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Probabilistic model checking

Quantify temporal logical properties of stochastic systems
➢ Numerical model checking

● precise
● exhaustive exploration of state space
● limited model size

➢ Statistical model checking (SMC)
● statistical model of executions
● results within confidence bounds
● trades off tractability with precision



  

Motivation

Objective :
● Standard Statistical technique for SMC: Monte Carlo.
● Rare events may cause serious problems and are 

difficult to simulate.
● Given a stochastic system, design a procedure for 

estimating a rare property in a reasonable time with 
SMC.

● Properties specified with time bounded temporal logic:

 =   | ∨  | ∧  | ¬  | X  | F t
  | G t

  | U t




  

Monte Carlo model checking

 ≝ Ef [Z ] =∫


z  f d

 =
1
N∑i=1

N

z i

property indicator
function z ∈ {0,1} 

Goal: Given a Markovian system and a property φ, 
compute the probability γ that a path ω satisfies φ   
(γ=P[ω ⊨ φ]).

The behavior of the system with respect to the property 
can be modeled by a Bernoulli random variable Z.

sample traces generated 
under f

probability measure
function



  

Monte Carlo estimation

 =
1
N∑i=1

N

z i

Ω

A

A = {∈ : z =1}

AE∝ 1−
N

Absolute error = half the 
size of the confidence 
interval



  

Problems of rare events

● Occur with small probability (e.g. < 10-6)
● appear rarely in stochastic simulations
● need very large number of trials to see single 

example
● without seeing, cannot quantify how low the 

probability 
● The absolute error is not useful

● Bounds (e.g. Chernoff) not useful when γ small
● Unbounded relative error:

RE=Var z
E z

=
−2


≈0

1



± not useful if ≫



  

High variance

Ω

A

RE ∝ 0
1

N 

N very large to bound RE
with Monte Carlo simulation



  

Importance sampling

=∫


z 
f 
f ' 

f ' d

IS=
1
N∑i=1

N

z i
f i

f ' i

likelihood ratio

importance sampling distribution

traces generated under f '

=∫


z  f d

MC=
1
N∑i=1

N

z i

traces generated under f

Monte Carlo



  

‘Tilted’ simulation

=
1
N∑i=1

N

z  ' i
f  ' 
f '  ' i

traces generated under f '
(importance sampling dist.)

Ω



  

Optimal importance sampling

=
1
N∑i=1

N

z  ' i
f  ' 
f '  ' i

f opt
=

z f


f conditioned on the rare event

Ω



  

Limitations of Importance 
Sampling

● Quantifying the performance of apparently “good” 
distributions is an open problem.

● Problem of accuracy with long simulations: likelihood 
ratio vanishes and variance of the estimators increases.

=> need of an alternative technique: Importance 
Splitting.



  

Basics of Importance Splitting

 

Let A a rare event and Ak 0≤k≤n  a sequence of nested events:

 ≝ P A  = P A0P A1 | A0PA2 | A1... PAn | An−1

A0⊃A1⊃...⊃An=A

Bayes formula

∀ k P A k  | Ak−1 = k≥

Less rare



  

Generation of traces in 
Importance Splitting

● Assuming a set of increasing levels k, generate traces 
starting from a distribution of the initial states.

● Simulations are stopped as soon as they reach the next 
level k+1.

● The final states become the empirical distribution of 
initial states for the next level (level k+1).

● Failed traces discarded. Successful traces continue from 
where they stopped.

● Avoid a reduction of simulations by resampling the 
discarded traces from empirical distribution of level 
k+1.



  

Illustration 1

P ²1  | ²0 ≃ 1 =
3
5



  

Illustration 2



  

Importance Splitting for 
(Temporal) Logic

Idea: given a rare property ϕ, define a set of levels 
based on a sequence of temporal properties such that:

Thus,

k 0≤k≤n : 0⇐1⇐ ...⇐n=

 = P⊨0∏
k=1

n

P⊨k  | ⊨k−1



  

Level-based Score functions

● Goal: Generalise the concept of levels.
● Definition 1:

● Example: given a set of nested properties, a simple 
score function may be defined as follows:

Let J 0⊃J 1⊃...⊃J n  be a set of nested intervals of  ℝ .
Let 0⊃1⊃...⊃n  be a set of nested properties.
S :ℝ  is a level-based score function of property   iff ∀ k :

⊨k⇔S ∈J k  and ∀ i , j∈{0,... , | |}: i j⇒ S ≤i≤S ≤ j

S =∑
k=1

n

1 ²k



  

General score functions

● Definition 2:

Let J 0⊃J 1⊃...⊃J n  be a set of nested intervals of  ℝ .

Let =0⊃1⊃...⊃n  be a set of nested subsets of   .

S :ℝ  is a general score function of property   iff ∀ k :

i  ∈k⇔S ∈J k

iii ∀ i , j∈{0, ... , | |}: i j⇒ S ≤i≤S ≤ j

ii  ²⇔∈n



  

Score functions 

● Goal: Generalise the concept of levels.
● Level-based score functions: Mapping from logical 

properties to the real numbers which give information 
on the number of satisfied sub-formulae.

● General score functions: Mapping from sets of paths to 
the real numbers s.t. higher scores assigned to paths 
that satisfy the overall property.

Example: S =∑
k=1

n

1²k



  

Use of Heuristics

● Level-based score functions correlate logic to score.
● General score functions requires:

● higher scores assigned to paths that satisfy the 
overall property.

● Score of a path's prefix is non decreasing with 
increasing prefix length.

●  In some case, the shortest paths satisfying a rare 
property are the most likely.

=> possibility to exploit the length of a path to improve 
a score function based on coarse logical levels. 



