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Abstract. The synthesis problem for nets consists in deciding whether

a given graph is isomorphic to the marking graph of some net and then

constructing it. This problem has been solved in the literature for vari-

ous types of nets ranging from elementary nets to Petri nets. The general

principle for the synthesis is to inspect regions of graphs representing ex-

tensions of places of the likely generating nets. We follow in this survey

the gradual development of the theory of regions from its foundation

by Ehrenfeucht and Rozenberg, with a particular insistence on the ab-

stract meaning of the theory, which is a general product decomposition

of graphs into atomic components determined by a parameter called a

type of nets, and on the derivation of e�cient algorithms for net synthesis

based on linear algebra.
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1 Terminology of Graphs

Since the terminology on graph theory varies a lot from one author to the other,

we found it necessary to begin by de�ning the terminology used in this document.

1.1 Graphs

A graph G = (X;E) is a collection X of vertices or nodes together with a

collection E of edges. The graph is said to be �nite if it has �nitely many vertices



and edges. Each edge has either one endpoint: end(e) = fxg in which case e is

termed a loop at vertex x, or two endpoints: end(e) = fx; yg in which case e is

termed a link between vertices x and y. A graph is simple if it is loop-free: each

edge is a link, and has no multiple edge: end(e

1

) = end(e

2

)) e

1

= e

2

. Therefore

an edge of a simple graph may be identi�ed with the pair of its endpoints. The

incidence matrix of a graph G is a matrix A with elements 0 and 1, where each

row corresponds to a vertex, each column corresponds to an edge, and A(x; e)

is 1 if and only if x is an endpoint of e. A chain of length n � 1 with endpoints

fx

1

; x

n+1

g is a �nite sequence (x

1

; e

1

; x

2

; : : : ; x

n

; e

n

; x

n+1

) of vertices and edges

such that end(e

i

) = fx

i

; x

i+1

g for all 1 � i � n. We say that the chain connects

its endpoints. For convenience, we consider that every vertex is connected to

itself by an empty chain. The connected component of a vertex is the set of

vertices connected to this vertex by some chain; the graph is connected if it has

only one connected component. A non empty chain is said to be simple if all

edges are distinct, a chain is said to be elementary if all the vertices but possibly

the endpoints are pairwise distinct. A cycle is a simple chain whose endpoints

coincide: x

1

= x

n+1

. A tree is a graph with no cycle or alternatively a graph

in which any two vertices are connected by a unique chain. G

0

= (X

0

; E

0

) is a

subgraph of G = (X;E) if X

0

� X , E

0

� E, and the mappings that send an

edge e 2 E

0

to its endpoints in G

0

and in G coincide. G

0

spans G if X

0

= X ; a

spanning tree of G is a subgraph which is a tree spanning G.

1.2 Directed Graphs

An orientation of an edge e is an ordered pair of vertices (x; y) such that end(e) =

fx; yg, thus a loop at x has only one possible orientation: (x; x), while a link

between x and y has two possible orientations: (x; y) and (y; x). We let e : (x; y)

denote the assignement of the orientation (x; y) to the edge e; the vertices x =

@

0

(e) and y = @

1

(e) are respectively called the source and target of edge e. An

oriented edge is sometimes called an arc. A directed graph is a graph whose edges

are given an orientation. A directed graph is simple if it is loop-free and has no

multiple arc in the sense that two edges with the same endpoints are necessarily

given opposite orientations: (e

1

: (x; y) ^ e

2

: (x; y)) ) e

1

= e

2

. Therefore an

edge of a simple directed graph may be identi�ed with the ordered pair of its

endpoints, and in that case we write e = (x; y) when @

0

(e) = x and @

1

(e) = y.

Notice that the underlying graph of a simple oriented graph may not be simple

as we can �nd two edges with the same endpoints but with opposite orientations.

A subgraph of a directed graph G is a subgraph of the underlying graph with

the orientations of edges inherited from G. The notions of chain, cycle, tree,

spanning subgraph and spanning tree do not depend on the orientation of edges;

therefore a chain (cycle, tree, ...) of a directed graph is a chain (cycle, tree,

...) of the underlying graph. The speci�c notions that take the orientation into

account are the following. A path of length n � 1 from x

1

to x

n+1

is a �nite

sequence (x

1

; e

1

; x

2

; : : : ; x

n

; e

n

; x

n+1

) of vertices and edges such that @

0

(e

i

) = x

i

and @

1

(e

i

) = x

i+1

for all 1 � i � n. For convenience, we consider that there

exists an empty path from any vertex to itself. A non empty path is said to



be simple if all edges are distinct. A path is said to be elementary if all the

vertices but possibly the endpoints are distinct. A circuit is a simple path whose

endpoints coincide: x

1

= x

n+1

. Thus paths and circuits are respectively chains

and cycles of the underlying graph whose edges have compatible orientations.

The incidence matrix of a directed graph is the matrix A : X � E ! f�1; 0; 1g

given by A(x; e) =

(

1 if @

0

(e) = x

�1 if @

1

(e) = x

0 otherwise

.

2 Regional Representation of Partial 2-Structures

The theory of regions was founded by Ehrenfeucht and Rozenberg in [22] with the

aim to obtain a set-theoretic representation of directed graphs (X;E), enriched

with an equivalence � on edges. The resulting structures (X;E;�) are termed

partial 2-structures. The representation problem for partial 2-structures consists

in attaching properties p to nodes x so that the Kripke structure so obtained may

be abstracted without loss of information to the data fx

�

j x 2 Xg and fe

�

j e 2

Eg, where a node is encoded by the set x

�

= fp j x j= pg of properties it satis�es

and an edge by the pair e

�

= (x

�

n y

�

; y

�

n x

�

) where x and y are the respective

source and target of e. The main di�culty is to reconstruct the equivalence

relation �, and this cannot be done unless the considered properties are altered

uniformly when passing along every edge in each equivalence class. These speci�c

properties, seen as sets of nodes when identi�ed with their extensions fx j x j= pg,

are called regions in [22]. The presentation of regions in partial 2-structures given

below is directly inspired from [22], where the proofs of the results may be found.

The algorithmic aspects of elementary net synthesis will be examined in the next

section.

2.1 Partial 2-Structures and their Regions

De�nition 2.1 A partial 2-structure is a triple G = (X;E;�) where X is a

�nite non empty set of nodes, E � E

2

(X) = f(x

1

; x

2

) 2 X �X j x

1

6= x

2

g is a

set of 2-edges over X, and � is an equivalence relation on E. When E = E

2

(X)

is the whole set of 2-edges over X, G is called a 2-structure.

Partial 2-structures may be viewed as equivalence classes of labelled simple di-

rected graphs, where two graphs are equivalent if their labelling functions have

the same kernel. Of particular interest are the partial set 2-structures de�ned as

follows.

De�nition 2.2 A partial set 2-structure of a �nite set B is a partial 2-structure

G = (X;E;�

�

) where X � P(B) and �

�

is the kernel of the function �((M;M

0

))

= (M nM

0

;M

0

nM) for M;M

0

2 X. Let S2S(B) denote the (full) set 2-structure

of B; i.e. when X = P(B) and E = E

2

(X).



Thus in particular, any partial set 2-structure G of B is a substructure of

S2S(B). In notation, G � S2S(B) where (X

1

; E

1

;�

1

) � (X

2

; E

2

;�

2

) if X

1

�

X

2

, E

1

� E

2

and �

1

is the restriction of �

2

on E

1

� E

1

. The representation

problem for partial 2-structures may be stated as follows.

Which partial 2-structures are isomorphic to substructures of S2S(B)

for some �nite set B (of tokens)?

The best way to grasp this problem is to examine the extents R

b

of representation

tokens b 2 B in the structure S2S(B) itself, let R

b

= fM 2 P(B)j b 2 Mg. So,

b 2M if and only if M 2 R

b

. The following may be observed.

1. For every pair of equivalent 2-edges (M

1

;M

0

1

) and (M

2

;M

0

2

), and for every

b 2 B, b 2 M

1

nM

0

1

entails b 2 M

2

nM

0

2

and symmetrically b 2 M

0

1

nM

1

entails b 2M

0

2

nM

2

. This can also be expressed as follows:

{ (M

1

2 R

b

^M

0

1

62 R

b

)) (M

2

2 R

b

^M

0

2

62 R

b

);

{ (M

1

62 R

b

^M

0

1

2 R

b

)) (M

2

62 R

b

^M

0

2

2 R

b

).

Thus, all the 2-edges in an equivalence class are incident to R

b

outwards, or

they are incident to R

b

inwards, or they are not incident to R

b

.

2. 8M

1

;M

2

2 P(B) M

1

6=M

2

) (9b 2 B M

1

2 R

b

,M

2

62 R

b

).

3. For every pair of inequivalent 2-edges (M

1

;M

0

1

) and (M

2

;M

0

2

), there exists

some token b 2 B such that one 2-edge is incident to R

b

and the other is

not, or one 2-edge is incident to R

b

inwards and the other is incident to R

b

outwards.

These properties are also valid for substructures (X;E;�

�

) of S2S(B), where

R

b

is the set fM 2 X j b 2Mg.

De�nition 2.3 A region in a partial 2-structure G = (X;E;�) is a subset of

nodes R � X such that for every pair of equivalent 2-edges (x

1

; x

0

1

) and (x

2

; x

0

2

)

in E: (x

1

2 R ^ x

0

1

62 R)) (x

2

2 R ^ x

0

2

62 R), and (x

1

62 R ^ x

0

1

2 R)) (x

2

62

R^x

0

2

2 R). Let R

G

denote the set of (non trivial) regions of G, and for x 2 X,

let R

G

(x) = fR 2 R

G

j x 2 Rg.

It is worth noting that the complement X n R of a region R is a region. In

particular X and ; are regions (the trivial regions). Now the non trivial regions

may serve as representation tokens for states, that is nodes, and at the same

time for events, that is classes of equivalent 2-edges. One obtains in this way

regional versions of partial 2-structures de�ned as follows.

De�nition 2.4 Given a partial 2-structure G = (X;E;�), the regional version

of G is the partial set 2-structure regv(G) = (X

0

; E

0

;�

�

) with components X

0

=

fR

G

(x)j x 2 Xg and E

0

= f(R

G

(x);R

G

(x

0

))j (x; x

0

) 2 Eg.

In this construction, illustrated in Fig. 1, a node x is mapped to the set R

G

(x)

of the regions which include x. It appears from Fig. 1, where equivalent edges

bear a common label, that the map regv is not an equivalence of partial 2-

structures . The following theorem states when regv maps a partial 2-structure

isomorphically to a partial set 2-structure (the regional representation of the

latter).



fR

0

; R

1

; R

2

g

(fR

1

g;fR

1

g)

(fR

1

g; fR

1

g)

fR

0

; R

1

; R

2

g

fR

0

; R

1

; R

2

g fR

0

; R

1

; R

2

g

regv(g)

(fR

2

g;fR

2

g)

(fR

2

g;fR

2

g)

a

b

c c

g

1 2

3 4

R

0

= f1; 2; 3; 4g

R

0

= ;

R

1

= f1; 2g

R

1

= f3; 4g

R

2

= f1; 3g

R

2

= f2; 4g

Fig. 1. a partial 2-structure and its regional version

Theorem 2.5 A partial 2-structure G = (X;E;�) is isomorphic to a substruc-

ture of some set 2-structure if and only if G

�

=

regv(G) (with R

G

(�) as the

isomorphism) if and only if the following two axioms of separation are satis�ed:

1. states separation: 8x

1

; x

2

2 X x

1

6= x

2

) 9R 2 R

G

(x

1

2 R , x

2

62

R).

2. events separation: for all (x

1

; x

0

1

); (x

2

; x

0

2

) 2 E with (x

1

; x

0

1

) 6� (x

2

; x

0

2

)

there exists some region R 2 R

G

such that either (x

1

; x

0

1

) is incident to

R outwards and (x

2

; x

0

2

) is not or (x

2

; x

0

2

) is incident to R outwards and

(x

1

; x

0

1

) is not.

There may exist nodes x

1

, x

2

, x

3

and x

4

such that (x

1

; x

2

) 2 E, �(x

�

1

; x

�

2

) =

�(x

�

3

; x

�

4

), and (x

3

; x

4

) 62 E. Therefore regv(G) is not characterized by the sets

fx

�

j x 2 Xg and fe

�

j e 2 Eg. In order to reduce the mismatch, one should

impose the additional axiom: 8(x

1

; x

2

) 2 E 8x

3

; x

4

2 X �(R

G

(x

1

);R

G

(x

2

)) =

�(R

G

(x

3

);R

G

(x

4

)) ) (x

3

; x

4

) 2 E. Further on this way, one can even impose

one or two stronger axioms:

forward closure: 8(x

1

; x

2

) 2 E 8x

3

2 X (R

G

(x

1

) n R

G

(x

2

) � R

G

(x

3

) ^

R

G

(x

3

)\R

G

(x

2

)nR

G

(x

1

) = ;)) 9x

4

2 X (x

3

; x

4

) 2 E ^ �(R

G

(x

1

);R

G

(x

2

)) =

�(R

G

(x

3

);R

G

(x

4

)).

backward closure: 8(x

1

; x

2

) 2 E 8x

4

2 X (R

G

(x

2

) nR

G

(x

1

) � R

G

(x

4

) ^

R

G

(x

4

)\R

G

(x

1

)nR

G

(x

2

) = ;)) 9x

3

2 X (x

3

; x

4

) 2 E ^ �(R

G

(x

1

);R

G

(x

2

)) =

�(R

G

(x

3

);R

G

(x

4

)).

Partial 2-structures may be considered too general from a practical point of view,

and one may prefer focusing on reachable partial 2-structures, such that all nodes

can be reached by paths with a common origin. A familiar example of reachable

partial set 2-structures is the class of sequential case graphs of elementary net

systems.

De�nition 2.6 An elementary net is a directed bipartite graph N = (P;E; F )

such that dom(F ) [ ran(F ) = P [E. Elements of P , respectively E, are called

conditions (or places), resp. events. Let x 2

�

y and y 2 x

�

be alternative

notations of (x; y) 2 F . A case (or marking) of N is a subset of conditions

M 2 P(P ). An event e has concession in case M (noted M [e>) if and only

if (

�

e; e

�

) = �(M;M

0

) for some case M

0

(thus uniquely de�ned). The event e



may then �re at M , resulting in the step M [e>M

0

. Thus, M [e> if and only if

�

e �M ^ M \ e

�

= ;, and then M [e>M

0

where M

0

= (M n

�

e) [ e

�

.

A net is pure if 8x 2 P [ E x

�

\

�

x = ;; it is simple if 8x; y 2 P [ E (x

�

=

y

�

^

�

x =

�

y) ) x = y. The elementary nets considered from now on are

assumed to be pure and simple.

De�nition 2.7 An elementary net system is a structure N = (P;E; F;M

0

)

where N = (P;E; F ) is the underlying net and M

0

(in P(P )) is the initial

case. The sequential case graph of N is the partial set 2-structure scg(N ) =

(X

0

; E

0

;�

�

) where X

0

� P(P ) is the smallest set of cases reachable from M

0

by

sequences of steps M [e>M

0

and E

0

is the set of corresponding pairs (M;M

0

).

Lemma 2.8 A partial set 2-structure G = (X;E;�

�

) is the sequential case

graph of an elementary net system if and only if it is reachable and the following

property is satis�ed: 8(x

1

; x

2

) 2 E 8x

3

2 X (x

1

n x

2

� x

3

^ x

3

\ x

2

n x

1

=

;)) 9x

4

2 X ((x

3

; x

4

) 2 E ^ �(x

1

; x

2

) = �(x

3

; x

4

)).

From Theo. 2.5 and Lem. 2.8, one obtains the following.

Corollary 2.9 A partial 2-structure G = (X;E;�) is isomorphic to the se-

quential case graph of an elementary net system if and only if it is reachable and

satis�es the axioms of states separation, events separation, and forward closure.

The elementary net system in the above corollary is essentially the set of the

ordered symmetric di�erences �(R

G

(x);R

G

(y)) for 2-edges (x; y) 2 E. The rep-

resentation problem for partial 2-structures set at the beginning of the section

has in fact been given the solution x

�

= R

G

(x). The places of the net are the

regions r 2 R(G), the events are the equivalence classes of edges, and the 
ow

relation is such that: F ([e]

�

; r) , r 2 R

G

(y) n R

G

(x) for some (x; y) 2 E; and

F (r; [e]

�

) , r 2 R

G

(x) n R

G

(y) for some (x; y) 2 E. The initial case of the

net system is de�ned as R

G

(x

0

) for some x

0

2 X such that every node of G is

reachable from x

0

.

2.2 Elementary Automata

The second part of the section paves the way for the algorithmic analysis of

the region based correspondence between reachable graphs and elementary net

systems. With this objective in mind, we recast the results obtained so far into

the framework of transition systems, and illustrate the modi�ed correspondence

on a complete example.

De�nition 2.10 A (labelled) transition system is a triple A = (S;E; T ) with a

set of states S, a set of events E, and a set of transitions T � S � E � S. Let

s

e

! s

0

be an equivalent notation for (s; e; s

0

) 2 T . An event e is enabled at state

s (noted s

e

!) if s

e

! s

0

for some s

0

. An event e is co-enabled at s

0

(noted

e

! s

0

)

if s

e

! s

0

for some s. An automaton is a structure A = (S;E; T; s

0

) consisting of

an underlying transition system A = (S;E; T ) and an initial state s

0

2 S.



A partial 2-structure G = (X;E;�) may be identi�ed with the transition system

(X;E= �; T ) where x

[e]

�

! x

0

if and only if (x; x

0

) � e. This transition system is

loopfree: s

e

! s

0

) s 6= s

0

, has no multiple arc: s

e

1

! s

0

^ s

e

2

! s

0

) e

1

= e

2

, and it is

reduced: 8e 2 E 9s; s

0

2 S s

e

! s

0

. The sequential case graphs of the reduced

net systems de�ned hereafter fall in this subclass of transition systems.

