

Importance Splitting
 for Statistical Model Checking

Properties

Cyrille Jegourel, Axel Legay, Sean Sedwards

CAV 2013, Saint Petersburg

Probabilistic model checking

Quantify temporal logical properties of stochastic systems
➢ Numerical model checking

● precise
● exhaustive exploration of state space
● limited model size

➢ Statistical model checking (SMC)
● statistical model of executions
● results within confidence bounds
● trades off tractability with precision

Motivation

Objective :
● Standard Statistical technique for SMC: Monte Carlo.
● Rare events may cause serious problems and are

difficult to simulate.
● Given a stochastic system, design a procedure for

estimating a rare property in a reasonable time with
SMC.

● Properties specified with time bounded temporal logic:

 =  | ∨ | ∧ | ¬ | X | F t
 | G t

 | U t


Monte Carlo model checking

 ≝ Ef [Z] =∫


z  f d

 =
1
N∑i=1

N

z i

property indicator
function z ∈ {0,1}

Goal: Given a Markovian system and a property φ,
compute the probability γ that a path ω satisfies φ
(γ=P[ω ⊨ φ]).

The behavior of the system with respect to the property
can be modeled by a Bernoulli random variable Z.

sample traces generated
under f

probability measure
function

Monte Carlo estimation

 =
1
N∑i=1

N

z i

Ω

A

A = {∈ : z =1}

AE∝ 1−
N

Absolute error = half the
size of the confidence
interval

Problems of rare events

● Occur with small probability (e.g. < 10-6)
● appear rarely in stochastic simulations
● need very large number of trials to see single

example
● without seeing, cannot quantify how low the

probability
● The absolute error is not useful

● Bounds (e.g. Chernoff) not useful when γ small
● Unbounded relative error:

RE=Var z
E z

=
−2


≈0

1



± not useful if ≫

High variance

Ω

A

RE ∝ 0
1

N 

N very large to bound RE
with Monte Carlo simulation

Importance sampling

=∫


z 
f 
f ' 

f ' d

IS=
1
N∑i=1

N

z i
f i

f ' i

likelihood ratio

importance sampling distribution

traces generated under f '

=∫


z  f d

MC=
1
N∑i=1

N

z i

traces generated under f

Monte Carlo

‘Tilted’ simulation

=
1
N∑i=1

N

z  ' i
f  ' 
f '  ' i

traces generated under f '
(importance sampling dist.)

Ω

Optimal importance sampling

=
1
N∑i=1

N

z  ' i
f  ' 
f '  ' i

f opt
=

z f


f conditioned on the rare event

Ω

Limitations of Importance
Sampling

● Quantifying the performance of apparently “good”
distributions is an open problem.

● Problem of accuracy with long simulations: likelihood
ratio vanishes and variance of the estimators increases.

=> need of an alternative technique: Importance
Splitting.

Basics of Importance Splitting

Let A a rare event and Ak 0≤k≤n a sequence of nested events:

 ≝ P A  = P A0P A1 | A0PA2 | A1... PAn | An−1

A0⊃A1⊃...⊃An=A

Bayes formula

∀ k P A k | Ak−1 = k≥

Less rare

Generation of traces in
Importance Splitting

● Assuming a set of increasing levels k, generate traces
starting from a distribution of the initial states.

● Simulations are stopped as soon as they reach the next
level k+1.

● The final states become the empirical distribution of
initial states for the next level (level k+1).

● Failed traces discarded. Successful traces continue from
where they stopped.

● Avoid a reduction of simulations by resampling the
discarded traces from empirical distribution of level
k+1.

Illustration 1

P ²1 | ²0 ≃ 1 =
3
5

Illustration 2

Importance Splitting for
(Temporal) Logic

Idea: given a rare property ϕ, define a set of levels
based on a sequence of temporal properties such that:

Thus,

k 0≤k≤n : 0⇐1⇐ ...⇐n=

 = P⊨0∏
k=1

n

P⊨k | ⊨k−1

Level-based Score functions

● Goal: Generalise the concept of levels.
● Definition 1:

● Example: given a set of nested properties, a simple
score function may be defined as follows:

Let J 0⊃J 1⊃...⊃J n be a set of nested intervals of ℝ .
Let 0⊃1⊃...⊃n be a set of nested properties.
S :ℝ is a level-based score function of property  iff ∀ k :

⊨k⇔S ∈J k and ∀ i , j∈{0,... , | |}: i j⇒ S ≤i≤S ≤ j

S =∑
k=1

n

1 ²k

General score functions

● Definition 2:

Let J 0⊃J 1⊃...⊃J n be a set of nested intervals of ℝ .

Let =0⊃1⊃...⊃n be a set of nested subsets of  .

S :ℝ is a general score function of property  iff ∀ k :

i  ∈k⇔S ∈J k

iii ∀ i , j∈{0, ... , | |}: i j⇒ S ≤i≤S ≤ j

ii  ²⇔∈n

Score functions

● Goal: Generalise the concept of levels.
● Level-based score functions: Mapping from logical

properties to the real numbers which give information
on the number of satisfied sub-formulae.

● General score functions: Mapping from sets of paths to
the real numbers s.t. higher scores assigned to paths
that satisfy the overall property.

Example: S =∑
k=1

n

1²k

Use of Heuristics

● Level-based score functions correlate logic to score.
● General score functions requires:

● higher scores assigned to paths that satisfy the
overall property.

● Score of a path's prefix is non decreasing with
increasing prefix length.

● In some case, the shortest paths satisfying a rare
property are the most likely.

=> possibility to exploit the length of a path to improve
a score function based on coarse logical levels.

