reads2genpop: From sequence reads to genomes and populations September 21 - 22, 2022

Methodological challenges of Structural Variation characterization and the particular case of insertions

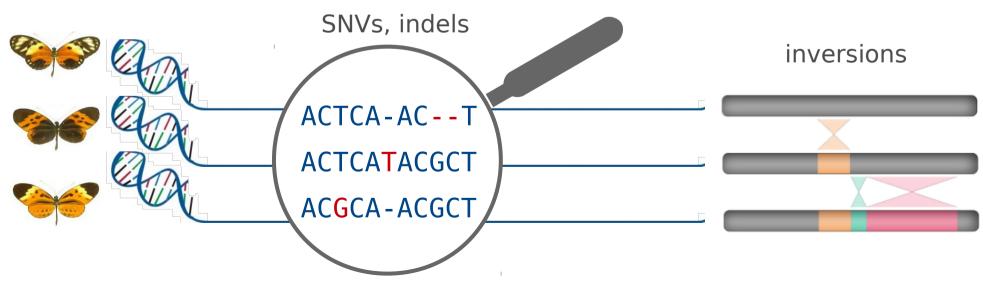
Claire Lemaitre

Genscale, Inria Rennes Bretagne Atlantique – IRISA, Rennes claire.lemaitre@inria.fr

http://people.rennes.inria.fr/Claire.Lemaitre/

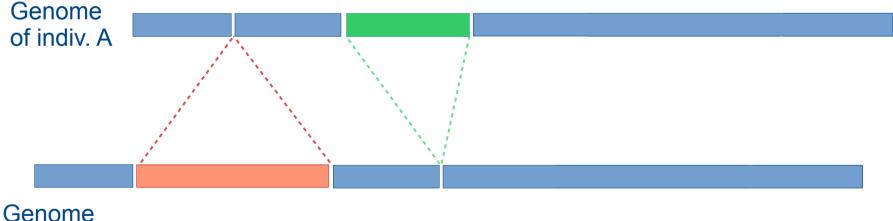
Genetic variations

- Intra-species diversity
 <l
- Genomic variants : from punctual to large differences between the genomes



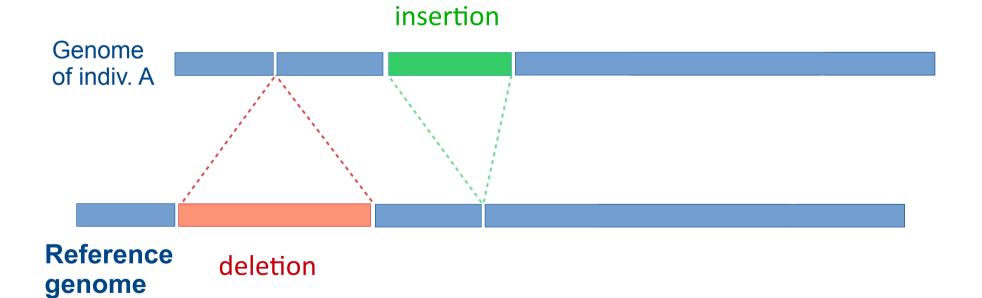
Claire Lemaitre -- reads2genpop -- Sept. 2022

- A simple definition : genome variation of size > 50 bp
- That gathers many different types