De�nition 2.11 An elementary net system N = (P;E; F;M

0

) is reduced if

every event e 2 E has concession at some case M reachable from M

0

, and for

every two distinct conditions p; p

0

2 P there exists some case M reachable from

M

0

such that p 2 M , p

0

62 M . The dual of a reduced elementary net system

N is the automaton N

�

= (S;E; T;M

0

) where S is the set of cases reachable

from M

0

by sequences of steps M [e>M

0

and T is the set of the corresponding

transitions (M; e;M

0

).

Thus N

�

is essentially the image of scg(N ) through the map which sends the

equivalence class of 2-edges f(M;M

0

)j �(M;M

0

) = (

�

e; e

�

)g to the event e. Since

N is simple and reduced, this map is one to one and onto. By construction,

N

�

is reachable from M

0

, deterministic: M

e

!M

0

^ M

e

!M

00

) M

0

=M

00

, and

co-deterministic: M

0

e

!M ^ M

00

e

!M ) M

0

= M

00

. The de�nition of regions

may be carried to automata in the following form.

De�nition 2.12 A region in an automaton A = (S;E; T; s

0

), or in the un-

derlying transition system (S;E; T ), is a subset of states R � S such that

8e 2 E 8s

1

; s

2

; s

3

; s

4

2 S s

1

e

! s

2

^ s

3

e

! s

4

)

�

s

1

2 R ^ s

2

62 R ) s

3

2 R ^ s

4

62 R

s

1

62 R ^ s

2

2 R ) s

3

62 R ^ s

4

2 R

Let R

A

denote the set of (non trivial) regions of A, and for s 2 S let R

A

(s) =

fR 2 R

A

j s 2 Rg.

Thus, R is a region if and only if the label e of a transition su�ces to determine

whether the transition is incident to R inwards (R is then termed an output

region for e, noted e

�

R), or it is incident to R outwards (R is then termed an

input region for e, noted R

�

e), or it is not incident to R (it is internal to R or

external to R). In particular, if A is reachable and reduced, the non trivial regions

of A may be represented as maps �

R

: E ! f�1; 0; 1g such that �

R

(e) = 1 if

e

�

R, �

R

(e) = �1 if R

�

e, and �

R

(e) = 0 otherwise; the characteristic function of

R, let �

R

: S ! f0; 1g where �

R

(s) = 1 , s 2 R, is then the unique map such

that s

e

! s

0

) �

R

(e) = �

R

(s

0

)� �

R

(s).

It is easily seen that for every condition p of a net system N , the set of the

reachable cases M that contain p is a region of N

�

. This region, denoted by p

�

and called the extension of p, is such that e

�

p

�

, e 2

�

p and p

��

e , e 2 p

�

.

Reversing the process which leads from net systems to sequential case graphs,

let us recast the de�nition of regional versions in terms of nets and net systems.

De�nition 2.13 Given an automaton A = (S;E; T; s

0

), the dual of A is the

(reduced) elementary net system A

�

= (R

A

; (E=

�

) n f"g; F; s

�

0

) where: � is the

equivalence on E induced by regions, let

e

1

� e

2

, (8R 2 R

A

e

1

�

R, e

2

�

R ^ R

�

e

1

, R

�

e

2

);



" is the equivalence class of the events which are inputless and outputless i.e.

which are internal or external to all regions, if such events exist; F is the 
ow

relation such that F ([e]

�

; R) , e

�

R and F (R; [e]

�

) , R

�

e; and s

�

0

= fR 2

R

A

j s

0

2 Rg.

The net system A

�

is also called the saturated net version of A (for reasons ex-

plained in the sequel). The counterpart of Cor. 2.9 for automata is the following.

Theorem 2.14 An automaton A = (S;E; T; s

0

) is isomorphic to the dual N

�

of an elementary net system if and only if A

�

=

A

��

if and only if A is simple (it

has neither loop nor multiple arc), reduced, reachable and it satis�es the following

properties of separation:

ssp (States Separation Property):

8s; s

0

2 S s 6= s

0

) 9R 2 R

A

(s 2 R, s

0

62 R)

esp (Events Separation Property):

8e; e

0

2 E e 6= e

0

) 9R 2 R

A

(R

�

e ^ not(R

�

e

0

)) _ (e

�

R ^ not(e

0

�

R))

essp (Events-States Separation Property):

8e 2 E 8s 2 S not(s

e

!) ) 9R 2 R

A

(R

�

e ^ s 62 R) _ (e

�

R ^ s 2 R)

An automaton satisfying these conditions is termed an elementary automaton.

Observe that every event in an elementary automaton has input regions and

output regions (from ssp), hence the map sending e to [e]

�

is a bijection between

E and (E= �)nf"g (from esp). The isomorphism from A to A

��

(the sequential

case graph of the saturated net version of A) maps e to [e]

�

and s to s

�

=

fR 2 R

A

j s 2 Rg. This isomorphism applies in particular to sequential case

graphs, whence N

�

�

=

N

���

for every elementary net system. However, N =

(P;E; F;M

0

) is generally not isomorphic to its double dual N

��

. In fact, every

condition p of N induces a corresponding region p

�

of N

�

which includes the

reachable cases in which condition p holds, andN is isomorphic to the full subnet

system of N

��

with set of events E=

�

(= E) and set of places fp

�

j p 2 Pg. Thus,

wheneverN

0�

�

=

N

�

,N

0

is isomorphic to a subnet system ofN

��

which is for that

reason termed the saturated version of N . Now, for an elementary automaton

A, A

�

=

A

��

entails that A

�

�

=

A

���

, hence A

�

is always a saturated net system.

The aim of the next section is to optimize the synthesis process by looking at

admissible subnets N of A

�

such that A

�

=

N

�

.

Before tackling the synthesis problem, we proceed to simplifying the pre-

sentation of elementary automata, and retrieve the usual presentation given in

[11, 19, 34].

Proposition 2.15 Let automaton A be simple, reduced and reachable, then A

is elementary if and only if the separation properties ssp and essp are satis�ed.



Proof: Let A = (S;E; T; s

0

), and assume for contradiction e 6= e

0

and 8R 2

R

A

(R

�

e , R

�

e

0

) ^ (e

�

R , e

0�

R). We show that s

e

! s

0

entails s

e

0

! s

0

contradicting the assumption that A is simple. Assume s

e

! s

0

and not s

e

0

!, then

by essp: 9R 2 R

A

(R

�

e

0

^ s 62 R) _ (e

0�

R ^ s 2 R) and the contradiction of

s

e

! s

0

follows from the de�nition of regions. Let s

00

2 S such that s

e

0

! s

00

, then

R

A

(s

00

) = R

A

(s) n

�

e

0

[ e

0�

= R

A

(s) n

�

e[ e

�

= R

A

(s

0

) and s

0

= s

00

follows from

esp.

For complete proofs of the results which have been stated in this subsection, the

reader is referred to [19] where partial 2-structures are by-passed.

As an illustration, let us consider the elementary net system and the case

graph given in Fig. 2. In Fig. 3 are displayed some of the non trivial regions of
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Fig. 2. an elementary net system and its case graph

this automaton. The missing items can be obtained by symmetry. Each drawing
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Fig. 3. some regions of the case graph of the elementary net system of Fig. 2 and their

associated atomic net systems

represents a region R consisting of black states. The 
ow relations for the region

R and for its complement :R = S nR are also represented pictorially; �nally one

token indicates which of these complementary regions contains the initial state.



We end up with the elementary net system of Fig. 4, which is the original net

of Fig. 2 enriched with additional places (indicated by dashed lines) but with

unchanged behaviour. The original net system is embedded into its saturated

c a

X

3

X

2

b

X

1

:Y

2

:Y

1

:Y

3

:X

1

Z

b'

Y

2

Y

3

c'

a'

Y

1

:X

2

:Z

:X

3

Fig. 4. the embedding of the elementary net system of Fig. 2 into its double dual

version by the map that sends a place x to its extension in the state graph i.e.

the set of markings fM 2 Sj x 2Mg.

3 The Synthesis of Elementary Net Systems

All automata considered in this section are assumed to be pre-elementary, i.e.

simple, reachable and reduced. The synthesis problem of elementary net systems

[19] is as follows:

Given a �nite automaton A = (S;E; T; s

0

), decide whether A

�

=

N

�

for

some elementary net system N with the same set of events E, and if so,

construct N .

Since the set R

A

of all the regions of A is �nite, we already know from Prop. 2.15

that this problem can be decided in exponential time by simultaneously explor-

ing R

A

, for checking satisfaction of the separation properties esp and essp,

and constructing N = A

�

. The aim of this section is to improve on this brute

force solution. We review �rst Desel and Reisig's study of admissible sets of re-

gions and their techniques for eliminating redundant regions. Next we account

for Bernardinello's results on the synthesis of state machine decomposable net

systems, based on the crucial remark that the minimal regions of an automaton

form an admissible set, and for subsequent work by Cortadella et al. on the re-

alization of automata by elementary nets up to some quotient of automata. We

�nally report the results obtained on the complexity of the synthesis problem in

[25, 3].



3.1 Admissible sets of regions

In an elementary net systemN = (P;E; F;M

0

), each condition p 2 P determines

an atomic subnet system of N , let N

p

= (fpg; E; F

p

;M

0;p

) where F

p

is the

restriction of F and M

0;p

(p) = M

0

(p). If we do not care about the isolated

events inN

p

, these atomic subnet systems are elementary andN is just their sum

P

p2P

N

p

, where nets are glued together on events e 2 E. This decomposition

may be used to isolate the contribution of each condition p 2 P to the global

structure of the sequential case graph N

�

. This automaton may be seen as a

deterministic recognizer of �nite sequences, in which every state (i.e. case) is

accepting. An automaton of this type is characterized up to isomorphism by

the language L it accepts plus the equivalence � on L which identi�es these

sequences that lead to a common (accepting) state. Now in the case of N

�

, L

and � are the intersections for p ranging over P of the respective languages and

equivalences characteristic of N

�

p

: L = \

p2P

L

p

and �= \

p2P

�

p

. Thus the role

of each condition p is twofold: on the one hand, p cuts o� sequences u � e such

that u 2 L but u � e 62 L

p

, and on the other hand p separates pairs of words

u; v 2 L such that u 6�

p

v.

Returning to the synthesis problem, let us now clarify the relationship be-

tween automata and atomic net systems. Let A = (S;E; T; s

0

) be a �nite

deterministic automaton, with language L and equivalence �, and let N

p

=

(fpg; E; F

p

;M

0;p

) be an atomic net system, inducing a dual automaton N

�

p

with

language L

p

and equivalence �

p

. The automaton N

�

p

has two states, ; and fpg,

one of which isM

0;p

, and it has transitions ;

e

! fpg if F

p

(e; p), fpg

e

! ; if F

p

(p; e),

and otherwise ;

e

! ; and fpg

e

! fpg. Suppose L � L

p

and ���

p

. Let R

p

be the

subset of states s 2 S such that s

0

u

! s in A and M

0;p

u

! fpg in N

�

p

for some

sequence of events u 2 E

�

. Then R

p

is a region of A, s

0

2 R

p

, M

0;p

= fpg,

and for every e 2 E: R

p

�

e , F

p

(p; e) and e

�

R

p

, F

p

(e; p). Conversely, for

any region R

p

of A, the elementary net system N

p

de�ned by the above rela-

tions induces a dual automaton N

�

p

such that L � L

p

and ���

p

. Moreover,

R

p

separates two distinct states s

0

and s

00

such that s

0

u

! s

0

and s

0

v

! s

00

in A if

and only if u 6�

p

v, and R

p

separates a state s such that s

0

u

! s from an event

e such that not(s

e

!) if and only if u � e 62 L

p

. Therefore, given a net system

N = (P;E; F;M

0

) =

P

p2P

N

p

, the dual automaton N

�

is isomorphic to the

automaton A if and only if L = \

p2P

L

p

and �= \

p2P

�

p

, if and only if for all

p 2 P , N

p

is an atomic net system de�ned from some corresponding region R

p

in A and the following properties are satis�ed:

ssp': 8u; v 2 L u 6� v ) 9p 2 P u 6�

p

v,

essp': 8u 2 L 8e 2 E u � e 62 L ) 9p 2 P u � e 62 L

p

,

if and only if the family of regions fR

p

j p 2 Pg is admissible according to the

following de�nition.

De�nition 3.1 Given an automaton A = (S;E; T; s

0

), a subset of regions fR

p

j

p 2 Pg � R

A

is admissible if and only if it includes witnesses for the satisfaction

of every instance of the following separation problems where e 2 E and s; s

0

; s

00

2

S are such that s

0

6= s

00

and not(s

e

!):



ssp(s

0

; s

00

) : 9p 2 P s

0

2 R

p

, s

00

62 R

p

,

essp(s; e) : 9p 2 P (R

p

�

e ^ s 62 R

p

) _ (e

�

R

p

^ s 2 R

p

).

It is easily seen that problem ssp(s

0

; s

00

) cannot be solved positively in a non-

deterministic automaton A where s

e

! s

0

and s

e

! s

00

for s

0

6= s

00

. One rediscovers

in this way a basic result established in [19].

Theorem 3.2 An automaton A = (S;E; T; s

0

) is isomorphic to N

�

for N =

(P;E; F;M

0

) if and only if for every p 2 P , the atomic subnet system N

p

of N

may be de�ned from some corresponding region R

p

of A, and the set of regions

fR

p

j p 2 Pg is admissible.

In view of Def. 3.1 and Theo. 3.2, the synthesis problem for A = (S;E; T; s

0

)

may be solved by considering at most jSj � (jSj + jEj) regions of A. Nevertheless,

this does not indicate how to select these regions from R

A

. The purpose is

to construct a subset of regions R � R

A

as small as possible such that R

is admissible if and only if the whole set of regions R

A

is admissible. Some

structural rules are proposed in [19] for the stepwise elimination of redundant

regions, starting from R

A

.

De�nition 3.3 Let R � R

A

be a set of regions. A region R 2 R is redundant

in R if the following assertions are equivalent: (i) R is admissible (ii) R n fRg

is admissible.

Proposition 3.4 Let A = (S;E; T; s

0

) and R 2 R � R

A

. In each of the fol-

lowing cases R is redundant in R.

1. S nR 2 R,

2. 9R

1

; R

2

; R

3

; R

4

2 R R = R

1

\ R

2

^ S nR = R

3

\ R

4

,

3. 9R

1

; R

2

; R

3

; R

4

2 R R = R

1

[ R

2

^ S nR = R

3

[ R

4

,

4. 9R

1

; R

2

2 R R = R

1

\R

2

^ 8s 2 R 8e 2 E 8s

0

2 S nR s

e

! s

0

)

s

0

62 R

1

[ R

2

.

Once a reduced set of regions R has been obtained from R

A

, one can check

directly from Def. 3.1 whether it is admissible, proving that A is elementary, and

then extract fromR a minimal subset fR

p

j p 2 Pg such thatA

�

=

(

P

p2P

N

p

)

�

. It

is worth noting that there exists in general no least admissible set of regions. This

fact is illustrated in Fig. 5 by the so-called \four seasons" example reproduced

from [19]. The \four seasons" automaton may be realized by two minimal subnet

systems of the dual saturated net system: one has four conditions and is contact-

free while the other one has three conditions but is not contact-free.

De�nition 3.5 An elementary net system N = (P;E; F;M

0

) is contact-free if

�

e �M )M \ e

�

= ; for every event e and for every reachable case M .

Thus, the subclass of elementary net systems which are contact-free and reduced

coincides with the subclass of the reduced and one-safe Petri nets. Now, every

saturated net system N = (P;E; F;M

0

) is contact-free: every condition p 2 P

induces two complementary regions R

p

and R

p

in N

�

, and since N

�

=

N

��

there
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Fig. 5. the four seasons example: the automaton (on the left), the saturated net system

(on the middle) and two elementary net systems corresponding to minimal sets of

regions (on the right)

should exist some condition p 2 P such that R

p

= R

p

. Therefore, every elemen-

tary automaton may be realized by a one-safe Petri net. The following adaptation

of Theo. 3.2, based on the use of complementary regions, is established in [19]

Proposition 3.6 An automaton A = (S;E; T; s

0

) is isomorphic to N

�

for a

contact-free net system N = (P;E; F;M

0

) =

P

p2P

N

p

if and only if every

atomic subnet system N

p

of N may be de�ned from a corresponding region R

p

2

R

A

and the following properties of separation are satis�ed:

ssp : 8s; s

0

2 S s 6= s

0

) 9p 2 P s 2 R

p

, s

0

62 R

p

essp

]

: 8e 2 E 8s 2 S not(s

e

!) ) 9p 2 P R

p

�

e ^ s 62 R

p

.

3.2 Minimal Regions

Among the admissible sets of regions of an elementary automaton, the set of

minimal regions plays a distinguished role because it leads naturally, as shown

in [11], to a state machine decomposable (and hence contact-free) net system

realizing the automaton.

De�nition 3.7 An elementary net system N = (P;E; F;M

0

) is a state machine

if its initial case is a singleton and every event has one precondition and one

postcondition. A state machine component of N = (P;E; F;M

0

) is a state ma-

chine N

0

= (P

0

; E

0

; F

0

;M

0

0

) such that P

0

� P , E

0

= fe 2 Ej(

�

e [ e

�

) \ P

0

6= ;g,

F

0

= F \ (E

0

�P

0

[P

0

�E

0

), and M

0

0

=M

0

\P

0

. A state machine decomposition

of N = (P;E; F;M

0

) is a family of state machines, let N

i

= (P

i

; E

i

; F

i

;M

0;i

),

such that P = [

i

P

i

, E = [

i

E

i

, F = [

i

F

i

, and M

0

= [

i

M

0;i

.