Simple decomposition

●

● Possibility to choose an arbitrary order of sub-formulae:

When =  j=1
n  j , a decomposition into nested properties is:

i =  j=1
i  j , ∀ i∈{1, ... , n} with 0≡True

Example: Given = a∧b∧c ,

3 = a∧b∧c , 2= a∧b , 1= a

3 = a∧b∧c , 2= b∧c , 1= c

 Both decompositions are valid.

Natural decomposition

● Many rare events are defined with a natural notion of
level, when some quantity of the system reaches a
particular value.

● In Computational systems: might refer to a loop
counter, a number of software objects, etc...

● In physical systems: might refer to a temperature, a
distance, a number of molecules...

● Natural levels defined by nested atomic properties:

i= lli with l a state variable and ²n ⇔ l≥ln

Decomposition of temporal
operators

i  n⇒n−1 ⇒ Sn⇒Sn−1 with S∈{F≤ t ,G≤ t ,X ,F≤t G≤s}

ii  n⇒n−1∧m⇒m−1 ⇒ nUm ⇒ n−1Un−1

iii  n⇒n−1 ⇒ ∀²G≤t
n : ∃t '≥t | ²G≤t '

n−1

vi n⇒n−1 ⇒ ∀²F≤t G≤s
n : ∃t '≤t∧s '≥s | ²F≤t 'G≤s '

n−1

iv  n⇒n−1 ⇒ ∀²F≤t
n : ∃ t '≤t | ²F≤t '

n−1

v  t '≥t∧s '≤s ⇒ F≤ t G≤s
n⇒F≤ t 'G≤s '

n

Two algorithms

● Fixed level algorithm:
● Exploits a score function based on “logical” levels

● Adaptive level algorithm:
● Given a score function, finds itself the “best” levels
● Requires a score function refined enough.

Fixed level algorithm
Let k1≤k≤M be the sequence of thresholds
Let stop be a termination condition

for 1≤k≤M do

I k = { j :S  j
k ≥ k } and k =

| I k |

N

∀1≤ j≤N , using prefix  j
k , generate path  j

k until S  j
k ≥ k∨stop

∀ j∈I k ,  j
k1 = j

k

∀ j∉I k , let  j
k1 be a copy of i

k with i∈I k chosen randomly

 =∏
k=1

M

k

Fluctuation analysis

N −



n∞

D
N 0,2

 where N denotes a Gaussian distribution

● Estimator unbiased
● Confidence interval based on the relative variance:

● Inequality arises because the independence of initial
states diminishes with increasing levels.

● Several possibilities minimise this dependence effect.

with 2
≥∑

k=0

n−1 1−k

k

Idealized version

●

● For a fixed number of levels, this variance is minimal if
all the conditional probabilities are equal:

● It corresponds to the case where the levels are evenly
spaced in terms of probability of success.

● Hence, the idea of an adaptive algorithm.

relative variance of the estimator: 2=∑
k=0

n−1 1−k

k

argmin
p0, ... pn−1

∑
k=0

n−1 1−k

k
s.t. ∏

k=0

n−1

k = p

Adaptive level algorithm
Let N k be the predefined number of paths to keep per iteration

for j ∉ I k do

I k = { j :S  j
k ≥ k } and k =

| I k |

N

generate path  j
k1 with prefix  j

k1

∀ j∈I k ,  j
k1
= j

k

 =∏
k=1

M

k

Let  be the minimum score of paths that satisfy 
k=1. ∀1≤ j≤N ,generate path  j

k

repeat (until k ≥ )
Let T = {S  j

k
 , ∀ j∈{1, ... , N }}

Find minimum k s.t. |{∈T :  k }|≥N k

Choose randomly l∈I k

 j
k1
= max

| |
{∈pref l

k
 : S k }

M ,k=k , k1

Adaptive algorithm illustration
1st step: trace generation

Predefine 0= 1/2
Estimate 1 s.t. P Score 1=1/2

Ellipse corresponding to Score =1

Adaptive algorithm illustration

S ⇔²

S  1

S  2

Fluctuation analysis

● For simplicity, let us write:

● Positive Bias of order O(1/N) => Good news!

 = r 0
M

 with 0 the predefined conditionnal probability,

M the number of levels
r the number of traces  in the last iteration s.t.: S ≥

N −



n∞

D
N 0,2

 with 2
≥ M

1−0

0


1−r
r

E []−  ~

N

M 1−0

0

Bias, variance and Confidence
interval

●

●

● => Hence, the variance is reduced if γ₀ is chosen large.

● Confidence interval of level (1-α) based on the relative
variance:

E []= p 1O N−1

Var   =
p2

N
M

1−0

0


1−r
r
o N−1

[
1

1z N−1/2  , 
1

1−z N−1/2 

Example: Dining philosophers

Model: 150 philosophs

Property of interest:

F≤K phili eat

S1=∑
k=1

n

1²k

S2= max
1≤ j≤K

≤ j

where j is prefix's length and  s.t.:

≤ j=S1≤ j−
S1≤ j− j

S1≤ j−K−1

Experimental results

● Description of the model: more than 1096 states
● MC probability based on 107 samples: 1.4* 10-6
●

● Probability estimator: 1.581* 10-6
● Variance of the estimator: 0.119* 10-6
● Around 100 levels found adaptively.

● Roughly, the number of samples required for IS is
between 1000 and 10000 times less important than
with MC. => Gain of time

With N=1000 samples, score function S2 and 0≈1−
1
N

Ongoing work

● Quantifying performance of importance
splitting:
● Define more complex score functions to

improve efficiency
● Real case studies (biology, robotics?)

● Continuing the development of PLASMA

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35