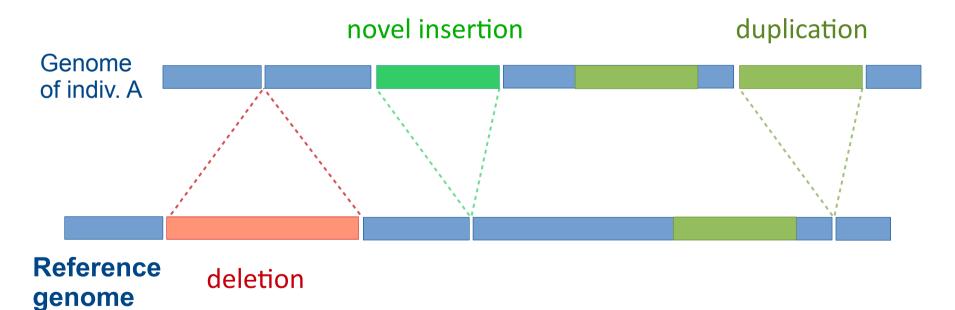


of indiv. B

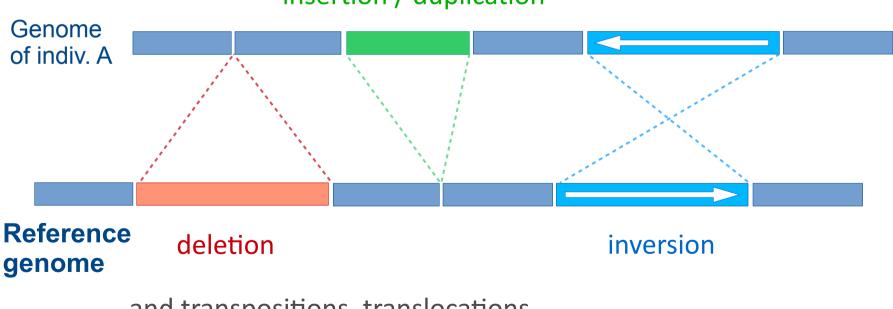
- A simple definition : genome variation of size > 50 bp
- That gathers many different types



- A simple definition : genome variation of size > 50 bp
- That gathers many different types



- A simple definition : genome variation of size > 50 bp
- That gathers many different types



insertion / duplication

and transpositions, translocations...

Why studying SVs ?

- SV events are 10 to 100 times less frequent than SNPs...
 ... but involve 15 times more base pairs [in humans: Pang et al, 2010]
- Various functional and evolutionary impacts
 modifying functional elements, expression levels, suppressing recombination, such as :
 - human diseases : repeat expansion in Parkinson, gene fusions in cancer
 - plant selection : [Alonge et al, 2020]

100 tomato varieties : 240,000 SVs (causal) association with flavor, size and yield

evolution : inversions and supergenes

In this talk

- How do we discover SVs with sequencing data ?
 - Overview of the different approaches
 - Main problems/challenges
 - Short State of the Art
- The case of long insertions :
 - Very difficult type with short reads
 - Thanks to long reads, analysing real insertion variants & revisiting short-read based results
- After the discovery...

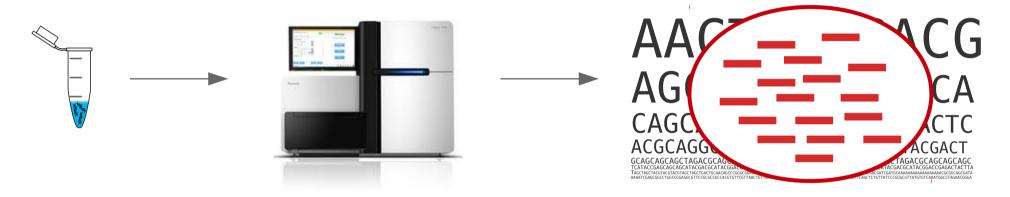
In this talk

1. How do we discover SVs with sequencing data ?

- Overview of the different approaches
- Main problems/challenges
- Short State of the Art

Accessing the genomes of many individuals

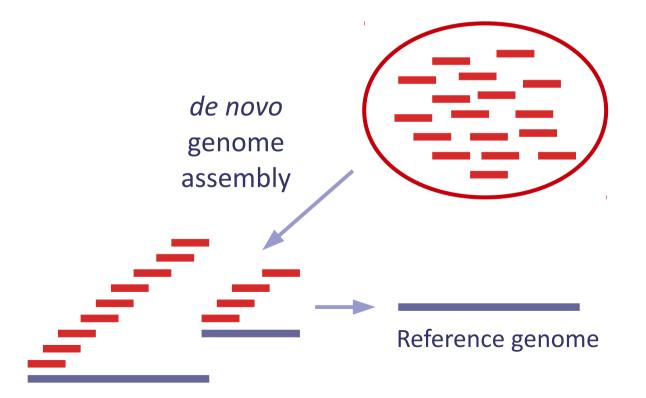
Since 2008, high throughput sequencing :



- Data = sets of many small sequences (reads)
- 2 types of sequencing data :
 - Short reads (2008...) : ~ 100 bp, <0.1 % error rate</p>
 - − Long reads (2015...) : 1 − 1,000 Kb, 5 − 15 % error rate

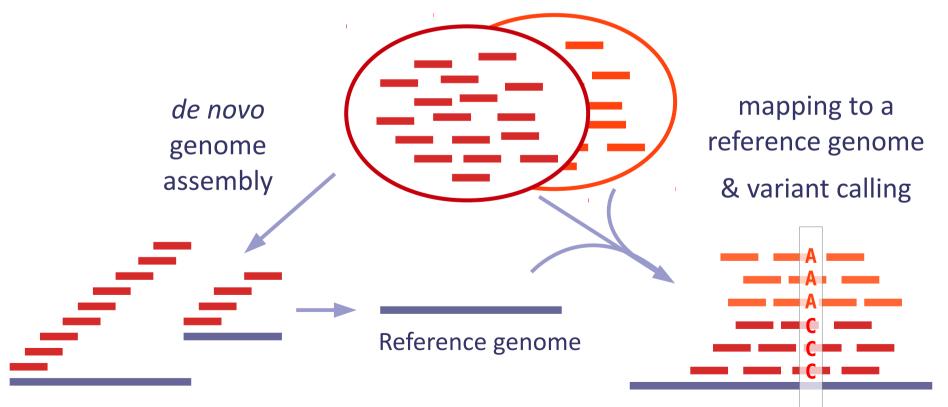
Methods for sequencing data

- Two classical approaches :
 - Sequence assembly : hard problem, resource-consuming