A state machine is nothing else than a reachable automaton, as can be seen from

Fig. 6 where the elementary net system given in Fig. 2 is decomposed into three

state machine components. The respective state machine components model se-

quential processes which are synchronized on their common events. In this ex-

ample, the synchronization prevents the leftmost and rightmost processes from
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Fig. 6. three state machine components of the net system of Fig. 2

entering simultaneously the critical section �gured by the mutually exclusive con-

ditions x

2

and y

2

. Each state machine component N

i

of a net system N =

P

i

N

i

may be seen as a sequential observer of N

�

, projecting cases of N on observable

conditions p 2 P

i

. By de�nition of state machine components, each case of N

projects to one and exactly one condition p 2 P

i

, hence each case of N belongs

to exactly one region R

p

of N

�

such that p 2 P

i

.

Proposition 3.8 Every state machine component N

i

= (P

i

; E

i

; F

i

;M

0;i

) of an

elementary net system N =

P

i

N

i

determines a regional partition fR

p

j p 2 P

i

g

of the sequential case graph N

�

. Conversely, every regional partition fR

p

j p 2 Pg

of N

�

determines a state machine component of the saturated net system N

��

.

Returning to the example, the regional partitions of N

�

(Fig. 3) which de-

termine the three state machine components shown in Fig. 6 are respectively

fX

1

; X

2

; X

3

g, fX

2

; Z; Y

2

g, and fY

1

; Y

2

; Y

3

g where:

Z = fs

0

; s

3

; s

4

; s

7

g

X

1

= fs

0

; s

2

; s

4

g

X

2

= fs

1

; s

6

g

X

3

= fs

3

; s

5

; s

7

g

Y

1

= fs

0

; s

1

; s

3

g

Y

2

= fs

2

; s

5

g

Y

3

= fs

4

; s

6

; s

7

g

It may be observed that all these regions are minimal w.r.t. set inclusion in

R

N

�

. The particular interest of minimal regions for the net system realization

of elementary automata is shown by the following proposition and corollaries.

Proposition 3.9 Given an automaton A = (S;E; T; s

0

), the following proper-

ties are satis�ed by the set R

A

of regions of A:

1. If R

1

and R

2

are disjoint regions then R

1

[ R

2

is a region with

�

(R

1

[ R

2

) = (

�

R

1

[

�

R

2

) n ((

�

R

1

\R

2

�

) [ (

�

R

2

\ R

1

�

))

(R

1

[ R

2

)

�

= (R

1

�

[ R

2

�

) n ((

�

R

1

\R

2

�

) [ (

�

R

2

\ R

1

�

)):



2. If R and R

0

are regions and R

0

� R then R nR

0

is a region. If moreover R

0

is minimal then e

�

(R nR

0

) for every event e 2 R

0�

which is not incident to

R (i.e. such that e 62

�

R [R

�

).

3. If R is a region and s 2 R, then s 2 R

0

for some minimal region R

0

� R.

4. If R is a region and e an event such that R

�

e, then R

0�

e for some minimal

region R

0

� R; symmetrically if e is an event such that e

�

R, then e

�

R

0

for

some minimal region R

0

� R.

5. Every region is a disjoint union of minimal regions.

Corollary 3.10 A pre-elementary automaton is elementary if and only if its

set of minimal regions is admissible.

It may be further observed that the set of minimal regions of a pre-elementary

automaton A is admissible w.r.t. the separation properties ssp and essp if and

only if it is admissible w.r.t. the separation properties ssp and essp

]

. In fact,

let fR

1

; : : : ; R

n

g be any partition of the set of states of A into minimal regions,

then each instance of the problem essp(s; e) solved by a region R

i

such that e

�

R

i

and s 2 R

i

can also be solved by a region R

j

such that R

j

�

e and s 62 R

j

. Since

the set of all partitions of the set of states of A into minimal regions induces a

state machine decomposition of the net system

P

p

N

p

de�ned from the set of

all minimal regions R

p

of A, one deduces also the following.

Corollary 3.11 Every elementary automaton may be realized by a state ma-

chine decomposable (and hence contact-free) elementary net system.

An algorithm based on minimal regions has been proposed in [14] for a vari-

ant problem of realization of automata by net systems which may be stated as

follows.

Given a pre-elementary automaton A, decide whether exists and con-

struct a (minimal) elementary net system N such that N

�

�

=

A

0

for

some quotient A

0

of A.

We recall that A

0

= (S

0

; E; T

0

; s

0

0

) is a quotient of A = (S;E; T; s

0

) if s

1

e

! s

2

in

A if and only if �(s

1

)

e

! �(s

2

) in A

0

for some surjective map � : S ! S

0

such that

s

0

0

= �(s

0

). This problem is similar to the original synthesis problem, up to the

fact that the states separation property ssp is ignored. Now the events-states

separation property essp

]

is valid in A if and only if for every event e the set

of states fs 2 Sj s

e

!g coincides with the intersection of the minimal regions R

such that R

�

e. The algorithm starts from the sets fs 2 Sj s

e

!g and increases

them into minimal regions, which are generated until the validity of essp

]

can

be decided upon. The net N is then constructed from a minimal set of minimal

regions admissible with respect to essp

]

. A variant form of this algorithm has

been integrated to a software tool for the synthesis of asynchronous circuits [15].

It should be noted that the problem of realizing automata by nets up to

a quotient di�ers signi�cantly from the problem of realizing automata by nets

up to behavioural equivalence (equality of the accepted languages). In order to

make the di�erence visible, let us focus on �nite and deterministic automata.



In this context, behavioural equivalence coincides with bisimilarity. Given a �-

nite deterministic automaton A, with language L and characteristic equivalence

� on L, the problem of realizing A up to behavioural equivalence consists in

constructing an elementary net system N such that N

�

recognizes L. For the

problem of realizingA up to a quotient, it is set as a further requirement that any

two equivalent sequences in L lead to the same case when they are �red from the

initial case of N . In orther words, it is asked that ���

N

�

. The reason why this

constraint makes a notable di�erence is that the elementary automata are not

closed under quotient. This counterfact is illustrated in Fig. 7: the automaton

shown on the middle is isomorphic to the case graph of the net displayed on the

left, but its minimized version shown on the right is not elementary (any region

R such that R

�

c must include state 3, hence the problem essp(3; c) cannot be

solved).
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Fig. 7. elementary automata are not closed under quotient

3.3 Complexity Results

Hiraishi proved in [25] that the separation problems ssp(s; s

0

) and essp

]

(s; e) are

NP-complete in the respective data (A; s; s

0

) and (A; s; e). Since regions in A are

closed under complementation, the problem essp(s; e) is also NP-complete. It

does not follow therefrom that the synthesis problem for elementary net systems

is NP-complete; however this is the case. The synthesis problem is obviously in

NP since the total number of instances of separation problems in an automatonA

is quadratic in the size of A, and it can be checked in polynomial time whether a

non-deterministically chosen subset of states is a region solving a �xed separation

problem. Now a polynomial reduction of 3-SAT to the synthesis problem of

elementary net systems was established in [3], showing NP-hardness since 3-

SAT is NP-complete (see e.g. [23]). Recall that 3-SAT is the problem whether,

given a �nite set of boolean clauses over V , with three litterals per clause, there

exists some truth assignment for V validating each clause. Each clausal system

of this form is associated in [3] with an automaton such that the clausal system is

satis�able if and only if the automaton is elementary if and only if the separation

property essp

]

is valid. Therefore, the synthesis problem for elementary net

systems is NP-complete, and so is the problem of realizing automata by nets



up to a quotient. The problems of realizing automata by nets up to behavioural

equivalence, or up to an unfolding (given A �nd N such that A is isomorphic to

a quotient of N

�

) have unknown complexity.

4 Cutset Representation of Finite Graphs

We have seen that the region based synthesis of elementary net systems from

initialized partial 2-structures (X;E;�; x

0

) is a NP-complete problem. Never-

theless, this problem is trivial when the labelling equivalence is discrete: in that

case, the partial 2-structure is essentially a state machine with set of places X ;

even better, this state machine is equivalent to a net system with jX j�1 places,

whose case graph is a partial set 2-structure isomorphic to the given partial

2-structure. There exists a large variety of set-theoretic representations for an

unlabelled graph (X;E), all of which using at most jX j � 1 tokens. These rep-

resentations, based on cuts and cutsets, may be computed by linear algebraic

methods which are quite standard in applied graph theory. The purpose of this

section is to review these methods, and thereby shed light on regions in two

respects. First, we examine the close relationship between regions and cuts (this

analogy was �rst pointed out to us by T. Murata). Second, we indicate the ob-

stacles to using linear algebraic methods for the region based representation of

labelled graphs. On account of this analysis, a variant de�nition of regions is

proposed in the next section.

4.1 Cuts and Cutsets

LetG = (X;E) be a �nite, connected and simple directed graph with set of nodes

X = fx

1

; : : : ; x

n

g and set of 2-edges E = fe

1

; : : : ; e

m

g. So, G is free of loops

multiple arcs, although a 2-edge e = (x

l

; x

k

) may have an inverse e

�1

= (x

k

; x

l

)

in E. A cutset of G is a minimal set of 2-edges whose removal increases the

number of connected components by one. A cut of G is a cutset or an edge

disjoint union of cutsets. Since G is connected, every cut or cutset C � E

determines two complementary subsets of nodes p and X n p, both non empty,

such that for every 2-edge e = (x

k

; x

l

), e 2 C if and only if x

k

2 p , x

l

62 p.

Conversely, every non trivial subset p � X determines a cut between p and

X n p, which is a cutset when both p and X n p are connected. An orientation

of the cut C results from the choice of one of the two complementary subsets of

nodes determined by the cut, let p. An oriented cut C may be coded by a vector

C 2 IR

m

such that for every 2-edge e

i

= (x

k

; x

l

), C(i) = 1 if x

k

62 p and x

l

2 p,

C(i) = �1 if x

k

2 p and x

l

62 p, and C(i) = 0 if x

k

2 p, x

l

2 p.

Let X = fx

1

; : : : ; x

n

g and E = fe

1

; : : : ; e

m

g. We will address the problem of

constructing a variety of sets of properties fp

1

; : : : ; p

n�1

g where p

i

� X such that

the partial 2-structure (fx

�

j x 2 Xg; fe

�

j e 2 Eg;�

�

) where x

�

= fp

i

j x 2 p

i

g,

(x

k

; x

l

)

�

= (x

�

k

; x

�

l

), and �(x

�

k

; x

�

l

) = (x

�

k

n x

�

l

; x

�

l

n x

�

k

) is isomorphic to G viewed

as a partial 2-structure: G = (X;E; id

E

). Each family of tokens fp

1

; : : : ; p

n�1

g



will determine a corresponding set of (oriented) cuts fC

1

; : : : C

n�1

g which are

linearly independent as vectors C

i

2 IR

m

.

The interesting fact here is that one can easily construct linear bases of cuts,

given as sets of fundamental cutsets ofG with respect to arbitrary spanning trees.

Recall that a spanning tree is a set of edges U � E, free of cycles and connecting

X . The fundamental cutsets w.r.t. U are the cuts which include exactly one

branch of U . Each branch of U determines two connected components of U (and

thus of G), with set of nodes p and X n p, such that every other branch of U

is internal either to p or to X n p. The fundamental cutsets w.r.t. U may be

computed by classical methods of linear algebra. These methods are recalled

below, following the notations of [16].

4.2 Computing Cutsets

The graph G = (X;E) is characterized up to isomorphism by its incidence

matrix. We recall that this matrix A = [a

i;j

] is an n�m matrix with entries in

f�1; 0; 1g, with a

i;j

= 0 if edge e

j

is not incident to node x

i

, a

i;j

= 1 if x

i

is the

source of e

j

, and a

i;j

= �1 if x

i

is the target of e

j

. Since every column contains

exactly two non zero entries (1 and �1) every row can be computed from the

other rows, and the matrix A has the same rank as the matrix A

1

obtained by

erasing its last row. Let A =

�

A

1

A

2

�

where A

1

is an (n� 1) �m matrix and A

2

is an 1 �m matrix. Actually A

1

and A have rank n � 1. Assume w.l.o.g. that

the (n � 1) branches of the spanning tree U are the edges e

0

j

= e

j+(m�n+1)

for

j 2 f1; : : : ; n � 1g. Then A

1

=

�

A

11

A

12

�

where A

12

is the (n � 1) � (n � 1)

matrix corresponding to the edges of the tree (the branches) and A

11

is the

(n� 1)� (m� n+ 1) matrix corresponding to the other edges (the chords).

The fundamental cutset C

i

of G determined by the edge e

0

i

of the spanning

tree is given by the i

th

row of the fundamental cutset matrix Q

f

= A

�1

12

� A

1

.

This (n � 1) � m matrix has the form

�

Q

f11

I

n�1

�

where I

k

is the identity

matrix of rank k. The i

th

row of Q

f

associated with the fundamental cutset C

i

is an m vector with entries in f�1; 0; 1g. Let p

i

and X n p

i

be the two connected

components of G separated by C

i

, such that e

0

i

has its source in X n p

i

and its

target in p

i

. Then for every j 2 f1; : : : ;mg, C

i

(j) = 0 if e

j

is not in C

i

, C

i

(j) = 1

if e

j

is oriented from X n p

i

to p

i

and C

i

(j) = �1 if e

j

is oriented from p

i

to

X n p

i

. A complete example is shown in Fig. 8.

It is worth noting that the matrix A

�1

12

can be computed directly from G

without inverting matrix A

12

, for it coincides with the path matrix P = [p

i;j

]

de�ned as follows. For each j 2 f1; : : : ; n�1g, let �

j

be the unique chain (in the

tree U) connecting x

j

and the reference node x

n

; then for 1 � i; j � n � 1, let

p

i;j

= 0 if e

0

i

does not belong to �

j

, p

i;j

= 1 if e

0

i

belongs to �

j

and is oriented

towards the reference node x

n

, and p

i;j

= �1 if e

0

i

belongs to �

j

and is oriented

towards node x

j

.



4.3 Cutset Representation of Graphs

The nodes of G may be coded injectively by f0; 1g vectors according to their

membership to the properties p

j

determined by the cuts C

j

, resulting in an

n � (n � 1) matrix S

a

= [s

i;j

], called the state matrix, such that s

i;j

= 1 if

x

i

2 p

j

, and s

i;j

= 0 if x

i

62 p

j

. Let S

a

= [X

1

� � � X

n

]

t

, where the X

i

are column

vectors. The set fX

t

i

j i � ng of rows of S

a

, representing nodes x

i

, together with

the set fC

i

j i < ng of rows of Q

f

, representing fundamental cutsets, provide a

representation of G. These data are also su�cient for retrieving the spanning

tree. Actually, there is exactly one way to assemble the row vectors C

i

into a

matrix of the form Q

f

=

�

Q

f11

I

n�1

�

; and an ordered pair of vectors (X

k

; X

l

)

represents an edge e

j

= (x

k

; x

l

) if and only if X

l

�X

k

= Q

f

(�; j).

4.4 Variant Representations

A variant representation of G is given by the pair of matrices P and Q

f11

. As a

matter of fact, the reduced incidence matrix A

1

=

�

A

11

A

12

�

may be computed

by A

12

= P

�1

and A

11

= P

�1

�Q

f11

. The path matrix P can in turn be recon-

structed from X

n

and the reduced state matrix S = [X

1

; : : : ; X

n�1

]

t

. Actually, for

every j < n, X

n

= X

j

+P

j

where P

j

is the j

th

column of P (coding the chain �

j

connecting x

j

and x

n

), hence the path matrix P and the reduced state matrix

S are connected by the identity S

t

=

(n�1) times

z }| {

[X

n

; : : : ; X

n

] - P . In particular, S = �P

t

if all edges e

0

j

of U are oriented away from the reference node x

n

.

4.5 Fundamental Cycles

It has some importance for the sequel to note that the information provided by

the fundamental matrix Q

f

is exactly the same as the information provided by

the fundamental cycle matrix

1

B

f

, de�ned as follows from the spanning tree

U . Each chord (i.e. edge in E n U) determines a cycle in G, consisting of this

edge and the unique chain in U that connects its endpoints. This cycle may be

represented by an m vector B

i

with entries in f�1; 0; 1g as follows: B

i

(j) = 0

if e

j

is not contained in the cycle, else B

i

(j) = 1 or �1 depending on whether

the orientation of e

j

agrees with, or is opposite to the orientation of e

i

within

this cycle. The fundamental cycle matrix B

f

is the (m � n + 1) � m matrix

de�ned by B

f

(i; j) = B

i

(j). This matrix is of the form B

f

=

�

I

m�n+1

B

f12

�

,

where B

f12

= �Q

t

f11

(in particular, a branch belongs to the fundamental cycle

de�ned by a chord if and only if the chord belongs to the fundamental cutset

de�ned by the branch). Therefore, B

f

�Q

t

f

= 0, and the vector spaces V

B

and V

Q

respectively generated over IR by the fundamental cycles (rows of B

f

) and by

the fundamental cutsets (rows of Q

f

) are orthogonal. These two vector spaces,

which do not depend on the choice of the spanning tree, are indeed orthogonal

complements of IR

m

.

