow

nloaded from
 

http://pbil.univ-lyon1.fr/software/Cassis/
http://creativecommons.org/licenses/
http://bioinformatics.oxfordjournals.org


[13:23 16/7/2010 Bioinformatics-btq301.tex] Page: 1898 1897–1898

C.Baudet et al.

Gr BrAr

sequence SoA
CoAo

Go

extended sequence SoA

sequence Sr

extended sequence Sr

sequence SoB
BoDo

Go

extended sequence SoB

Fig. 1. Sequence Sr is defined by the boundaries of two consecutive synteny
blocks Ar and Br on the genome Gr . SoA (SoB) is defined by the boundaries
of the orthologous block Ao (Bo) and of the previous/next synteny block
(according to the orientation of the blocks) in the genome Go. To perform the
segmentation, the package considers the extended version of the sequences
Sr , SoA and, SoB which includes the first/last genes of the synteny blocks.

The package receives as input data a list of pairs of one2one
orthologous genes which can be found in the genomes Gr and Go.

First, all pairs of intersecting genes which have same order and
direction in both genomes are merged. Overlapping genes that
do not respect this criterium are discarded. After that, the list of
genes is used to create synteny blocks according to the algorithm
described by Lemaitre et al. using k =2. Basically, the parameter
k controls for the flexibility degree of the method. With k =2, the
algorithm enables individual isolated genes to be out of order without
disrupting a synteny block, and all synteny blocks must contain at
least two genes.

For each breakpoint on the genome Gr , we define the boundaries
of the sequences Sr , SoA and, SoB according to the synteny blocks.
We perform the alignment with LASTZ (Harris, 2007) of the
sequences Sr against SoA and Sr against SoB. LASTZ was chosen
because it was shown to be more sensitive in the alignment of
intergenic sequences. To obtain better results in the segmentation
step, we align the extended version of the sequences Sr , SoA and,
SoB. This includes the genes that are on the boundaries of the blocks
that define the sequence (Fig. 1).

If at least one of the alignments (Sr against SoA or Sr against
SoB) leads to a hit, the breakpoint sequence can be refined. The
segmentation algorithm is applied to the breakpoint and the refined
coordinates can thus be obtained. During this step, we perform
a statistical test that verifies if the breakpoint region is actually
structured into three segments to validate the obtained results.

The package Cassis also works with lists of orthologous synteny
blocks. In this case, the steps of overlapping identification and
synteny blocks definition are not executed and the input data is
directly submitted to the breakpoint identification step. As we do
not have information about the genes that are inside of the synteny
blocks that are given by the user, to build the extended sequences
we add on each side of the sequence a fragment of length L. If the
resulting extended sequence has length smaller than Lmin, it means
that we have a considerable overlap between consecutive blocks.
Thus, we cannot properly define the sequence and the corresponding
breakpoint is not refined. The default values of the parameters L and
Lmin are 50 kbp. This was chosen because it is close to the average
size of a gene.

The package contains a main script which controls the whole
process of breakpoint identification and refinement. The script is
very simple to use and receives the following parameters:

• Input table: tab separated values file that contains the
orthology information. It can be a list of pairs of one2one
ortologous genes or a list of pairs of orthologous synteny
blocks, which can be found on the genomes Gr and Go;

• Input type: flag that indicates the type of the given input table:
G for genes and B for synteny blocks;

• Directory Gr (Go): directory where the script can find the
sequences of the chromosomes of the genome Gr (Go);

• Output directory: directory which will receive the results; and

• Other optional parameters including a stringency level for the
LASTZ alignments and the values for sequences extensions
(L and Lmin).

The script generates a table that contains, for each breakpoint,
the chromosome of the genome Gr where the breakpoint is located,
the coordinates of the breakpoint before and after the segmentation
process and a flag that can have the following values: −1, 0
and 1. The value −1 denotes that it was impossible to execute
the segmentation because the alignments output no hit. The values
zero/one denote, respectively, that the segmentation failed/passed on
the statistical test. The package also produces, for each breakpoint,
a plot with the graphical representation of the segmentation.

We recommend the use of chromosome sequences whose repeats
have been masked. The alignment of masked sequences results in
more relevant hits and, consequently, on better segmentation results.

The package contains a main script which controls the execution
of a set of scripts that performs atomic tasks. The modularization
of the implementation answers to the needs of advanced users who
may desire to create their own pipelines of breakpoint refinement.

Funding: Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (4676/08-4 to C.B.); Conselho Nacional de Desenvolvi-
mento Científico e Tecnológico (472504/2007-0, 479207/2007-0
and 483177/2009-1 to Z.D., partial); French project ANR
(MIRI BLAN08-1335497); French-UK project ANR-BBSRC
(MetNet4SysBio ANR-07-BSYS 003 02); Project ERC Advanced
Grant Sisyphe.

Conflict of Interest: none declared.

REFERENCES
Darling,A.C.E. et al. (2004) Mauve: alignment of conserved genomic sequence with

rearrangements. Genome Res., 14, 1394–1403.
Harris,R.S. (2007) Improved pairwise alignment of genomic DNA. PhD Thesis, The

Pennsylvania State Univeristy.
Lemaitre,C. et al. (2008) Precise detection of rearrangement breakpoints in mammalian

chromosomes. BMC Bioinformatics, 9, 286.
Lemaitre,C. et al. (2009) Analysis of fine-scale mammalian evolutionary breakpoints

provides new insight into their relation to genome organisation. BMC Genomics,
10, 335.

Pevzner,P. and Tesler,G. (2003) Genome rearrangements in mammalian evolution:
lessons from human and mouse genomes. Genome Res., 13, 37–45.

1898

 at U
niversite V

ictor S
egalen on July 19, 2010 

http://bioinform
atics.oxfordjournals.org

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org