Bioinformatics

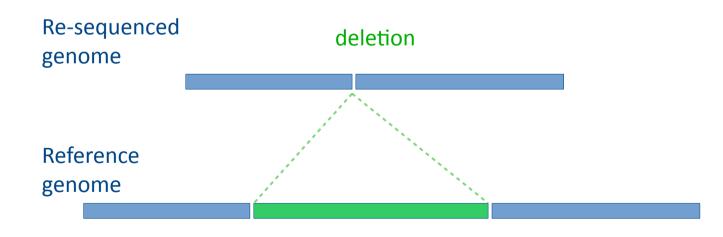
- Two classical approaches :
 - Sequence assembly : hard problem, resource-consuming
 - Read mapping & variant calling : relying on a reference genome



A much more difficult problem than SNV-indel calling :

The whole alternative allele is not found in a single read alignment

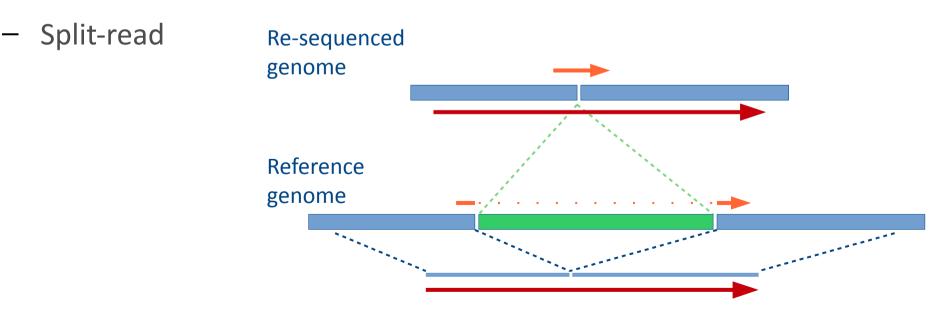
→ Looking for aberrant combinations of several alignments



A much more difficult problem than SNP-indel calling :

The whole alternative allele is not found in a single read alignment

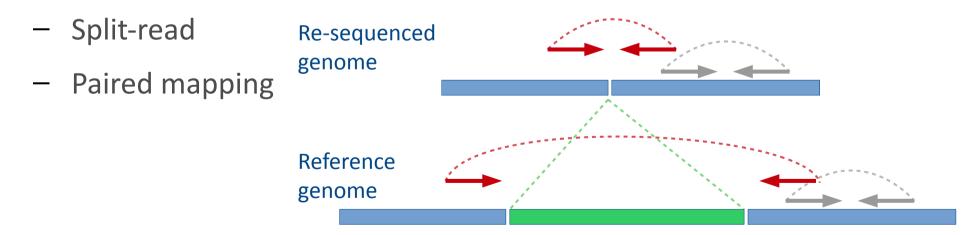
→ Looking for aberrant combinations of several alignments



A much more difficult problem than SNP-indel calling :

The whole alternative allele is not found in a single read alignment

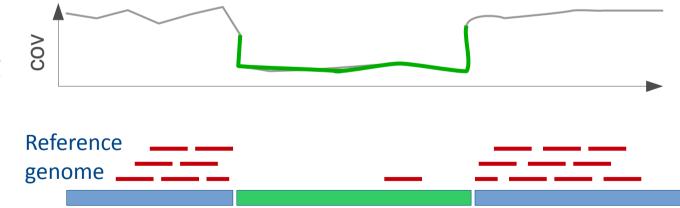
→ Looking for aberrant combinations of several alignments



A much more difficult problem than SNP-indel calling :

The whole alternative allele is not found in a single read alignment
→ Looking for aberrant combinations of several alignments