1

called fundamental circuit matrix in [16]
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Every non null vector in V

B

with entries �1, 0, and 1 is a sum of fundamental

cycles and/or inverses of fundamental cycles, hence it is either a cycle or an edge

disjoint union of cycles in vector form. Similarly, every non null vector C in V

Q

with entries �1, 0, and 1 de�nes a cut fe

j

j C(j) 6= 0g, but C may di�er by the

sign of its components from the vector which represents this cut (and also from

the opposite of this vector). For a counterexample, let C = (�1; 1) where e

1

and

e

2

have the same target and distinct sources.

4.6 Back to set 2-Structures

We saw that G may be represented by a set of f0; 1g vectors expressing the

set of properties of its nodes (x

j

2 p

i

, X

j

(i) = 1), plus the set of the

fundamental cutsets which de�ne these properties (the cutset C

i

de�ning p

i

is given by the i

th

row of Q

f

). A node x

j

is then identi�ed with the set of

tokens x

�

j

= fij X

j

(i) = 1g; similarly, an edge e

j

= (x

k

; x

l

) is identi�ed with

the ordered pair e

�

j

= (x

�

k

; x

�

l

). We show that the resulting partial 2-structure

G

�

= (fx

�

j x 2 Xg; fe

�

j e 2 Eg;�

�

) is actually isomorphic to the given graph

G = (X;E; id

E

). It is easily seen that the above representation is injective on

nodes, since two di�erent nodes of the spanning tree are always separated by a

fundamental cutset. In order to prove that G

�

�

=

G, it su�ces therefore to show

that �(e

�

j

) = �(e

�

l

) entails e

j

= e

l

. We establish a stronger property, namely:

Lemma 4.1 Let e

j

= (x

k

; x

l

) be an edge of G, then for every pair of nodes x

p

and x

q

, �(x

�

k

; x

�

l

) = �(x

�

p

; x

�

q

) entails that x

p

= x

k

and x

l

= x

q

.

Proof: Assuming the premises, let � be a chain connecting x

p

and x

q

in the

spanning tree U , represented by a vector � 2 f�1; 0; 1g

m

by \orienting" the

chain from x

p

to x

q

. Suppose �(j) = �1, thus the edge e

j

is oriented away from

x

q

and towards x

p

in that chain. Let p

j

be the property de�ned by the funda-

mental cutset which includes e

j

, then necessarily x

p

; x

l

2 p

j

and x

q

; x

k

62 p

j

,

hence x

�

k

n x

�

l

6= x

�

p

n x

�

q

, contradicting our assumptions. Therefore, if we let 1

j

denote the vector with a 1 at position j and 0 elsewhere, the vector � � 1

j

has

all entries in f�1; 0; 1g. Since Q

f

� � measures variations of properties along �,

the assumption �(x

�

k

; x

�

l

) = �(x

�

p

; x

�

q

) reads as Q

f

� � = Q

f

� 1

j

. Thus the vector

� � 1

j

lies in V

B

, and it is either a cycle or a disjoint union of cycles in vector

form. Since there is no cycle in U , it follows that ��1

j

is a cycle, hence x

p

= x

k

and x

q

= x

l

as was to show.

Now, any set fp

0

1

; : : : ; p

0

n�1

g of non trivial subsets of X determines a corre-

sponding 2-structure G

�

= (fx

�

j x 2 Xg; fe

�

j e 2 Eg;�

�

), de�ned as above by

setting X

�

j

= fij x

j

2 p

0

i

g and (x

k

; x

l

)

�

= (x

�

k

; x

�

l

). For 1 � i � n � 1, let C

0

i

denote the cut separating the complementary subsets X np

0

i

and p

0

i

. We will show

that G

�

�

=

G whenever the corresponding vectors C

0

1

; : : : ; C

0

n�1

are linearly in-

dependent. This is for instance the case when p

0

i

= fx

i

g. Beware of the fact that

G

�

may be isomorphic to G even though C

0

1

; : : : ; C

0

n�1

are not linearly indepen-

dent. For an illustration, let p

0

1

= fx

2

; x

3

g, p

0

2

= fx

2

; x

4

g and p

0

3

= fx

1

; x

3

g in



G = (X;E) where X = fx

1

; x

2

; x

3

; x

4

g and E = fe

1

; e

2

; e

3

g with e

i

= (x

1

; x

i+1

),

then G

�

�

=

G but C

0

2

+C

0

3

= 0. Notice that in this representation of G the vectors

e

�

1

, e

�

2

, and e

�

3

are not linearly independent: e

�

1

+2 �e

�

2

+e

�

3

= 0 even though there

is no cycle in G.

Assuming that C

0

1

; : : : ; C

0

n�1

are linearly independent, let us prove that G =

(X;E; id

E

) and G

�

= (fx

�

j x 2 Xg; fe

�

j e 2 Eg;�

�

) are isomorphic partial

2-structures. Let x

k

6= x

l

and assume for contradiction x

�

k

= x

�

l

. Let � be the

chain in U connecting the vertices x

k

and x

l

. By construction of the cuts C

0

i

,

� �C

0

i

= 0 for every i � n� 1. Since C

0

1

; : : : ; C

0

n�1

are linearly independent, they

span the vector space V

Q

and � is a cycle, thus x

k

= x

l

. It remains to show that

�(e

�

j

) = �(e

�

i

) entails e

j

= e

i

.

Lemma 4.2 Let e

j

= (x

k

; x

l

) be an edge of G, then for every pair of nodes x

p

and x

q

, �(x

�

k

; x

�

l

) = �(x

�

p

; x

�

q

) entails that x

p

= x

k

and x

l

= x

q

.

Proof: Let � be a chain connecting x

p

and x

q

in the spanning tree, represented

by a vector � 2 f�1; 0; 1g

m

by \orienting" the chain from x

p

to x

q

. Suppose

�(j) = �1, thus the edge e

j

is in � and it is oriented away from x

q

and towards

x

p

in that chain. From the assumption �(x

�

k

; x

�

l

) = �(x

�

p

; x

�

q

) and by construction

of the cuts C

0

i

, it follows that � � C

0

i

= 1

j

� C

0

i

for all i � n� 1, where 1

j

denotes

the vector with a 1 at position j and 0 elsewhere. Thus (� � 1

j

) � C

0

i

= 0 for

all i, and since C

0

1

; : : : ; C

0

n�1

form a basis of the vector space V

Q

, it follows that

(� � 1

j

) � C

k

= 0 for all k � n � 1 and in particular for h = j � (m � n + 1).

Now the �rst m� n+1 entries of the vector � � 1

j

are zeros and the last n� 1

entries of C

h

are zeros but C

h

(j) which is 1. Therefore, �(j) = 1 and we have

reached a contradiction. Thus the vector ��1

j

has all entries in f�1; 0; 1g. Since

(� � 1

j

) �C

0

i

= 0 for all i, the vector � � 1

j

lies in V

B

, and it is either a cycle or

a disjoint union of cycles in vector form. Since there is no cycle in U , it follows

that � � 1

j

is a cycle, hence x

p

= x

k

and x

q

= x

l

as was to show.

We now give an example (see Fig. 9) showing that the computation of cuts

and cutsets cannot lead directly to a net representation of G = (X;E). Let

e

1

e

2

e

3

x

1

x

2

x

3

e

3

e

1

;

fp

1

; p

2

g

e

2 e

1

e

2

fp

1

g fp

2

g

e

1

e

2

e

3

p

2

p

1

x

1

x

2

x

3

p

1

1 1 0

p

2

1 0 1

Fig. 9. elementary net system associated with a basis of cuts

X = fx

1

; x

2

; x

3

g and E = fe

1

; e

2

; e

3

g with e

1

= (x

1

; x

2

), e

2

= (x

1

; x

3

) and

e

3

= (x

2

; x

3

). A basis of cuts for G is given by the vectors C

1

= (0;�1;�1)



and C

2

= (�1; 0; 1), inducing respective properties p

1

= fx

1

; x

2

g and p

2

=

fx

1

; x

3

g such that x

�

1

= fp

1

; p

2

g and x

�

2

= fp

1

g and x

�

3

= fp

2

g. Now let N =

(fp

1

; p

2

g; E; F; x

�

1

) be the elementary net system such that

�

e

1

= x

�

1

nx

�

2

= fp

2

g,

e

1

�

= x

�

2

n x

�

1

= ;,

�

e

2

= x

�

1

n x

�

3

= fp

1

g, e

2

�

= x

�

3

n x

�

1

= ;, and

�

e

3

= x

�

2

n x

�

3

=

fp

1

g, e

3

�

= x

�

3

n x

�

2

= fp

2

g. The case graph of N is not isomorphic to the

initialized partial set 2-structure (X

�

; E

�

;�

�

; x

�

1

), due to the presence of two

additional transitions x

�

2

[e

2

>; and x

�

3

[e

1

>;.

4.7 Cuts and Regions

A non trivial region p of a partial 2-structure (X;E;�) always determines and

is determined by a cut C of (X;E), which we may therefore call a regional cut.

If we identify cuts C with the corresponding vectors C : E ! f�1; 0; 1g, then a

cut is regional if and only if it is compatible with the equivalence � in the sense

that e � e

0

) C(e) = C(e

0

) for all e; e

0

2 E. In particular, all cuts are regional

when � is the identity relation.

Let us adapt the above to transition systems. We saw that a non trivial region

R of (S;E; T ) is always determined from a corresponding map � : E ! f�1; 0; 1g

such that �(e) = �1 if R

�

e, �(e) = 1 if e

�

R, and �(e) = 0 otherwise (�(e) =

�

R

(s

0

)� �

R

(s) when s

e

! s

0

). Let ` : T ! E be the labelling function such that

`(s

e

! s

0

) = e. Then a map � : E ! f�1; 0; 1g determines a region in a pre-

elementary transition system (S;E; T ) if and only if the map C : T ! f�1; 0; 1g

de�ned by C(t) = �(`(t)) is a cut of the underlying graph (S; T ).

On that basis, let us try to point out the obstacles to a polynomial synthesis

of elementary net systems. On one hand, one can compute in polynomial time a

linear basis for the real vector space V

Q

which contains all cuts, but also elements

which are not cuts even though all their entries are in f�1; 0; 1g. On the other

hand, abstract regions are quotients of cuts, but it is not possible to derive a

basis of abstract regions from a basis of cuts since abstract regions are not closed

under summation. A well known recipe for getting rid of the �rst problem is to

replace the real �eld IR by the boolean �eld 2 in the de�nition of the vector

space V

Q

. The second problem will then be overcome by a slight adaptation of

the de�nition of regions, amounting to embed the elementary nets in a wider

class of one-safe nets which have actually a polynomial time synthesis.

5 Flip Flop Nets and their Synthesis

We examine in this section extended regions in automata, de�ned as sets of

states R such that all transitions with the same label are incident jointly to R,

possibly inwards for some transitions and outwards for the others, or are not

incident to R. A class of one-safe nets based on these regions, called 
ip 
op

nets and extending elementary nets, has been de�ned in [39]. We show that the

synthesis problem for 
ip 
op nets may be solved in polynomial time, following

techniques of linear algebra based on cutsets. Pairs of complementary regions

in an automaton may be identi�ed with vectors � : E ! 2; these maps form a



vector space over 2, a basis of which is easily derived from any set of fundamental

cutsets of the (undirected) graph underlying the automaton.

5.1 The Vector Space of Cuts

Let A = (S;E; T; s

n

) be a loop-free, reachable and reduced �nite automaton (not

necessarily simple), with S = fs

1

; : : : ; s

n

g and T = ft

1

; : : : ; t

m

g. Let @

0

(t) = s,

@

1

(t) = s

0

and `(t) = e denote the respective source, target and label of a

transition t = s

e

! s

0

. Let A = [a

i;j

] be the incidence matrix of the (undirected)

graph (S; T ). All de�nitions and results from section 4 carry to (undirected)

graphs up to the replacement of IR by 2, see e.g. [32, 17]. Recall that a cut is

a cutset or an edge-disjoint union of cutsets, where a cutset is a minimal set

of edges whose removal increases the number of connected components by one.

Cuts and cutsets are now represented as boolean vectors in 2 <T >

�

=

2

m

,

2

and similarly for cycles and for edge-disjoint unions of cycles. The (pointwise)

sum of two cuts is a cut, and similarly for two edge-disjoint unions of cycles. In

other words, cuts and edge-disjoint union of cycles form vector spaces over 2,

let V

Q

and V

B

. These vector spaces are respectively spanned by the rows of the

fundamental cutset matrix Q

f

and by the rows of the fundamental cycle matrix

B

f

, jointly computed from any spanning tree by the algorithms described in

section 4, interpreted over the boolean �eld. Thus Q

f

and B

f

are (n � 1) �m

and (m � n + 1) � m matrices with boolean entries such that B

f

� Q

t

f

= 0.

Therefore V

Q

and V

B

form orthogonal complements in the boolean vector space

2 <T >

�

=

2

m

.

5.2 The Vector Space of Abstract Regions

Our purpose is to transport the linear algebraic methods from the vector space

2 <T > to the vector space 2 <E> through the labelling function ` : T ! E,

which maps transitions to their labelling events.

De�nition 5.1 A cut C = [c

j

] is a regional cut if `(t

j

) = `(t

k

) ) c

j

= c

k

for

all 1 � j; k � m. An abstract region is a map � : E ! 2 such that c

j

= �(`(t

j

))

de�nes a regional cut C = � � `.

By an abuse of notation, we make no distinction between vectors C 2 2 <T >

�

=

2

m

and the corresponding maps C : T ! 2. We make a similar confusion between

maps � : E ! 2 and vectors � 2 2 <E>

�

=

2

l

, where E = fe

1

; : : : ; e

l

g. Because

A is reduced, regional cuts and abstract regions are in a bijective correspondence.

Moreover, given any pair of regional cuts C = � � ` and C

0

= �

0

� `, their sum is

a regional cut C+C

0

= (�+�

0

)� `. Thus abstract regions form a subspace of the

vector space 2 <E>

�

=

2

l

. A method for computing a basis of abstract regions

is indicated below.

2

If K is a ring (or a �eld) and X a set (of generators) we let K <X> denote the

K-module (or vector space) freely generated by X.



Since the vector spaces V

Q

and V

B

are orthogonal complements, � is an

abstract region if and only if � � ` 2 V

Q

if and only if C = � � ` is orthogonal

to all fundamental cycles B

i

(rows of B

f

). For any cycle B = [b

j

], let �(B) =

[�

k

] 2 2 <E> be the Parikh image of B given by �

k

=

P

fb

j

j `(t

j

) = e

k

g.

Otherwise stated �

k

=

P

m

j=1

'

j

(e

k

) where '

j

(e

k

) = 1 if `(t

j

) = e

k

and b

j

= 1,

else 0. Then C � B = 0 if and only if

P

m

j=1

�(`(t

j

)) � b

j

= 0 if and only if

P

l

k=1

(�(e

k

) �

P

m

j=1

'

j

(e

k

)) = 0 if and only if � ��(B) = 0. Since �(B + B

0

) =

�(B)+�(B

0

), it follows that � is an abstract region if and only if � is orthogonal

to the linear subspace of 2 <E> spanned by the Parikh images �(B

i

) of the

fundamental cycles B

i

. Let l� p be the dimension of the linear space �(V

B

). A

basis of abstract regions f�

1

; : : : ; �

p

g follows, e.g. by Gauss resolution.

5.3 Flip Flop Regions and Flip Flop Nets

De�nition 5.2 A 
ip 
op region in A = (S;E; T; s

n

) is a non trivial sub-

set of states R � S whose characteristic function �

R

: S ! 2 satis�es 8i 2

f1; : : : ;mg �

R

(@

1

(t

i

)) = �

R

(@

0

(t

i

)) + �(`(t

i

)) for some abstract region �.

Since A is reachable and reduced, abstract regions � are in bijective correspon-

dence with pairs of complementary regions R and S nR. Flip 
op regions, repre-

sented as vectors �

R

2 2 <S>

�

=

2

n

, form a linear subspace of 2

n

, closed under

the complementation operation �

R

+ 1 = �

SnR

.

The de�nition of 
ip 
op nets stems from the analysis of the possible crossing

relations between a 
ip 
op region R and the transitions bearing an identical

label. All possible cases are covered by four relations:

R

�

e : 8t 2 T `(t) = e) (@

0

(t) 2 R ^ @

1

(t) 62 R)

e

�

R : 8t 2 T `(t) = e) (@

0

(t) 62 R ^ @

1

(t) 2 R)

e

?

R : 8t 2 T `(t) = e) (@

0

(t) 2 R, @

1

(t) 2 R)

e

�

R : 8t 2 T `(t) = e) (@

0

(t) 2 R, @

1

(t) 62 R)

Conversely, any non trivial subset of states R � S satisfying R

�

e _ e

�

R _ e

?

R _

e

�

R for all events e 2 E is a 
ip 
op region, associated with an abstract region

� such that �(e) = 0 if and only if e

?

R. It is now patent that 
ip 
op regions

are an extension of elementary regions, which must satisfy R

�

e _ e

�

R _ e

?

R.

Observe that e

�

R ) e

�

R and R

�

e ) e

�

R. However these three relations play

incomparable roles in 
ip 
op nets, where they are called respectively input

(R

�

e), output (e

�

R), and swap (e

�

R).

De�nition 5.3 A 
ip 
op net is a triple N = (P;E;W ) where P is the set of

places or conditions, E is the set of events, and W : P�E ! finput; output; nop;

swapg is a matrix such that 8e 2 E 9p 2 P W (p; e) 6= nop. A case of N is

a map M : P ! 2. An event e has concession at M if and only if 8p 2 P

(W (p; e) = input ) M(p) = 1) ^ (W (p; e) = output ) M(p) = 0). The event

e may then �re, resulting in a transition M [e>M

0

where for every condition p:

W (p; e) = nop )M

0

(p) =M(p) and W (p; e) 6= nop)M

0

(p) = 1 +M(p).