  

Simple decomposition

●

● Possibility to choose an arbitrary order of sub-formulae: 

When =  j=1
n  j , a decomposition into nested properties is:

i =  j=1
i  j , ∀ i∈{1, ... , n} with  0≡True

Example: Given = a∧b∧c ,

3 = a∧b∧c , 2= a∧b , 1= a

3 = a∧b∧c , 2= b∧c , 1= c

 Both decompositions are valid.



  

Natural decomposition

● Many rare events are defined with a natural notion of 
level, when some quantity of the system reaches a 
particular value.

● In Computational systems: might refer to a loop 
counter, a number of software objects, etc...

● In physical systems: might refer to a temperature, a 
distance, a number of molecules...

● Natural levels defined by nested atomic properties:

i= lli with l  a state variable and ²n ⇔ l≥ln



  

Decomposition of temporal 
operators

i  n⇒n−1 ⇒ Sn⇒Sn−1 with S∈{F≤ t ,G≤ t ,X ,F≤t G≤s}

ii  n⇒n−1∧m⇒m−1 ⇒ nUm ⇒ n−1Un−1

iii  n⇒n−1 ⇒ ∀²G≤t
n : ∃t '≥t  | ²G≤t '

n−1

vi n⇒n−1 ⇒ ∀²F≤t G≤s
n : ∃t '≤t∧s '≥s  | ²F≤t 'G≤s '

n−1

iv  n⇒n−1 ⇒ ∀²F≤t
n : ∃ t '≤t  | ²F≤t '

n−1

v  t '≥t∧s '≤s ⇒ F≤ t G≤s
n⇒F≤ t 'G≤s '

n



  

Two algorithms

● Fixed level algorithm:
● Exploits a score function based on “logical” levels

● Adaptive level algorithm:
● Given a score function, finds itself the “best” levels
● Requires a score function refined enough.



  

Fixed level algorithm
Let k1≤k≤M  be the sequence of thresholds
Let stop  be a termination condition

for 1≤k≤M do

I k =  { j :S  j
k ≥ k  } and k =

| I k |

N

∀1≤ j≤N ,  using prefix  j
k , generate path  j

k  until S  j
k ≥ k∨stop

∀ j∈I k ,  j
k1 = j

k

∀ j∉I k ,  let  j
k1  be a copy of i

k  with i∈I k  chosen randomly

 =∏
k=1

M

k



  

Fluctuation analysis

N −



n∞

D
N 0,2

  where N  denotes a Gaussian distribution

● Estimator unbiased
● Confidence interval based on the relative variance:

● Inequality arises because the independence of initial 
states diminishes with increasing levels. 

● Several possibilities minimise this dependence effect.

with 2
≥∑

k=0

n−1 1−k

k



  

Idealized version

●

● For a fixed number of levels, this variance is minimal if 
all the conditional probabilities are equal: 

● It corresponds to the case where the levels are evenly 
spaced in terms of probability of success.

● Hence, the idea of an adaptive algorithm.

relative variance of the estimator: 2=∑
k=0

n−1 1−k

k

argmin
p0, ... pn−1

∑
k=0

n−1 1−k

k
s.t. ∏

k=0

n−1

k = p



  

Adaptive level algorithm
Let N k  be the predefined number of paths to keep per iteration

for j ∉ I k do

I k =  { j :S  j
k ≥ k  } and k =

| I k |

N

generate path  j
k1  with prefix  j

k1

∀ j∈I k ,  j
k1
= j

k

 =∏
k=1

M

k

Let   be the minimum score of paths that satisfy  
k=1. ∀1≤ j≤N ,generate path  j

k

repeat (until k ≥  )
Let T = {S  j

k
 , ∀ j∈{1, ... , N }}

Find minimum k  s.t. |{∈T :  k }|≥N k

Choose randomly l∈I k

 j
k1
= max

| |
{∈pref l

k
 : S k }

M ,k=k , k1



  

Adaptive algorithm illustration 
1st step: trace generation

Predefine 0= 1/2
Estimate 1  s.t. P Score 1=1/2

Ellipse corresponding to Score =1



  

Adaptive algorithm illustration

S ⇔²

S  1

S  2



  

Fluctuation analysis

● For simplicity, let us write:

● Positive Bias of order O(1/N) => Good news!

 = r 0
M

 with 0  the predefined conditionnal probability,

M the number of levels
r  the number of traces   in the last iteration s.t.: S ≥

N −



n∞

D
N 0,2

  with 2
≥ M

1−0

0


1−r
r

E [  ]−  ~

N

M 1−0

0



  

Bias, variance and Confidence 
interval

●

●

● => Hence, the variance is reduced if γ₀ is chosen large.

● Confidence interval of level (1-α) based on the relative 
variance:

E [  ]= p 1O N−1

Var   =
p2

N
M

1−0

0


1−r
r
o N−1

[ 
1

1z N−1/2  , 
1

1−z N−1/2 



  

Example: Dining philosophers

Model: 150 philosophs

Property of interest: 

F≤K phili eat

S1=∑
k=1

n

1²k

S2= max
1≤ j≤K

≤ j

where j  is prefix's length and   s.t.:

≤ j=S1≤ j−
S1≤ j− j

S1≤ j−K−1



  

Experimental results

● Description of the model: more than 1096 states
● MC probability based on 107 samples: 1.4* 10-6 
●

● Probability estimator: 1.581* 10-6 
● Variance of the estimator: 0.119* 10-6 
● Around 100 levels found adaptively.

● Roughly, the number of samples required for IS is 
between 1000 and 10000 times less important than 
with MC. => Gain of time 

With N=1000 samples, score function S2  and 0≈1−
1
N



  

Ongoing work

● Quantifying performance of importance 
splitting:
● Define more complex score functions to 

improve efficiency
● Real case studies (biology, robotics?)

● Continuing the development of PLASMA
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