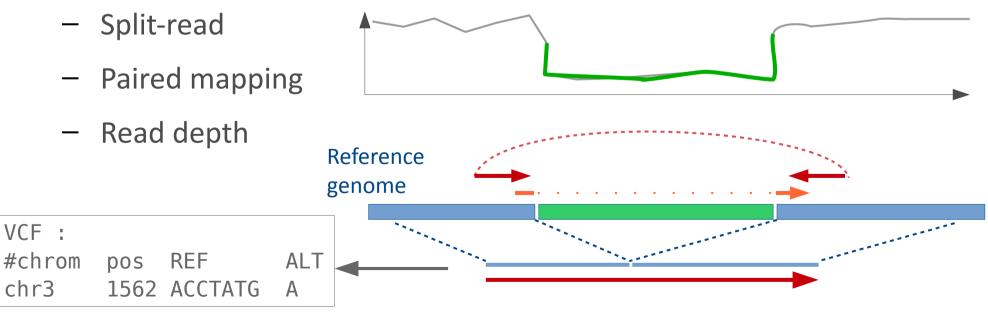
- 3 types of mapping signals :
 - Split-read
 - Paired mapping
 - Read depth



A much more difficult problem than SNP-indel calling :

The whole alternative allele is not found in a single read alignment

→ Looking for aberrant combinations of several alignments



SV calling : read size matters

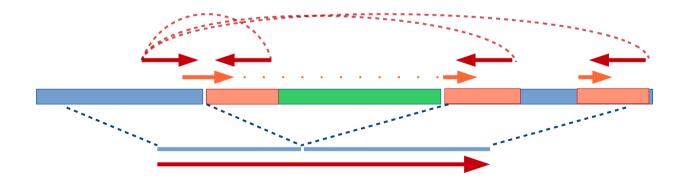
- Difficulties :

- Heterogeneity of types \rightarrow no equivalence 1 signal \leftrightarrow 1 type
- Genome repeats
 - Mapping ambiguities \rightarrow False Positive calls
 - SVs are associated with repeats \rightarrow Missing calls (False Negatives)

SV calling : read size matters

- Difficulties :

- Heterogeneity of types \rightarrow no equivalence 1 signal \leftrightarrow 1 type
- Genome repeats
 - Mapping ambiguities \rightarrow False Positive calls
 - SVs are associated with repeats \rightarrow Missing calls (False Negatives)



Advantages of long reads : can contain the alternative allele and span the repeats

History of the art

- 2008 - 2018 : more than 70 SV callers for short reads

- At first, 1 signal at a time
 ex : BreakDancer (Chen 2009), Pindel (Ye 2009), CNVnator (Abyzov 2011)
- Then, combining several signals
 ex : Delly (Rausch 2012), Lumpy (Layer 2014)...
- Some « meta » SV callers :
 ex : metaSV (Mohiuddin 2015), Parliament (English 2015)
- Last generation, use of assembly techniques
 ex : Manta (Chen 2016), GRIDSS (Cameron 2017), Svaba (Wala 2018)

Some reviews : (Medvedev *et al*, Nat Met 2009) (Alkan *et al*, Nat Rev Genet 2011)

History of the art (2)

- 2008 2018 : more than 70 SV callers for short reads
 - Poor results : small overlap between tools
 - Benchmarks : very few and late (Kosugi 2019, Cameron 2019)
 Results : low recall (10-70%), high FP rate (up to 90 %)
 - Applications restricted to deletions (ex: 1000 genome project)

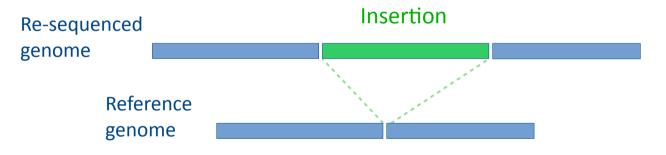
History of the art (2)

- 2008 – 2018 : more than 70 SV callers for short reads

- Poor results : small overlap between tools
- Benchmarks : very few and late (Kosugi 2019, Cameron 2019)
 Results : low recall (10-70%), high FP rate (up to 90 %)
- Applications restricted to deletions (ex: 1000 genome project)
- 2018 now : long reads = a big change for SV analysis
 - Efficient tools, based on split-mapping (main issue = mapping)
 ex : Sniffles (Sedlazeck 2018), Pbsv (Pacific Biosciences), SVIM (Heller 2019)
 - High quality SV data for applications and benchmarking
- More recent reviews : (Ho *et al*, Nat Rev Genet 2019) (Mahmoud *et al*, Genome Biol 2019)