De�nition 5.4 A 
ip 
op net system is a structure N = (P;E;W;M

0

), where

M

0

is a case of the underlying 
ip 
op net N = (P;E;W ). The sequential case

graph of N is the automaton N

�

= (S;E; T;M

0

) where S is the set of cases

reachable from M

0

by sequences of steps M [e>M

0

and T is the subset of these

steps in S �E � S.

It follows that for every condition p 2 P , the sets fM 2 Sj M(p) = 1g and

fM 2 Sj M(p) = 0g are complementary 
ip 
op regions of N

�

. So the sets of

states fs

1

; s

5

; s

6

g and fs

2

; s

3

; s

4

g are 
ip 
op regions in the example shown in

Fig. 10.
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p

3
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Fig. 10. a 
ip 
op net and its sequential case graph

5.4 Representation Result

The following result was established in [39].

Proposition 5.5 A �nite loop-free automaton A = (S;E; T; s

n

), reachable from

s

n

and reduced, is isomorphic to the sequential case graph of a 
ip 
op net system

if and only if the following conditions are satis�ed for R ranging over the set

R

ffn

(A) of 
ip 
op regions of A:

ssp: 8s; s

0

2 S s 6= s

0

) 9R (s 2 R, s

0

62 R).

essp: 8s 2 S 8e 2 E not s

e

! ) 9R (R

�

e ^ s 62 R) _ (e

�

R ^ s 2 R).

A synthesis algorithm follows easily. Let f�

1

; : : : ; �

p

g be a basis of abstract re-

gions of A, computed from some spanning tree U � T . For each state s

i

2 S,

let p

i

be the chain connecting s

i

and s

n

in the spanning tree. An instance

ssp(s

i

; s

j

) of the states separation problem can be solved if and only if �

k

�

(�(p

i

) + �(p

j

)) 6= 0 for some k 2 f1; : : : ; pg, where �(p) 2 2 <E> is the



Parikh image of the chain p 2 2 <T >. An instance of essp(s

i

; e) can be solved

if and only if there exists a linear combination � =

P

p

k=1

�

k

� �

k

, where �

k

2 ZZ,

satisfying � � [�(p

i

) +�(p

j

)] = 1 for every state s

j

in which event e is enabled.

When these conditions are satis�ed, a net system N = (P;E;W;M

0

) such that

A

�

=

N

�

may be constructed by assembling the atomic net systems N

p

de�ned

from conditions p as follows:

1. for each instance ssp(s

i

; s

j

) solved by �

k

, let p be the condition such that

W (p; e) = swap if �

k

(e) = 1 andW (p; e) = nop if �

k

(e) = 0, with M

0

(p) �xed

arbitrarily to 0 or 1;

2. for each instance essp(s

i

; e) solved by an abstract region � =

P

p

k=1

�

k

� �

k

,

let p be the condition such that W (p; e) = input, M

0

(p) = � ��(p

i

), and for

e

0

6= e, W (p; e

0

) = swap if �(e

0

) = 1, and W (p; e

0

) = nop if �(e

0

) = 0.

A minimal system N

0

such that A

�

=

N

0

�

may be obtained by eliminating from

N redundant places. The following is proved in [39].

Proposition 5.6 The synthesis problem for 
ip 
op nets may be solved in time

O(jSj

2

� jEj

3

), where S and E are the respective sets of states and events of the

automaton.

The synthesis algorithm which has been suggested here is a simpli�ed form of

the synthesis algorithm for Petri nets proposed in [2] and presented in section 7

of this survey. The case of Petri nets is signi�cantly more complex, to a limited

extent because the integer module ZZ <E> is more complicated that the boolean

vector space 2 <E>, and to a large extent because combinatorial approximation

techniques are needed for the synthesis of Petri nets, while they are useless for


ip 
op nets.

Before tackling the synthesis problem for Petri nets, we make a detour to

show that the striking similarity of the representation results for elementary net

systems and 
ip 
op net systems is not incidental, and does not depend on the

type of nets.

6 Regions for Arbitrary Types of Nets

The automata A = (S;E; T; s

0

) considered in this section are always assumed

to be reachable and deterministic, but they may not be simple, nor reduced,

and they are not necessarily �nite. The transition systems (S;E; T ) are always

assumed to be deterministic, but they are not necessarily connected. Recall that

a morphism of transition systems (�; �) : (S;E; T ) ! (S

0

; E

0

; T

0

) is a pair of

maps � : S ! S

0

and � : E ! E

0

such that s

e

! s

0

in T entails �(s)

�(e)

! �(s

0

) in

T

0

; morphisms of automata are morphisms of the underlying transition systems

which map the initial state to the initial state.

The extension of the concept of regions to arbitrary types of nets stems from

the following observation. Let �

ffn

be the transition system given in Fig. 11.

Solving the synthesis problem for A = (S;E; T; s

0

) w.r.t. 
ip 
op nets amounts



0 1

nopnop

swap

output

swap

input

Fig. 11. the type �

ffn

of 
ip 
op nets

to amalgamate on E a set of atomic net systems N

p

= (fpg; E;W;M

0

), de�ned

from morphisms p = (�; �) : (S;E; T )! �

ffn

such that W ((�; �); e) = �(e) and

M

0

((�; �)) = �(s

0

). The resulting net system N =

P

p2P

N

p

has a case graph

N

�

isomorphic to A if and only if the family fN

p

j p = (�; �) 2 Pg is admissible

in the sense that the following two separation conditions are satis�ed:

ssp: 8s; s

0

2 S s 6= s

0

) 9(�; �) 2 P �(s) 6= �(s

0

).

essp: 8s 2 S 8e 2 E not (s

e

!)) 9(�; �) 2 P not (�(s)

�(e)

! ) in �

ffn

.

Thus the concept of regions as sets of states may pro�tably be replaced by the

richer concept of regions as morphisms, which is actually the central concept for

the synthesis of net systems. The two concepts are not strictly equivalent for 
ip


op nets: several morphisms (�; �) : (S;E; T ) ! �

ffn

may actually determine

the same set of states �

�1

(f1g), i.e. the same set theoretic region, because the

component � on states does not determine the component � (even though the

transition system is connected and reduced).

Our aim is to show that the representation results which have been stated

so far for elementary nets and for 
ip 
op nets may be established at once for

all possible types of nets, using the concept of regions as morphisms.

6.1 Types of Nets

For the sake of a uniform presentation, we depart here from the traditional

de�nition of nets and adopt a parametric de�nition covering elementary nets,


ip 
op nets, and Petri nets as particular instances. The parameters of this

general de�nition are called types of nets [6].

De�nition 6.1 A type of nets is a deterministic transition system � = (LS;LE; � ),

where LS and LE are the respective sets of local states and local events, and

� � LS � LE � LS de�nes the partial action of local events on local states.

De�nition 6.2 A net of type � is a triple N = (P;E;W ) where P is a set

of places, E is a set of events, and W : P � E ! LE is the weight matrix.

A marking is a mapping M : P ! LS. A net system of type � is a structure

N = (P;E;W;M

0

) where M

0

, the initial marking, is a marking of the underlying

net N = (P;E;W ).

A net or net system is place simple if all rows of the weight matrix are di�erent;

it is event simple if all columns of the weight matrix are di�erent. All nets and



net systems considered in this section are assumed to be place simple but not

necessarily event simple.

A net may be seen as an undirected complete bipartite graph whose edges

are weighted by local events. As such, nets are of a static nature, but types (of

nets) de�ne their dynamics: the partial actions of events on markings may be

inferred from the partial actions of local events on local states, using the weight

matrix to control products of local events. The following de�nition extends in

this way the usual sequential �ring rule.

De�nition 6.3 Given a net N = (P;E;W ), of type � = (LS;LE; � ), the (sequen-

tial) marking graph of N is the transition system (LS

P

; E; T ) with set of transi-

tions T de�ned by (M

e

!M

0

) 2 T if and only if 8p 2 P (M(p)

W (p;e)

�! M

0

(p)) 2 � .

Given a net system N = (P;E;W;M

0

), the (sequential) marking graph of N is

the (dual) automaton N

�

= (S;E; T

S

;M

0

) where S is the inductive closure of

fM

0

g w.r.t. forward transitions in T , and T

S

= T \ (S �E � S).

Thus an event has concession at marking M if and only if for every place p, the

local event W (p; e) is enabled at the local state M(p) in the transition system

� (de�ning the type of the net). A net system is reduced if every event e has

concession at some reachable marking and if for every pair of distinct places p

and p

0

, there exists some reachable marking M such that M(p) 6= M(p

0

). The

net systems which we consider are generally not reduced. We now illustrate the

above de�nitions on two classical examples, namely elementary nets and Petri

nets.

Let �

EN

be the transition system shown in Fig. 12. The elementary nets

nopnop

0 1

output

input

Fig. 12. the type �

EN

of elementary nets

(P;E; F ) correspond bijectively with nets (P;E;W ) of type �

EN

, withW (p; e) =

input , F (p; e) and W (p; e) = output , F (e; p), and W (p; e) = nop otherwise.

One may easily verify that the corresponding nets have identical marking graphs.

Let us now recall the classical de�nition of Petri nets.

De�nition 6.4 A Petri net is a triple N = (P;E; F ) where P and E are disjoint

sets of places and events, and F is a function, F : (P � E) [ (E � P ) ! IN. A

marking of N is a map M : P ! IN. An event e has concession at M if and only

if 8p 2 P F (p; e) � M(p). An event e which has concession at M may �re,

resulting in a transition M [e>M

0

where 8p 2 P M

0

(p) = M(p) � F (p; e) +

F (e; p). A Petri net N is said to be pure if 8p 2 P 8e 2 E F (p; e)�F (e; p) = 0.



Let the type of pure Petri nets be the transition system �

PPN

= (IN;ZZ; T ) such

that n

z

! n

0

if and only if n

0

= n+ z, i.e. �

PPN

is the full subgraph of the Cayley

graph of ZZ induced by the restriction on the subset of nodes in IN. Pure Petri

nets (P;E; F ) are linked by a marking graph preserving bijective correspondence

with nets (P;E;W ) of type �

PPN

given by W (p; e) = F (e; p)� F (p; e).

Let the type of Petri nets be the transition system �

PN

= (IN; IN� IN; T ) such

that n

(p;q)

�! n

0

if and only if n � p and n

0

= (n � p) + q. Petri nets are set

in bijective correspondence with nets of type �

PN

by the relation W (p; e) =

(F (p; e); F (e; p)). With this correspondence, the �ring rule stated in Def. 6.3

reads actually as

M [e>M

0

, 8p 2 P M(p) � F (p; e) ^ M

0

(p) =M(p)� F (p; e) + F (e; p)

The above Petri nets are a particular instance of the generalized Petri nets

studied in [20]. In this paper, Droste and Shortt parametrize the classical def-

inition of Petri nets (Def. 6.4), in which IN is substituted for by the positive

part G

+

of a partially ordered abelian group G. These authors further classify

types of Petri nets over a �xed group G by the set of pairs ((F (p; e); F (e; p)) 2

G

+

�G

+

occurring in associated subclasses of nets. For instance, condition-event

nets are obtained by restricting nets over ZZ to the pairs ((F (p; e); F (e; p)) 2

f(0; 0); (0; 1); (1; 0); (1; 1)g. Note that all types of nets which we have de�ned so

far can similarly be obtained from Cayley graphs (G;G; T ) (i.e. g

0

g

! g

00

in T

if and only if g

00

= g

0

+ g) by eliminating nodes and/or by restricting group

actions to partially de�ned group actions. For instance, �

EN

is the Cayley graph

of ZZ=

3ZZ

restricted on nodes 0 and 1, with nop = 0, output = 1, and input = 2.

Similarly, �

FFN

is obtained from the Cayley graph of ZZ=

2ZZ

by identifying action

0 with nop, action 1 with swap, and the partial action 1 de�ned at node 0 (resp.

at node 1) with output (resp. with input). Therefore, all nets considered so far

are reversible in the sense that they have co-deterministic sequential marking

graphs (M

1

[e>M and M

2

[e>M entail M

1

= M

2

). Nevertheless, 
ip 
op nets

are not Petri nets over a group according to the de�nition of Droste and Shortt.

The main reason why we do not stick here to types of nets based on groups is

that we want to cover also non reversible nets, such as trace nets (see 6.5).

6.2 Regions as Morphisms

The �ring rule for nets stated in Def. 6.3 tells us that for every place p in a net of

type � , the pair of maps (�

p

; �

p

) de�ned by �

p

(M) =M(p) and �

p

(e) =W (p; e)

is a morphism of transition systems from the marking graph of the net to the type

� . Therefore, if we forget the internal structure of states in the marking graph,

identi�ed with any isomorphic transition system (S;E; T ), and if we identify a

place p with its extension (�

p

; �

p

), we can rediscover the places of the net (and

also discover implicit places) as morphisms (�; �) : (S;E; T )! � . This motivates

the following de�nition of regions for arbitrary types of nets.



De�nition 6.5 Given a transition system A = (S;E; T ) and a type of nets

� = (LS;LE; �), the set R

�

(A) of �-type regions in A is the set of morphisms

from A to � .

By an abuse of notation, we extend the above de�nition to automata by letting

R

�

(A) = R

�

(A) where A is the transition system underlying the automaton A.

We now illustrate this de�nition on elementary nets and on Petri nets.

An elementary region in A = (S;E; T ) is a morphism (�; �) : A! �

EN

. The

map � classi�es events e 2 E into three families according to their relationship

with the property R = �

�1

(f1g): all events e such that �(e) = input take R

as an input condition and falsify R (s

e

! s

0

) s 2 R ^ s

0

62 R), all events e

such that �(e) = output take the falsity of R as a precondition and establish R

(s

e

! s

0

) s 62 R ^ s

0

2 R), and the remaining events such that �(e) = nop do

not modify R (s

e

! s

0

) (s 2 R , s

0

2 R)). One recognizes in R = �

�1

(f1g) a

region according to the original de�nition of Ehrenfeucht and Rozenberg.

A pure Petri region in A = (S;E; T ) is a morphism (�; �) : A ! �

PPN

(see Fig. 13 for an illustration). Here the map � measures the availability of a

0

+1

0

+1

�2

b

�

�1

(0)

�

�1

(2)

�

�1

(3)

�

�1

(1)

a

c

c

c

b

a

0

1

2

3

�2

0

Fig. 13. a pure Petri region as a morphism: A

(�;�)

�! �

PPN

resource at each state s 2 S, and the map � classi�es events e 2 E according to

the amount of resource which they produce (when �(e) > 0) or consume (when

�(e) < 0) at each �ring. When A is a �nite transition system, the abstract regions

� de�ned in this way are in bijective correspondence with weighted synchronic

distances in A, measuring the relative degree of freedom of the respective subsets

of events e such that �(e) < 0, resp. �(e) > 0 [12].

A Petri region in A = (S;E; T ) is a morphism (�; �) : A ! �

PN

. Here again

the map � measures the availability of a resource at each state. The map �



classi�es events according to associated pairs �(e) = (

�

�(e); �

�

(e)) where

�

�(e)

measures the amount of resource consumed for triggering e while �

�

(e) measures

the amount of resource produced by e, amounting to a neat variation of resource

�

�

(e) �

�

�(e). These Petri regions coincide with the regions which have been

de�ned by Mukund [33] (in the larger framework of step transition systems) and

which have been adapted by Droste and Shortt [20] to Petri nets over partially

ordered abelian groups.

6.3 A Galois Connection between Automata and Nets

We saw that regions may serve to reverse the production of marking graphs. The

reversing process may also be applied to arbitrary transition systems, leading to

the following de�nitions.

De�nition 6.6 Given a transition system A = (S;E; T ) and a type of nets � ,

the dual of A is the net A

�

= (R

�

(A); E;W ) with weights de�ned byW ((�; �); e) =

�(e). For any subset R of R

�

(A), let A

�

R

denote the subnet of A

�

with restricted

set of places R.

De�nition 6.7 Given an automaton A composed of a transition system A and

an initial state s

0

, and a type of nets � , the dual of A is the net system A

�

composed of the underlying net A

�

and of the initial marking M

0

de�ned by

M

0

(�; �) = �(s

0

) for every (�; �) 2R

�

(A). For any subset R of R

�

(A), let A

�

R

denote the subnet system of A

�

with restricted set of places R.

We will show that the two ()

�

operators mapping the automaton A to the net

system A

�

and the net system N to its marking graph N

�

form a Galois con-

nection: A � N

�

, N � A

�

. The main di�culty is to construct the appropriate

order relations. One expects in particular A � N

�

p

, N

p

� A

�

for every region

p = (�

p

; �

p

) 2 R

�

(A) where N

p

is the atomic subnet system of A

�

with sole place

p (i.e. N

p

= A

�

fpg

) and N

�

p

is its marking graph. This particular case will help us

to �nd out the order relation on automata. Since N

p

is a subnet system of A

�

,

both N

p

� A

�

and A � N

�

p

are expected; by de�nition of regions, if E is the

set of events of A then (�

p

; 1

E

) is an event preserving morphism from A to N

�

p

.

Moreover, if there exists an event preserving morphism (�; 1

E

) : A

1

! A

2

between

two automata with set of events E, this morphism is necessarily unique owing

to the strong properties of determinism and reachability we have assumed from

all automata; therefore, if there exist morphisms (�

1

; 1

E

) : A

1

! A

2

and (�

2

; 1

E

) :

A

2

! A

1

, then A

1

and A

2

are identical up to the identity of states (A

1

=

E

A

2

).

So let Aut(E) be the set of (deterministic and reachable) automata with �xed

set of events E, quotiented by =

E

, then

A

1

� A

2

if 9� : (�; 1

E

) : A

1

! A

2

is a partial order on Aut(E), such that A � N

�

p

for every region p 2R

�

(A).

This partial order is a complete lattice, with greatest lower bounds computed



as synchronized products. We remind the reader that the synchronized prod-

uct

V

i2I

A

i

of a family of automata A

i

= (S

i

; E; T

i

; s

0;i

) indexed by i 2 I is

the automaton (S;E; T; s

0

) with components as follows: s

0

= (s

0;i

)

i2I

, S is the

inductive closure of the set fs

0

g w.r.t. the synchronized transition rule

(s

i

)

i2I

e

! (s

0

i

)

i2I

i� 8i 2 I (s

i

e

! s

0

i

) 2 T

i

and T is the set of occurrences of this rule at states (s

i

)

i2I

2 S. By de�nition of

marking graphs, the automaton N

�

dual to a net system N = (P;E;W;M

0

) is

actually the synchronized product

V

p2P

N

�

p

of the marking graphs of its atomic

subnet systems.

Concerning the order relation on net systems, the central assumption that

N

p

� A

�

for every region p of A leads to choose something akin to the sub-

structure ordering: N

1

�

sub

N

2

if N

1

is N

2

restricted on a subset of places. How-

ever replicated places may occur in a net system N = (P;E;W;M

0

), i.e. places

which the initial markingM

0

and the weight functionW do not distinguish from

one another, and we do not care about their degree of multiplicity nor about

their identities. Let morphisms of net systems with �xed set of events be de�ned

as follows: a morphism from N

1

= (P

1

; E;W

1

;M

0;1

) to N

2

= (P

2

; E;W

2

;M

0;2

)

is a map � : P

1

! P

2

such that M

0;1

(p) = M

0;2

(p) and W

1

(p; e) = W

2

(�(p); e)

for all p 2 P

1

and e 2 E. Two net systems connected by morphisms in both

directions are henceforth declared equivalent. Let Nets(E) denote the set of

equivalence classes of net systems with set of events E (replication free nets

are canonical representatives). One can equip Nets(E) with the partial order

relation de�ned as:

N

1

� N

2

i� 9� : N

1

! N

2

This partial order is a complete lattice, with least upper bounds

W

i2I

N

i

of

families of net systems computed by amalgamation of sets of places. Told in

another way, if we identify a place p in a net system N = (P;E;W;M

0

) with the

pair (M

0

(p); �

p

) such that �

p

(e) = W (p; e) for e 2 E then

W

i2I

(P

i

; E;W

i

;M

0;i

)

= (

S

i2I

P

i

; E;W;M

0

) where W (p; e) =W

i

(p; e) and M

0

(p) =M

0;i

(p) for p 2 P

i

.

A net system N with set of places P is now the least upper bound

W

p2P

N

p

of

its atomic subnet systems N

p

. In the particular case where N = A

�

is dual to

the automaton A, its set of places is the set of regions R

�

(A), where � is the

type of N , hence its atomic subnet systems N

p

have the form A

�

fpg

and we get

the following.

Proposition 6.8 Let R � R

�

(A) then A

�

R

= (

W

p2R

A

�

fpg

).

The key for the Galois connection between the ordered sets (Aut(E);�) and

(Nets(E);�) is the following proposition, proved in [7]

Proposition 6.9 Let N = (fpg; E;W;M

0

) be an atomic net system of type � ,

then A � N

�

if and only if M

0

(p) = �(s

0

) and 8e 2 E W (p; e) = �(e) for

some region (�; �) 2 R

�

(A), where s

0

is the initial state of the automaton A.



Thus any atomic net system N such that A � N

�

is isomorphic to N

p

= A

�

fpg

for some region p = (�; �) 2 R

�

(A). Since A

�

=

W

fA

�

fpg

j p 2 R

�

(A)g, it follows

that N � A

�

. Conversely, by de�nition of the order relation on net systems, any

atomic net system N such that N � A

�

is isomorphic to N

p

= A

�

fpg

for some

region p = (�; �) 2 R

�

(A). Since A � N

�

p

by construction of the order relation

on automata, it follows that A � N

�

. Altogether, we obtain the following.

Proposition 6.10 For any atomic net system N , A � N

�

, N � A

�

.

We are ready to establish the expected Galois connection between automata and

net systems.

Proposition 6.11 The two ()

�

operators, mapping respectively the automaton

A to the dual net system A

�

and the net system N to its marking graph N

�

,

constitute a Galois connection between the ordered sets Nets(E) and Aut(E):

A � N

�

, N � A

�

for A 2 Aut(E) and N 2 Nets(E).

Proof: By Prop. 6.10, A � N

�

, N � A

�

if N is an atomic net system. Now

for a net system N =

W

p2P

N

p

, where N

p

is the atomic subnet system of N

with the unique place p, N

�

=

V

p2P

N

�

p

by de�nition of marking graphs. Thus

A � N

�

if and only if A � N

�

p

for all p 2 P if and only if N

p

� A

�

for all p 2 P

(because N

p

is atomic) if and only if N � A

�

.

The relations A

1

� A

2

) A

�

2

� A

�

1

(for A

1

;A

2

2 Aut(E)) and N

1

� N

2

)

N

�

2

� N

�

1

(for N

1

;N

2

2 Nets(E)) follow immediately from the Galois con-

nection. Another property of Galois connections is to produce closure operators

by conjugated composition of the dual operators. Recall that an operator () on

(X;�), mapping x to x, is a closure operator if it is increasing (x

1

� x

2

)

x

1

� x

2

), extensive (x � x), and idempotent (x = x). The double dual opera-

tors ()

��

acting respectively on the ordered sets (Aut(E);�) and (Nets(E);�)

are therefore closure operators. An automaton A equal to its closure A

��

is said

to be separated with respect to the �xed type of nets � , while a net system N

equal to its closure N

��

is said to be saturated. Owing to the Galois connec-

tion, the lattices of separated automata and saturated net systems are dually

order-isomorphic (i.e. isomorphic up to reversing the order).

6.4 Representation Results

By de�nition, an automaton separated with respect to type � is isomorphic to the

synchronized product of marking graphs N

�

p

of atomic net systems N

p

= A

�

fpg

derived from � -regions p of A (in formulas: A

�

=

V

p2R

�

(A)

N

�

p

). Following [19],

let us say that a subset of regions R � R

�

(A) is admissible if A

�

=

V

p2R

N

�

p

. So,

A is separated if and only if R

�

(A) is admissible, and of course every superset of

an admissible set of regions is admissible. The marking graph N

�

of a net system

N is separated because N

�

�

=

N

���

follows from the Galois connection. In fact,

the extensions (�

p

; �

p

) of places p of N form an admissible set of regions of N

�

.

The following criterion may be used to recognize admissible sets of regions, and

consequently separated automata.



Theorem 6.12 Given an automaton A = (S;E; T; s

0

) and a type of nets � , a

set of regions R � R

�

(A) is admissible if and only if the following separation

properties are satis�ed for all states s; s

0

2 S and for every event e 2 E:

(SSP) s 6= s

0

) 9(�; �) 2 R : �(s) 6= �(s

0

)

(read: (�; �) solves the states separation problem at (s; s

0

))

(ESSP) s

e

6! ) 9(�; �) 2 R : �(s)

�(e)

6�! w.r.t. �

(read: (�; �) solves the event/state separation problem at (s; e))

When both properties are satis�ed, A

�

=

(A

�

R

)

�

, where A

�

R

is the subnet system

of A

�

with restricted set of places R (also called the net synthesized from R).

Proof: Let N

p

= A

�

fpg

for p 2 R, and let N

R

= A

�

R

. Seeing that A � N

�

p

for

every region p, A �

V

p2R

N

�

p

=N

�

R

. Accordingly, there exists a morphism of au-

tomata (�; 1) : A ! N

�

R

. Moreover this morphism is unique. On the other hand,

every region p = (�

p

; �

p

) factors into (�; �

p

) � (�

p

; 1) where � acts as the identity

on the local states in its domain, and (�

p

; 1) lifts to the unique event preserving

morphism from A to N

�

p

. As N

�

R

is the synchronized product of (N

�

p

)

p2R

, �

must be the map that sends each state s of A to the associated vector �(s) =

(�

p

(s))

p=(�

p

;�

p

)2R

(the p-component is computed by evaluating region p at state

s). Since (�; 1) is the unique morphism of this form from A to N

�

R

, and seeing

that all automata are accessible and deterministic, the assertion A

�

=

N

�

R

is now

equivalent to (i) � is an injective map, and (ii) s

e

! in A whenever �(s)

e

! in

N

�

R

. Now SSP is just another form of assertion (i). By de�nition of the synchro-

nized product, �(s)

e

! in N

�

R

entails �

p

(s)

e

! in N

�

p

for all p 2 R,hence ESSP

is just another form of assertion (ii).

Corollary 6.13 Given an automaton A 2 Aut(E) and a type of nets � , A

�

=

N

�

for some net system N 2 Nets(E) if and only if A

�

=

A

��

if and only if

the conditions ssp and essp are valid in A. Given an automaton A 2 Aut(E),

a type of nets � , and a net system N 2 Nets(E), A

�

=

N

�

if and only if N is

isomorphic to subnet system of A

�

determined from some admissible subset of

regions R � R

�

(A).

By setting � = �

EN

, resp. � = �

FFN

, in the above theorem and corollary, one

retrieves the results of Ehrenfeucht and Rozenberg (Prop. 2.15) and Desel and

Reisig (Prop. 3.6), resp. the result of Schmitt (Prop. 5.5). The application of the

theorem to the types �

PPN

and �

PN

will be examined in section 7.

6.5 Some Applications to Safe Nets

We call safe nets all nets whose markings are de�ned as subsets of places

M � P , or equivalently as maps M : P ! f0; 1g. Thus, a type of safe nets

is a transition system � = (LS;LE; �) whose set of local states is LS = f0; 1g.

The largest type of safe nets, let �

safe

, is obtained by including in its transi-

tions all the de�ned instances s

f

! f(s) of partial functions f : f0; 1g ! f0; 1g.



Table 1. safe nets

0 1 C/E nets elementary nets 
ip 
op nets trace nets

input - 0 yes yes yes yes

output 1 - yes yes yes yes

test=1 - 1 yes no no yes

test=0 0 - no no no yes

set 0 0 0 no no no yes

set 1 1 1 no no no yes

nop 0 1 yes yes yes yes

swap 1 0 no no yes no

These functions, tabulated in Table 1, form a set LE

safe

. Various types �

X

=

(f0; 1g; LE

X

; �

X

) follow as induced restrictions of �

safe

on particular subsets of

local events LE

X

� LE

safe

(see again Table 1 for some examples). Each type �

X

determines corresponding regions in transition systems A = (S;E; T ), de�ned

as morphisms (�; �) : A ! �

X

. These morphisms de�ne in turn set-theoretic

regions R = �

�1

(f1g) 2 P(S). We restrict our analysis of safe type to types �

X

larger than �

EN

and such that the complement of a region �

�1

(f1g) is a region.

This amounts to set on LE

X

the constraints fnop; input; outputg � LE

X

and

set 0 2 LE

X

, set 1 2 LE

X

.

We declare equivalent, resp. weakly equivalent, two safe types �

X

which de-

termine an identical family of separated automata, resp. identical families of

set-theoretic regions in automata. With the above constraints, there are four

classes of weakly equivalent types �

X

, each of which splitting into two equiva-

lence classes of types.

The four possible concepts of set-theoretic regions are determined from �ve

forbidding patterns displayed in Fig. 14. Each pattern represents a pair transi-

H :

L :

HL : �� �� �� ����

Fig. 14. �ve patterns for a pair of transitions with the same label s

1

e

! s

0

1

and s

2

e

! s

0

2

where s 2 R if and only if the corresponding node is coloured black

tions s

1

e

! s

0

1

and s

2

e

! s

0

2

with a common label e in a transition system A =

(S;E; T ) whose states s are coloured black or white. Let R � S be the subset

of states coloured in black. The four possible concepts of set-theoretic regions

are as follows.

1. R is an elementary region if and only if the patterns ��, ��, ��, ��, and

�� do not occur in A. A safe type �

X

induces the elementary regions if and



only if LE

X

\ fswap; set 0; set 1g = ;. This case is met for �

EN

and for the

type of C/E-nets, let �

CEN

where LE

CEN

= fnop; input; output; test=1g.

2. R is a 
ip 
op region if and only if the patterns ��, ��, ��, �� do not

occur in A. A safe type �

X

induces the 
ip 
op regions if and only if LE

X

\

fset 0; set 1g = ;. This case is met for �

FFN

.

3. R is a trace region if and only if the patterns ��, ��, �� do not occur

in A. Trace regions have been introduced independently for trace nets in

[4, 5] and for chart nets in [29] where they are called chart regions. A safe

type �

X

induces the trace regions if and only if fset 0; set 1g � LE

X

and

swap 62 LE

X

. This case is met for the type of trace nets, let �

TRN

where

LE

TRN

= fnop; input; output; test=1; test=0; set 0; set 1g.

4. R is a safe region if and only if the patterns �� and �� do not occur in A. A

type �

X

induces the safe regions if and only if fswap; set 0; set 1g � LE

X

.

Safe types may be classi�ed further into pure types and impure types according

to whether LE

X

\ ftest=0; test=1g is empty or not. One obtains in this way

8 classes of equivalent types. These classes may be ordered according to the

inclusion of the associated sets of separated automata. All inclusions are shown

in Fig. 15 together with representative automata showing they are strict.

2

4

3

6

5

7

8

1

1 2 3 4

5 6 7 8

a

a

a

a

b

b bb

a

a

elementary 
ip 
op trace

safe

pure

impure

c

a

a

a

a

b

b bb

a

a

c

c

c

Fig. 15. classi�cation of the equivalence classes of safe types

By specializing Theo. 6.12 to a particular type �

X

, one obtains an immediate

characterization of the family of separated automata speci�c to its equivalence

class. We have yet implicitly applied this technique to the type �

EN

of elementary

nets and to the type �

FFN

of 
ip 
op nets. Let us focus on the types �

CEN

(of

C/E nets) and �

TRN

(of trace nets).

From Theo. 6.12 applied to �

CEN

, one retrieves Nielsen and Winskel's char-

acterization of marking graphs of C/E nets [35]. Given an asynchronous au-

tomaton A = (S;E; k; T; s

0

) with an empty independence relation, the regions

of A de�ned in [35] are actually in bijective correspondence with morphisms

(�; �) : (S;E; T ) ! �

CEN

[1]. We recall that an asynchronous automaton ac-

cording to the de�nition of Shields and Bednarczyk [9, 41] is a deterministic

automaton A = (S;E; T; s

0

), enriched with a symmetric and irre
exive relation

of independence k � E�E such that the following conditions are satis�ed when-

ever e

1

ke

2

:



forward diamond property: s

e

1

! s

1

^ s

e

2

! s

2

) 9s

0

2 S s

2

e

1

! s

0

^ s

1

e

2

! s

0

.

commutation property: s

e

1

! s

1

^ s

1

e

2

! s

0

) 9s

2

2 S s

e

2

! s

2

^ s

2

e

1

! s

0

.

Following Nielsen and Winskel, let us de�ne asynchronous regions in A =

(S;E; k; T; s

0

) as the morphisms (�; �) : (S;E; T ) ! �

CEN

such that 8e

1

; e

2

2

E e

1

ke

2

) (�(e

1

) = nop) _ (�(e

2

) = nop). This is consistent with the usual

de�nition of independence of events in C/E nets, according to which e

1

ke

2

if

and only if (

�

e

1

[ e

1

�

) \ (

�

e

2

[ e

2

�

) = ;. Nielsen and Winskel show that the

asynchronous automata which are generated from C/E net systems with this

de�nition of independence are exactly those in which the separation properties

ssp and essp are satis�ed w.r.t. the asynchronous regions.

If we apply now Theo. 6.12 to the type �

TRN

, we retrieve the characterization

of marking graphs of trace nets established in [5]. Given a trace automaton

A = (S;E; k; T; s

0

) with an empty relation of independence, the trace regions

of A de�ned in [5] are actually the morphisms (�; �) : (S;E; T ) ! �

TRN

. We

recall that a trace automaton according to the de�nition of Stark [42] is like

an asynchronous automaton up to the removal of the commutation constraint.

A typical trace automaton is shown in Fig. 16 together with a generating trace

net. This trace automaton is not an asynchronous automaton since e.g. the

input output test=0 test=1 set 0 set 1

e:

W (p; e):

p:

nop

z t

u

x y

a

c

b

s

1

s

4

s

3

s

2

s

5

s

6

s

7

a

a

a

b

b

b

c

c

akb

bkc

akc

c

Fig. 16. a trace automaton and a generating trace net

sequence a � c can be �red from state s

1

, but this is not the case with c � a

although akc. The reader may verify that the separation problem essp(s

1

; c)

cannot be solved with elementary regions nor with asynchronous regions, but

it is solved by the trace region corresponding to the place z of the trace net

of Fig. 16. In the general case where the independence relation is not empty, a

trace region of A = (S;E; k; T; s

0

) is de�ned as a trace region of the underlying

automaton compatible with the independence of events in the sense that for



any two independent events e

1

and e

2

one has (i) �(e

1

) 2 finput; outputg )

�(e

2

) = nop and (ii) �(e

1

) 2 ftest=1; set 1g ) �(e

2

) 6= set 0. This is coherent

with the independence of events in trace nets, de�ned similarly by e

1

ke

2

if and

only if for all places p 2 P (i) W (p; e

1

) 2 finput; outputg ) W (p; e

2

) = nop

and (ii) W (p; e

1

) 2 ftest=1; set 1g ) W (p; e

2

) 6= set 0. It is shown in [5]

that the trace automata which are generated from trace net systems with this

relation of independence are exactly those in which the separation properties

ssp and essp are satis�ed w.r.t. the trace regions. It is also shown that the �nite

trace automata which can be de�ned in the so-called simple format of Plotkin's

Structural Operational Speci�cation rules, with proofs of transitions as events

and independence of proofs as independence of events, are exactly the �nite and

separated trace automata.