1. How do we discover SVs with sequencing data ?

2. The case of long insertions

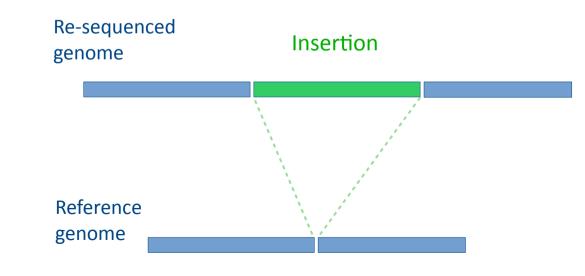


- Very difficult type with short reads
- Thanks to long reads, analysing real insertion variants & revisiting short-read based results

Insertion variants : a most difficult type of SV

- Insertions variants :
 - As frequent as deletions (inverse event)
 - But under-represented in databases :

In dbVar : 28 % vs 72 % (deletions) – only 1.5 % with sequence resolution

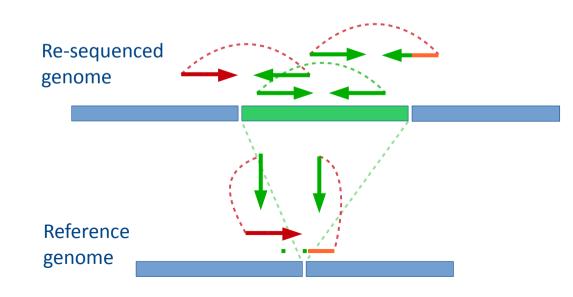


Insertion variants : a most difficult type of SV

- Insertions variants :
 - As frequent as deletions (inverse event)
 - But under-represented in databases :

In dbVar : 28 % vs 72 % (deletions) – only 1.5 % with sequence resolution

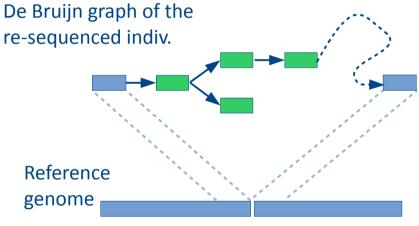
- 2 problems in 1 :
 - Insertion site : less mapping signals
 - Inserted sequence : unmapped (or far away) reads



De novo assembly for long insertion calling

- Inserted sequence recovery : need of *de novo* assembly with short reads
- MindTheGap:
 - Detection and *de novo* assembly of inserted sequences with a de Bruijn Graph
 - First tool using the whole read set
 - Results :
 - No competitor for long (>100 bp) insertions (in 2014...)
 - Very good results on simulated data...

Rizk et al, Bioinformatics, 2014.



Insertion site

https://github.com/GATB/MindTheGap BIOCONDA

Claire Lemaitre -- reads2genpop -- Sept. 2022

New insights with long read technologies

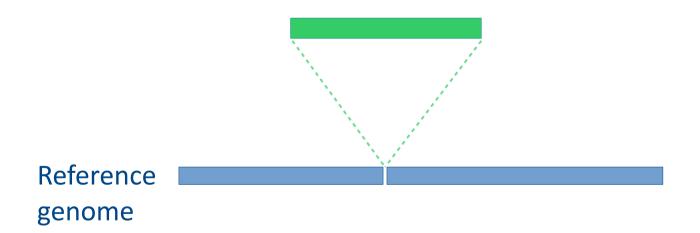
- 2 major papers in 2019-2020 : HGSV and Genome in a Bottle consortiums [Chaisson et al, 2019 and Zook et al, 2020]
 - >10 sequencing tech. and many assembly & SV calling software
 - gold standard SV callsets for 4 human individuals

~ 30,000 SVs per indiv. : 50 % deletions / 50 % insertions all sequenced-resolved

 Bad surprise for short-read insertion callers : very low recall for MindTheGap (and other tools) : 2-10%

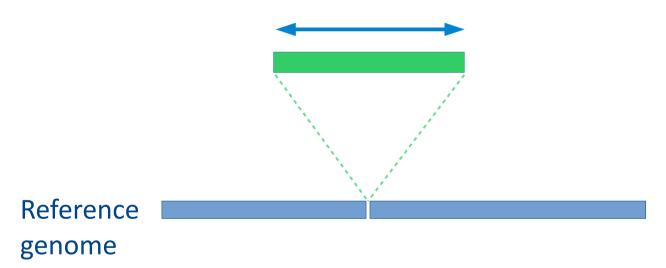
What make those variants so difficult to be discovered (vs simulated ones) ?