More will be said on the topic of independence in section 8.

6.6 Other Applications of Types

Types may serve alternatively to classify existing families of nets or to explore

new families of nets. One may study hybrid types forged from existing ones by

amalgamation, or by disjoint summation. One may study translations between

classes of nets based on morphisms between their types. Theoretically speaking,

this amounts to consider nets over a �xed set of events as a category indexed

over the category of automata (their types). Compilation techniques for nets

may also be de�ned on the following principle: let N = (P;E;W ) be a net of

type � , where � is the marking graph of a net N

�

= (P

�

; LE;W

�

) of type �

0

, then

N is equivalent to the net N

0

= (P

0

; E

0

;W

0

) of type �

0

such that P

0

= P � P

�

,

and W

0

((p; p

�

); e) =W

�

(p

�

;W (p; e)). This amounts to consider nets as functors

over automata, and composition of functors as compilation of nets.

7 Polynomial Time Algorithms for the Synthesis of Petri

Nets

We present in this section the polynomial time algorithm proposed in [2] for the

synthesis of pure Petri nets from �nite automata. This algorithm has been im-

plemented in the tool synet [13]. Next, we give a sketch of the variant algorithm

for the synthesis of (general) Petri nets proposed in [7]. Finally, we indicate for

both algorithms degenerated forms allowing to synthesize Petri nets from regular

languages.

7.1 The Synthesis Problem for Pure Petri Nets

In the sequel, let A = (S;E; T; s

0

) be a loop-free, reachable and reduced �-

nite deterministic automaton, and let A denote the underlying transition sys-

tem (S;E; T ). The synthesis problem for pure Petri nets consists in (i) deciding

whether an automaton A, given as input, is isomorphic to the marking graph



N

�

of some net system N = (P;E;W;M

0

) of type �

PPN

, and if so (ii) pro-

ducing as output a net system N such that A

�

=

N

�

and no proper subnet

system of N satis�es this property. Recall that �

PPN

= (IN;ZZ; �) with transi-

tions n

z

! n

0

2 � i� n

0

= n+ z. On the grounds of Theo. 6.12, this amount to (i)

deciding whether all instances of the separation problems in A can be solved by

corresponding regions, and if so (ii) synthesizing the desired net system N = A

�

R

from a minimal admissible subset of regions R, where A

�

R

= (R; E;W;M

0

) with

W ((�; �); e) = �(e) and M

0

((�; �)) = �(s

0

). Now, there is at most jSj

2

� jSj

possible inputs for the states separation problem:

ssp

A

(s; s

0

) : \construct from A and s 6= s

0

a region (�; �) s.t. �(s) 6= �(s

0

)"

and at most jSj � jEj instances of the event/state separation problem:

essp

A

(s; e) : \construct from A and (s

e

6!) a region (�; �) s.t. (�(s)

�(e)

6�!)".

Part (i) of the problem will therefore be solved in time polynomial (in jSj and

jEj ) as soon as ssp

A

(s; s

0

) and essp

A

(s; e) are solved in polynomial time. Part

(ii) consists in extracting from a set of regions with size polynomial in jSj and

jEj a minimal admissible subset and this certainly can be done in polynomial

time. So, a polynomial algorithm for the synthesis of pure Petri nets will follow

if we succeed to construct procedures that solve in polynomial time ssp

A

(s; s

0

)

and essp

A

(s; e) with respect to the type �

PPN

. This is the main program of the

section. The �rst stage of the program is to study the algebraic properties of the

set of pure Petri regions of A. The second stage of the program is to elaborate

decision procedures based on these properties.

7.2 The Structure of Pure Petri Regions

Let R

PPN

(A) denote the set of pure Petri regions of A, i.e. the set of morphisms

(�; �) : A ! �

PPN

. Before investigating the algebraic properties of R

PPN

(A),

let us recall some terminology borrowed from algebraic topology (see e.g. [31]).

In the �xed transition system A = (S;E; T ), let @

0

; @

1

: T ! S and ` : T ! E

denote the respective source, target, and labelling functions given by @

0

(t) = s,

@

1

(t) = s

0

, and `(t) = e for t = s

e

! s

0

2 T . A 0-chain of A is a vector in the free

ZZ-module C

0

(A) = ZZ <S>

3

. A 1-chain of A is a vector in the free ZZ-module

C

1

(A) = ZZ <T >. The boundaries of the 1-chains are the 0-chains computed

by the operator @ : C

1

(A)! C

0

(A) such that @(�z

j

� t

j

) = �z

j

� (@

1

(t

j

)� @

0

(t

j

)).

The co-boundaries of the 0-chains are the 1-chains computed by the operator

@

�

: C

0

(A)! C

1

(A) such that @

�

(

P

z

i

� s

i

) =

P

z

i

� @

�

(s

i

) where @

�

(s

i

) =

P

ft

j

j

@

1

(t

j

) = s

i

g -

P

ft

j

j @

0

(t

j

) = s

i

g.

4

A cycle of A is a 1-chain with a null bound-

ary, and a co-cycle is a 0-chain with a null co-boundary. The cycles of A, resp. the

3

we recall that the free ZZ-module generated by a �nite set X = fx

1

; : : : ; x

n

g of

generators is the set of maps � from X to ZZ, viewed as vectors indexed by X with

entries in ZZ and represented as formal sums � =

P

i

�

i

� x

i

where �(x

i

) = �

i

.

4

the dual linear operators @ and @

�

are associated respectively with �A and its

transpose �A

t

, where A is the incidence matrix of the underlying graph. This change

of sign is not technically signi�cant and comes from di�erent usages in the literature

on graphs: the de�nition of the incidence matrix of a directed graph that we gave

corresponds to the one used in [10, 16, 17], whereas Lefschetz [31] and Tutte [40]



co-boundaries of A, form submodules V

B

resp. V

Q

of C

1

(A) which are orthogonal

complements. Linear bases for V

B

and V

Q

are supplied by the respective sets

of fundamental cycles and fundamental cutsets of the underlying graph (S; T )

w.r.t. some spanning tree U � T . Thus every cycle may be written as a linear

combination

P

z

i

� B

i

of fundamental cycles B

i

: T ! f�1; 0; 1g, and every

co-boundary may be written as a linear combination

P

z

i

� C

i

of fundamental

cutsets C

i

: T ! f�1; 0; 1g, with integral coe�cients z

i

2 ZZ. The Parikh images

of the cycles form in turn a submodule of the free ZZ-module ZZ <E>, where the

Parikh mapping � : ZZ <T > ! ZZ <E> is the linear transformation given by

�(

P

z

i

� t

i

) =

P

z

i

� `(t

i

). In the sequel, the maps � : E ! ZZ are represented

accordingly as formal sums � =

P

z

i

� e

i

where z

i

= �(e

i

). For any two vectors

� =

P

�

i

� x

i

and � =

P

�

i

� x

i

in a �nite dimensional free ZZ-module ZZ <X>,

we let � � � denote the scalar product

P

�

i

� �

i

2 ZZ.

Proposition 7.1 (�; �) 2 R

PPN

(A) if and only if � � @(c) = � � �(c) for all

c 2 C

1

(A).

Proof: By linearity, the condition 8c 2 C

1

(A) � � @(c) = � � �(c) is equivalent to

the condition 8t 2 T � � @(t) = � � �(t) where t is identi�ed with the chain (1:t).

Now the equation � � @(t) = � � �(t) is valid if and only if �(@

1

(t)) - �(@

0

(t)) =

�(`(t)), if and only if �(@

0

(t))

�(`(t))

�! �(@

1

(t)) w.r.t. the type �

PPN

, if and only if

(�; �) 2 R

PPN

(A) by de�nition of regions.

Proposition 7.2 A map � : E ! ZZ is the second projection of some region (�; �)

2 R

PPN

(A) if and only if � � �(B) = 0 for every cycle B 2 V

B

; the regions

(�; �) 2 R

PPN

(A) which project on � are then characterized by the condition:

�(s

0

) + (� � �(c)) � 0 for every 1-chain c 2 C

1

(A) such that @(c) = s� s

0

for some

s 2 S.

Proof: From Prop. 7.1, the condition on � must hold and whenever it does,

the scalar product � � �(c) takes an identical value for all 1-chains c with an

identical boundary. From the de�nition of regions, the condition on �(s

0

) must

hold because the local states speci�ed for the type of nets �

PPN

are the non

negative integers. Now the two conditions taken together guarantee that one

can always complete the data (�(s

0

); �) to a pure region by selecting for each

state s 2 S a corresponding 1-chain c

s

such that @(c

s

) = s� s

0

and then setting

�(s) = �(s

0

) + � � �(c

s

), which is always possible since A is reachable.

Let R

abs

(A) denote the set of maps � : E ! ZZ characterized by Prop. 7.2,

henceforth called abstract regions. It appears from this characterization that the

abstract regions of A are in bijective correspondence with the co-boundaries of

A which are compatible with the kernel of the labelling function ` : T ! E.

Actually, for every abstract region � : E ! ZZ, the map � = � � ` : T ! ZZ is a

use the opposite matrix. In the same manner what we term co-boundary, following

Lefschetz and Tutte and more generally those authors who identify graphs with

1-dimensional complexes, are called cocycles in many books on graph theory.



co-boundary of A, since for every cycle B, � � B =

P

t

�(`(t)) � B(t) =

P

e

�(e) �

P

`(t)=e

B(t) = � � �(B) = 0. Conversely, every co-boundary � : T ! ZZ such

that `(t) = `(t

0

) ) �(t) = �(t

0

) determines a unique abstract region � : E ! ZZ

such that e = `(t)) �(e) = �(t), since ` : T ! E is surjective and A is reduced.

An abstract region � determines a unique region (�; �) such that �(s) = 0

for some state s, called a strict region and given by �(s

0

) = �minf� ��(c)j 9s 2

S @(c) = s� s

0

g, and an in�nite family of non strict regions (� + h; �) for h 2

IN n f0g. Now any instance of the separation problems ssp

A

(s; s

0

) or essp

A

(s; e)

solved by (� + h; �) is also solved by (�; �). For this reason, let us concentrate

on strict regions, or equivalently on abstract regions.

The set R

abs

(A) of abstract regions of A is obviously a ZZ-module. From

Prop. 7.2, a linear basis for this module may be computed as follows. Let S =

fs

1

; : : : ; s

n

g, T = ft

1

; : : : ; t

m

g, and E = fe

1

; : : : ; e

p

g. Let U � T be a spanning

tree of the underlying graph G = (S; T ), and let fB

1

; : : : ; B

m�n+1

g be the set of

fundamental cycles of G w.r.t. U . Thus fB

1

; : : : ; B

m�n+1

g is a basis for V

B

and

R

abs

(A) is the kernel of the linear transformation M

A

: ZZ

p

! ZZ

m�n+1

de�ned

by the (m� n+ 1)� p matrix M

A

with integral coe�cients

M

A

(i; j) = �fB

i

(t

k

)j 1 � k � m ^ `(t

k

) = e

j

g

Let k be the dimension of Ker(M

A

). The algorithm of von zur Gathen and

Sieveking (see [38]), givenM

A

as input, produces in time polynomial in m�n+1

and p (or jSj= n and jEj= p, because m � n� p follows from determinism of A)

a basis f�

1

; : : : ; �

k

g for Ker(M

A

) = R

abs

(A).

We have in hand all the elements needed for solving problems SSP

A

(s; s

0

)

and ESSP

A

(s; e) relatively to the type of pure Petri nets. The data needed are

the spanning tree U , or more exactly the application c

(:)

that maps each state

s 2 S to the unique chain c

s

from s

0

to s in U , and the basis of abstract regions

f�

1

; : : : ; �

k

g.

For the sake of illustration, let us exhibit these data for the automaton A

shown in Fig. 17. Here n = 8,m = 14, and p = 6. The spanning tree U , indicated

b'

a

a

c

c

b

a'

c'

c'

s

2

s

4

s

3

s

7

s

6

s

0

s

5

s

1

a'

c'

b

c

b'

Fig. 17. an automaton with one of its spanning trees (in solid lines)

in solid lines, contains n� 1 = 7 transitions, The module V

B

is generated from



the m � n + 1 = 7 fundamental cycles B

i

de�ned by the respective chords t

i

indicated in dashed lines, let t

1

= s

5

c

! s

2

, t

2

= s

3

c

! s

0

, t

3

= s

7

c

! s

4

, t

4

=

s

6

c

0

! s

1

, t

5

= s

4

c

0

! s

0

, t

6

= s

7

c

0

! s

3

, and t

7

= s

6

b

! s

7

. For instance, the chord t

1

de�nes the fundamental cycle

B

1

= (s

0

a

! s

1

) + (s

1

b

! s

3

) + (s

3

a

0

! s

5

) + (s

5

c

! s

2

)� (s

0

a

0

! s

2

)

whose Parikh image is �(B

1

) = a+ b+ c. One can verify that �(B

1

)= �(B

2

) =

�(B

3

) = a+ b+ c, �(B

4

) = �(B

5

) = �(B

6

) = a

0

+ b

0

+ c

0

, and �(B

7

) =0. The

ZZ-module of abstract regions consists of those vectors � : E ! ZZ such that:

�(a) + �(b) + �(c) = 0 and �(a

0

) + �(b

0

) + �(c

0

) = 0

It is therefore a four dimensional ZZ-module with basis as follows:

�

1

= a� c ; �

2

= b� c ; �

3

= a

0

� c

0

and �

4

= b

0

� c

0

In this example, the spanning tree U is rooted at the initial state s

0

of the

automaton. Let c

s

denote the branch of U from s

0

to s and let �

s

= �(c

s

) be its

Parikh image. Thus, we have:

�

s

0

= 0 �

s

1

= a �

s

2

= a

0

�

s

3

= a+ b

�

s

4

= a

0

+ b

0

�

s

5

= a+ b+ a

0

�

s

6

= a

0

+ b

0

+ a �

s

7

= a+ b+ a

0

+ b

0

The corresponding scalar products �

i

� �

s

are tabulated in Table 2

Table 2. states s 2 S represented by vectors (�

i

� �

s

)

i

indexed by the set of basic

abstract regions �

i

�

i

� �

s

�

s

0

�

s

1

�

s

2

�

s

3

�

s

4

�

s

5

�

s

6

�

s

7

�

1

0 1 0 1 0 1 1 1

�

2

0 0 0 1 0 1 0 1

�

3

0 0 1 0 1 1 1 1

�

4

0 0 0 0 1 0 1 1

7.3 Solving the separation problems

Let s and s

0

be two distinct states. From Prop. 7.1 and Prop. 7.2, ssp

A

(s; s

0

) has

a solution in R

PPN

(A) i� � � �(c

s

� c

s

0

) 6= 0 for some abstract region � 2 R

abs

(A)

i� �

i

� �(c

s

� c

s

0

) 6= 0 for some i 2 f1; � � � ; kg, and the strict region (�

i

; �

i

) deter-

mined from the basic abstract region �

i

by setting �

i

(s

0

) = �minf�

i

� �(c

s

) j s 2 Sg

is then a solution. Therefore, deciding whether ssp

A

(s; s

0

) has a solution and

producing it takes time polynomial in jSj and jEj.

In our running example all instances of the separation problem ssp

A

(s; s

0

)

can be solved, because all the columns of table 2 are di�erent.



Given s

0

2 S and e 2 E such that s

0

e

6!, let us now consider the separation

problem essp

A

(s

0

; e). From Prop. 7.2, this problem has a solution in R

PPN

(A)

i� there exists �(s

0

) 2 IN and � 2 R

abs

(A) such that

8s 2 S �(s

0

) + � � �(c

s

) � 0 (1)

�(s

0

) + � � �(c

s

0

) + �(e) < 0 (2)

i� there exists � 2 R

abs

(A) satisfying the condition

8s 2 S � � (�(c

s

0

)� �(c

s

)) + �(e) < 0 (3)

Whenever � satis�es condition 3, the strict region (�; �) de�ned from � satis�es

actually conditions 1 and 2 and therefore solves essp

A

(s

0

; e). Let � =

P

k

i=1

x

i

��

i

where f�

1

; : : : ; �

k

g is the basis of abstract regions, and x

i

2 ZZ. For every s 2 S,

let �

s

i

= �

i

� (�(c

s

0

) � �(c

s

)) + �

i

(e). With these notations, condition 3 may be

rewritten to the system of linear inequations f

P

k

i=1

�

s

i

� x

i

< 0j s 2 Sg in the

variables x

i

2 ZZ. Now a system of linear inequations

MX � (�1)

n

(4)

where M is an integral matrix and (�1)

n

= < �1; : : : ;�1 > (2 ZZ

n

) has an

integral solution i� it has a rational solution. The method of Khachiyan (see

[38] p.170) may be used to decide upon the feasability of (4) and to compute

a rational solution, if it exists, in polynomial time. Thus, every instance of the

problem essp

A

(s

0

; e) is solved up to a multiplicative factor, or shown unfeasible,

in time polynomial in jSj and jEj. In our running example, the system of linear

inequations which express the separation problem essp

A

(s

2

; a) is the following:

� � (�

s

2

� �

s

0

) + �(a) < 0 : x

1

+ x

3

< 0

� � (�

s

2

� �

s

1

) + �(a) < 0 : x

3

< 0

� � (�

s

2

� �

s

2

) + �(a) < 0 : x

1

< 0

� � (�

s

2

� �

s

3

) + �(a) < 0 : x

3

� x

2

< 0

� � (�

s

2

� �

s

4

) + �(a) < 0 : x

1

� x

4

< 0

� � (�

s

2

� �

s

5

) + �(a) < 0 : �x

2

< 0

� � (�

s

2

� �

s

6

) + �(a) < 0 : �x

4

< 0

� � (�

s

2

� �

s

7

) + �(a) < 0 : �x

2

� x

4

< 0

This system is solvable, and admits in particular the solution x

1

= x

3

= �1 and

x

2

= x

4

= 1. Therefore, � = ��

1

+ �

2

� �

3

+ �

4

= �a+ b�a

0

+ b

0

satis�es condi-

tion 3, and (�; �) solves essp

A

(s

2

; a) with �(s

0

) = 1. The automaton of Fig. 17

is actually separated by the set of strict regions (�

�

; �) which are indicated in

Table 3, computed from synet. The pure Petri net synthesized from this set of

admissible regions is shown in Fig. 18. For full precision, it should be said that

synet [13] does not relie on the method of Khachiyan but on the simplex method

which has cubic complexity in the average (see [38]). A quite di�erent solution to

the synthesis problem of pure Petri nets from �nite automata up to a quotient is

described in [30]. This solution is based on the investigation of minimal regions.