- Method : 4 levels of characterization



- Method : 4 levels of characterization

1. size



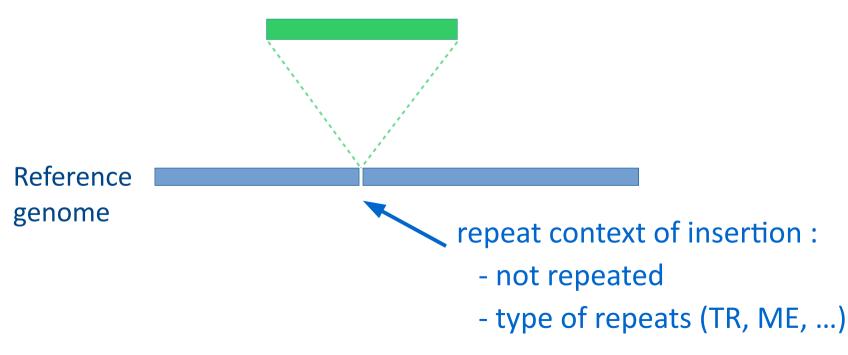
- Method : 4 levels of characterization
 - 1. size
 - 2. nature

Nature of the inserted sequence :

annotation in 5 types (novel, dispersed dup, tandem dup, Mobile Element (ME), Tandem repeat expansion (TR))

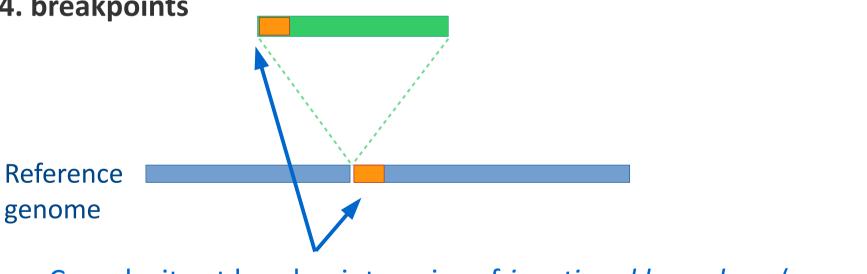
Reference genome

- Method : 4 levels of characterization
 - 1. size
 - 2. nature
 - **3. genomic location**

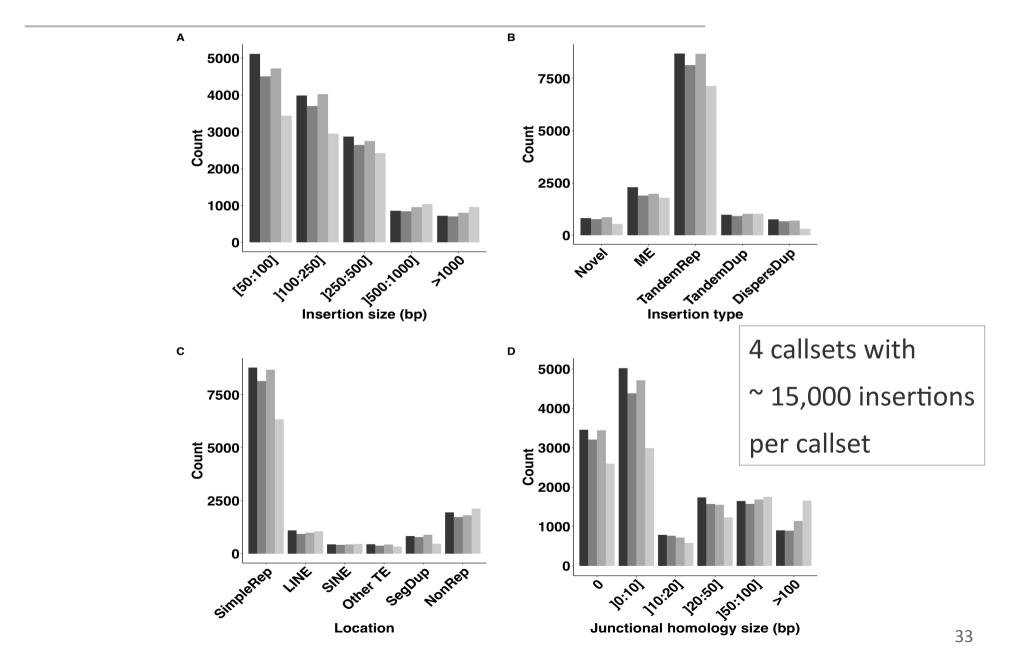


Method : 4 levels of characterization

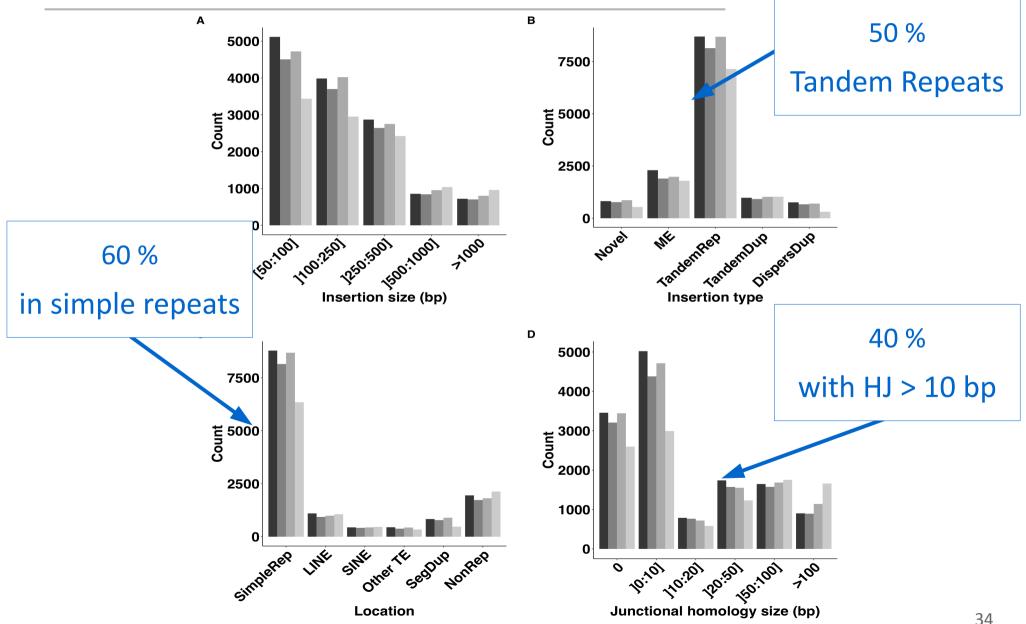
- 1. size
- 2. nature
- 3. genomic location
- 4. breakpoints



Complexity at breakpoints = size of *junctional homology* (repeat)



Most insertions are « difficult »



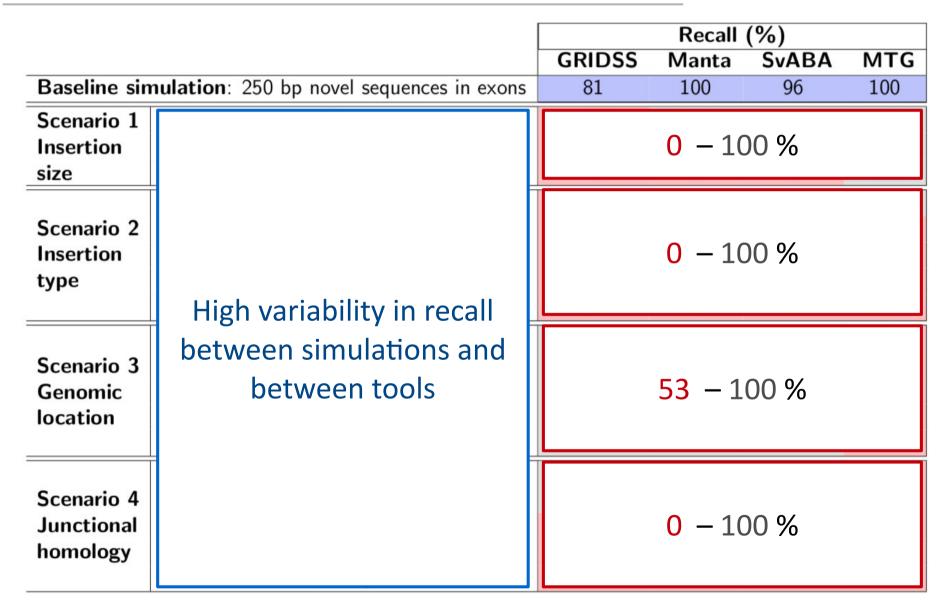
Which features impact most the recall ?

- Using simulations to disantangle correlated features
 - 1 baseline (easiest case) simulation :
 - 200 simulated insertions on human chr 3
 - size = 250 bp, type = novel, location = exon, HJ = 0 bp
 - 2x150 bp reads at 40x
 - 20 simulated datasets : changing one insertion feature at a time
- Benchmark of 4 insertion callers : [Chen *et al*, 2016; Wala *et al*, 2018; Cameron *et al*, 2017]
 - 3 generic latest SV callers (Manta, Svaba, GRIDSS) + MindTheGap
 - Recall : how many of the 200 insertions are discovered and sequence-resolved ?

	Recall (%)			
	GRIDSS	Manta	SvABA	MTG
Baseline simulation: 250 bp novel sequences in exons	81	100	96	100

		Recall (%)				
		GRIDSS	Manta	SvABA	MTG	
Baseline simulation: 250 bp novel sequences in exons		81	100	96	100	
Scenario 1	50 bp	56	100	100	100	
Insertion	500 bp	0	0	0	99	
size	1,000 bp	0	0	0	98	

		Recall (%)				
		GRIDSS	Manta	SvABA	MTG	
Baseline simulation: 250 bp novel sequences in exons		81	100	96	100	
Scenario 1	50 bp	56	100	100	100	
Insertion	500 bp	0	0	0	99	
size	1,000 bp	0	0	0	98	
	Dispersed duplication	0	0	16	96	
Scenario 2	Tandem duplication	0	0	0	0	
Insertion	Mobile element	0	0	61	58	
type	Tandem repeat (6 bp pattern)	0	0	1	0	
	Tandem repeat (25 bp pattern)	0	0	0	0	
	No repeat	77	97	93	83	
Scenario 3	Simple repeat (<300 bp)	77	98	97	73	
Genomic	Simple repeat (>300 bp)	77	93	90	58	
location	SINE	77	99	94	53	
	LINE	76	97	95	89	
	10 bp	99	100	92	0	
Scenario 4	20 bp	100	100	78	0	
Junctional	50 bp	6	46	10	0	
homology	100 bp	0	11	0	0	
	150 bp	0	0	0	0	



Better understanding the loss of recall

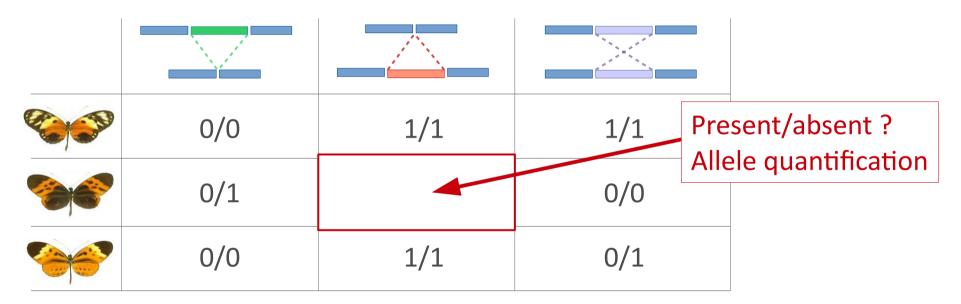
- Many different types of insertions
 - A large majority are « difficult »
 - Most impactful features : size and insertion type (Ex : TR)
 - Towards better practices for simulations and benchmarks
- Still some positive findings for improving SV callers :
 - Insertion site often findable, but lack of sequence resolution
 - High variability between tools
 - \rightarrow finding the good combination of SV callers to improve the recall

Delage et al, BMC Genomics, 2020

- 1. How do we discover SVs with sequencing data ?
- 2. The case of long insertions
- 3. After the discovery...

SV genotyping

Comparing SVs between individuals



- Importance to distinguish it from the discovery step :
 - SV discovery is prone to FPs and FNs
 - Assessing the absence of a given SV
 - A common SV representation for all compared individuals

State of the art

- History :
 - Before 2018 : no dedicated tools, genotyping is integrated in discovery tools

→ lack of versatility, limited to some SV types

- Then, multiplication of dedicated methods, ex : SVTyper, SV2, GraphTyper2, Paragraph... (for short reads)
- Methods :
 - Easier than discovery : analyzing mapping signals at pre-defined positions
 - But : mapping to reference only → bias toward the reference allele

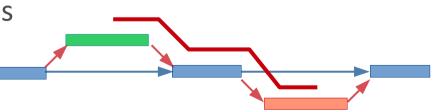
Avoiding the reference bias

SVJedi: Lecompte et al, Bioinformatics, 2020
 Mapping to both alleles
 For long reads
 Allele 1

- Graph-based representation
 - One allele/haplotype = one path
 - Allows the representation of complex SVs (with multiple breakpoints), close, imbricated SVs...
 - Ex : VG-toolkit (Garrison 2018), Paragraph (Chen 2019), GraphTyper2 (Eggerston 2019), SVJedi-graph https://github.com/SandraLouise/SVJedi-graph

Conclusion

- Various methodological issues behind SV analysis
 - Depending on SV type and sequencing data
 - Other problems after the discovery : SV representation, comparison, genotyping...
- Current/future challenges :
 - Importance of precise reconstruction of alternative alleles (e.g. through local assembly)
 - Pangenomic graph representations for large population data



Acknowledgments

Genscale team in Rennes

https://team.inria.fr/genscale/

Work of PhD students

Wesley Delage

Lolita Lecompte Sandra Romain