Table 3. values taken on states by strict regions

�

�

(s) s

0

s

1

s

2

s

3

s

4

s

5

s

6

s

7

��

1

1 0 1 0 1 0 0 0

�

2

0 0 0 1 0 1 0 1

��

3

1 1 0 1 0 0 0 0

�

4

0 0 0 0 1 0 1 1

�

1

� �

2

0 1 0 0 0 0 1 0

�

3

� �

4

0 0 1 0 0 1 0 0

�

2

+ �

4

� �

1

� �

3

1 0 0 1 1 0 0 1

b'

x

��

1

b

x

�

1

��

2

x

�

3

��

4

x

�

4

x

��

3

x

�

2

x

�

2

+�

4

��

1

��

3

c'

c

a

a'

Fig. 18. the net synthesized from the admissible set of strict regions given in table 3

The key observation is the following: let (�

1

; �

1

); (�

2

; �

2

) 2 R

PPN

(A) such that

8s 2 S �

1

(s) � �

2

(s), then (�

1

��

2

; �

1

� �

2

) is a region of A and any instance

of the separation problems which is solved by (�

1

; �

1

) is solved either by (�

2

; �

2

)

or by (�

1

� �

2

; �

1

� �

2

). Therefore, A is separated if and only if the set of its

minimal regions is admissible.

7.4 The Case of General Petri Nets

A polynomial time algorithm for the synthesis of general Petri nets from �nite

automata was proposed in [7]. This algorithm is a modi�ed form of the algorithm

just described for pure Petri nets. We indicate below the main adaptations lead-

ing to the modi�ed algorithm.

In the sequel, A is a reachable and reduced �nite deterministic automaton,

not necessarily simple. A region of A w.r.t. the type �

PN

of Petri nets is a

morphism (�; (

�

�; �

�

)) : A ! �

PN

, called a Petri region, where

�

� and �

�

are

maps from E to IN. As it was observed in [21], a Petri region is entirely deter-

mined from � and

�

� or alternatively from �(s

0

),

�

�, and �

�

. Petri regions and

pure Petri regions are connected by a pair of maps J

A

: R

PN

(A) ! R

PPN

(A)

and I

A

: R

PPN

(A) ! R

PN

(A), such that J

A

(�; (

�

�; �

�

)) = (�; �

�

�

�

�) and

I

A

(�; �) = (�; (

�

�; �

�

)) where

�

�(e) =maxf0;��(e)g and �

�

(e) =maxf0; �(e)g.



Owing to this correspondence, an instance of the separation problem ssp

A

(s; s

0

)

can be solved in R

PN

(A) if and only if it can be solved in R

PPN

(A). The re-

spective solutions are actually connected by the maps I

A

and J

A

.

The treatment of the event state separation problem is more delicate. An

instance of essp

A

(s

0

; e) can be solved in R

PN

(A) if and only if there exists

�(s

0

) 2 IN,

�

�(e) 2 IN, and � 2 R

abs

(A) such that:

1. �(e) +

�

�(e) � 0

2. 8s 2 S �(s

0

) + � � �(c

s

) � 0

3. 8s 2 S s

e

! ) �(s

0

) + � � �(c

s

) �

�

�(e)

4. �(s

0

) + � � �(c

0

s

) <

�

�(e)

A solution is then given by the Petri region (�; (

�

�; �

�

)) de�ned by

�

�(e

0

) =

maxf0;��(e

0

)g for e

0

6= e, and �

�

(e

0

) = �(e

0

) +

�

�(e

0

) for every e

0

2 E. Set

x = �(s

0

), y =

�

�(e), and � =

P

x

i

��

i

where f�

1

; : : : ; �

k

g is the basis of R

abs

(A)

and x

i

2 ZZ. With these notations, the above conditions may be rewritten to a

system of linear inequations in the k+2 variables x; y and x

i

(1 � i � k), where

w

is

= �

i

� �(c

s

):

1. y +

P

z

i

�

i

(e) � 0

2. x+

P

z

i

w

is

� 0 (one inequation for each s 2 S)

3. x� y +

P

z

i

w

is

� 0 (one inequation for each s 2 S such that s

e

!)

4. x� y +

P

z

i

w

is

0

< 0

This system, augmented with the constraints x � 0 and y � 0, is homogeneous

and can therefore be solved or shown unfeasible in polynomial time following

Khachiyan's method.

7.5 Synthesizing Bounded Net Systems up to Language Equivalence

A net system is termed bounded if its marking graph is �nite. Given a reachable

and reduced �nite deterministic automatonA, let L(A) denote the (pre�x closed)

language of words accepted by A. We face now the problem of deciding whether

L(A) = L(N

�

) for some bounded net system and if so constructing N . This

problem can be decided upon in polynomial time, for both types �

PPN

and

�

PN

, when A is given in tree-like form.

De�nition 7.3 A = (S;E; T; s

0

) is a tree-like automaton if there exists a span-

ning tree U � T rooted at s

0

, with all transitions in U directed away from s

0

,

such that for every chord s

e

! s

0

62 U , s

0

is an ancestor of s in U .

Suppose L(A) = L(N

�

), where A is tree-like and N = (P;E;W;M

0

) is a

bounded net system with type � 2 f�

PPN

; �

PN

g. For each place p 2 P , let

(�

p

; �

p

) : N

�

! � denote the associated region of N

�

. From the inclusion

L(A) � L(N

�

) and the assumption of boundedness of N , �

0

p

(M

0

) = �

p

(M

0

) and

�

p

de�ne a region in (�

0

p

; �

p

) : A ! � (seeing that s

u

! s

5

in A entails �

p

��(u) = 0

5

s

"

! s for every s 2 S, where " is the empty word, and s

u�e

! s

0

, 9s

00

2 S s

u

! s

00

^

s

00

e

! s

0

.



for � = �

PPN

). From the relation L(N

�

) = L(A), every instance of the event

state separation problem essp

A

(s

0

; e) is solved by a region (�

0

p

; �

p

) 2 R

�

(A)

de�ned as above from some corresponding place p 2 P . Conversely, if the condi-

tion essp is valid in A, then L(A) = L(N

�

) for any net system N =

P

p2P

N

p

assembled from a subset of � -regions of A admissible for essp. Therefore, in the

restricted case of tree-like automata, the synthesis problem for pure or impure

Petri nets up to language equivalence can be solved in polynomial time [2].

Now, every deterministic automaton A = (S;E; T; s

0

) may be translated to

an equivalent tree-like automaton A

0

= (S

0

; E; T

0

; (s

0

; ")) with sets of states and

transitions de�ned as follows.

{ S

0

is the set of pairs (s; u) 2 S �L(A) such that s

0

u

! s in A and every two

states of A visited in this path are di�erent;

{ T

0

� S

0

�E � S

0

is the set of transitions (s; u)

e

! (s

0

; u

0

) such that s

e

! s

0

in

A and u

0

= u � e or u

0

is a pre�x of u.

It must be noted, however, that the size of the tree-like automatonA

0

constructed

in this way is exponential in the size of A (so as the number of elementary circuits

of A, which shows that the case of general automata cannot be dealt with by

polynomial algorithms).

8 Regions in Step Transition Systems

We leave now the classical frame of (sequential) transition systems for the more

expressive frame of step transition systems, de�ned by Mukund so as to account

fully for the independence of events in general Petri nets [33].

De�nition 8.1 A step transition system (S;M; T ) over an abelian monoid M

consists of a set of states S and a deterministic transition relation T � S�M�S,

with distinguished empty steps: s

0

! s

0

i� s = s

0

. A step automaton A is an

initialized step transition system (S;M; T; s

0

) with initial state s

0

2 S, such

that every state s 2 S is reachable from s

0

in the underlying transition system

A = (S;M; T ). The step automaton A is �nite if the set of transitions T is �nite.

When M = <E> is the free abelian monoid freely generated from set E (the

elements of M are then �nite multisets over E), the step automaton A is said

to be reduced if its skeleton (S;E; T \ (S �E � S); s

0

) is a reduced automaton.

This de�nition of step transition systems extends slightly Mukund's original

de�nition, which was restricted to free abelian monoids. The extension allows to

accomodate the idea of regions as morphisms to step transition systems which do

not necessarily present the intermediate state property: s

�+�

! s

0

) 9s

00

2 S s

�

! s

00

^ s

00

�

! s

0

. The de�nition of regions in step transition systems is parametric on

enriched types of nets de�ned as follows.

De�nition 8.2 An enriched type of nets is a (deterministic) step transition

system � = (LS;LE; � ), where LE is an abelian monoid (LE;+; 0).



For instance, the enriched type of Petri nets is just the type �

PN

= (IN; IN �

IN; �), where n

(i;j)

�! n

0

2 � if and only if n � i and n

0

= n � i + j, enriched

with the operation of componentwise addition in IN � IN. As a matter of fact,

(IN� IN;+; (0; 0)) is the free abelian monoid generated from (0; 1) and (1; 0).

Each type of nets determines a speci�c concurrent �ring rule and hence a

speci�c construction of concurrent marking graphs.

De�nition 8.3 Given a net N = (P;E;W ) with (enriched) type � = (LS;LE; � ),

the concurrent marking graph of N is the step transition system (LS

P

; <E>; T )

with set of transitions T de�ned by :

(M

�

!M

0

) 2 T , 8x 2 P (M(x)

W (x;�)

�! M

0

(x)) 2 � (5)

where W (x; e

1

+ � � �+ e

n

) = W (x; e

1

) + � � �+W (x; e

n

). Given a net system N =

(P;E;W;M

0

), the concurrent marking graph of N is the step automaton N

�

=

(S;<E>; T

S

;M

0

) where S is the inductive closure of the singleton set fM

0

g

w.r.t. forward transitions in T , and T

S

= T \ (S � <E>� S).

In order to illustrate this de�nition, let us inspect the relationship between the

sequential and concurrent marking graphs of a Petri net. On the one hand, the

sequential marking graph is the induced restriction of the concurrent marking

graph on the subset of atomic steps, i.e. steps � such that �

e2E

�(e) = 1. On the

other hand, the concurrent marking graph cannot in general be reconstructed

up to isomorphism from an arbitrary copy of the sequential marking graph, even

though some additional informations are provided as in [20] by a binary relation

of independence on events depending on markings, such that e k

M

e

0

if and only

if M [ fe; e

0

g> . The example shown in Fig. 19, borrowed from [27], makes this

fact clear. Regions may now be introduced, based on the following de�nition of

c

c

a

b

a

b

b

a

c

b

a c

c

b

a

Fig. 19. three nets with an identical sequential marking graph but with di�erent con-

current marking graphs: the three events a, b, and c are independent at the indicated

marking in the �rst net whereas they are pairwise independent but not independent in

the second net; the case of the third net is more involved: at the indicated marking the

maximal sets of independent events are fa; cg and fb; cg, but a and b become indepen-

dent once c has been �red. Thus independence in Petri nets is marking dependent.

morphisms of step transition systems.



De�nition 8.4 A morphism of step transition systems from A = (S;M; T ) to

A

0

= (S

0

;M

0

; T

0

) is a pair (�; �), made of a map � : S ! S

0

and a monoid

morphism � : M !M

0

, such that s

�

! s

0

) �(s)

�(�)

! �(s

0

). The morphisms of step

automata from A to A

0

are the morphisms from A to A

0

that preserve the initial

state.

De�nition 8.5 Given a step transition system A = (S;M; T ) and an enriched

type of nets � = (LS;LE; �), the set R

�

(A) of �-type (extended) regions of A is

the set of morphisms of step transition systems from A to � . The set of �-type

(extended) regions of a step automaton A is the set R

�

(A) = R

�

(A).

By specializing this de�nition to the type �

PN

, one retrieves exactly the re-

gions de�ned by Mukund in step transition systems over a free abelian monoid

[33]. Special attention may be paid to the class of step transition systems A =

(S;M; T ) derived from asynchronous transition systems (S;E; k; T

0

) as follows:

M = <E> is the free abelian monoid generated by E (the elements of M are

�nite multisets of elements of E), s

�

! s

0

in T if and only if � is a subset of pair-

wise independent events fe

1

; : : : ; e

n

g � E (hence there is no auto-concurrency)

and there exists in T

0

a sequence of transitions s

e

1

!s

1

e

2

! s

2

: : :s

n�1

e

n

! s

n

such that

s

0

= s

n

(such sequences exist therefore for all permutations of fe

1

; : : : ; e

n

g). For

this class of step transition systems, the regions (�; �) : A! �

PN

which are safe

in the sense that �(s) 2 f0; 1gfor all s 2 S are in bijective correspondence with

the regions de�ned by Nielsen and Winskel for asynchronous transition systems

[35].

The results about (ordinary) transition systems which have been presented in

section 6 may be reproduced nearly intact in the richer setting of step transition

systems over a free abelian monoid. In particular, Def. 6.6 and 6.7 and Prop. 6.11

may be extended to step transition systems, yielding a Galois connection A �

N

�

, N � A

�

between step automata A = (S;<E>; T; s

0

) and net systems

N = (P;E;W;M

0

), for any enriched type of nets � . The following counterpart

to Theo. 6.12 for step transition systems appears in [7].

Theorem 8.6 Given a step automaton over a free abelian monoid, let A =

(S;<E>; T; s

0

), and an enriched type of nets � , a subset of extended regions

R � R

�

(A) is admissible if and only if the following separation properties are

satis�ed for all states s; s

0

2 S and for every multiset � 2 <E>:

(SSP) s 6= s

0

) 9(�; �) 2 R : �(s) 6= �(s

0

)

(ESSP) s

�

6! ) 9(�; �) 2 R : �(s)

�(�)

6�! in �

When both properties are satis�ed, A

�

=

(A

�

R

)

�

, where A

�

R

is the subnet system

of A

�

with restricted set of places R (also called the net synthesized from R).

Mukund's characterization of Petri net transition systems, established in [33],

follows directly from Theo. 8.6 applied to the type �

PN

. Nielsen and Winskel's

characterization of separated asynchronous automata, established in [35], follows

therefrom as the subcase met when imposing on regions (�; �) 2 R the constraint

that �(s) 2 f0; 1g for every state s.



An algorithm for synthesizing Petri nets from �nite step transition systems,

based on Theo. 8.6, is proposed in [7]. This algorithm is an adaptation of the ba-

sic algorithm for pure Petri nets described in section 7. Let A = (S;<E>; T; s

0

)

be some �nite and reduced step automaton. Seeing that the intermediate state

property is always satis�ed in the concurrent marking graph of a Petri net, we

assume this property from A. Thus, (s

�+�

! s

0

) 2 T ) 9s

00

2 S (s

�

! s

00

) 2 T ^

(s

00

�

! s

0

) 2 T . The import is that we may assume a compact representation for

A, given by its skeleton and the set of maximal steps at each state s 2 S.

This makes sense since the set of steps of A is bounded, from the assumption

that A is �nite. As regards the event state separation problem, let us observe

the following: if a region (�; �) solves an instance essp

A

(s; �) of this problem,

where � is a failure at s, then (�; �) solves also every instance essp

A

(s; �) such

that � < �. It is then su�cient to solve at each state s the instances essp

A

(s; �)

such that � is a minimal failure in that state. From this remark and the assumed

representation for A, the following is proved in [7].

Theorem 8.7 The synthesis problem for Petri net systems with the step �ring

rule, taking as inputs �nite step transition systems, is polynomial in their num-

bers of states and events, in the size of the largest set of minimal failures in one

state, and in the size of the largest set of maximal steps enabled in one state.

Notice that the minimal failures are not determined at a given state by the

maximal steps, as shown by the third net on Fig. 19 for which Max steps(s

0

) =

fa+ c; b+ cg and Min fails(s

0

) = f2a; a+ b; 2bg whence Min fails(s) 6� f�+ ej

� 2Max steps(s)g. Every step automaton may in fact be transformed to an or-

dinary automaton by splitting the alphabet of events: the states of the split

automaton are the pairs <s;�> where � is a step with concession at s, and each

transition s

e

! s

0

gives rise to the pair of transitions <s;�>

e

+

! <s;�+ e> and

<s;�+ e>

e

�

! <s

0

; �> for every step � = � + e with concession at s. In [1] it is

shown that the synthesis of Petri nets from step automata may be reduced to the

synthesis of pure Petri nets from ordinary automata by splitting events, which

yields a synthesis algorithm taking time polynomial in the number of higher-

dimensional states. Now if � 2Min fails(s) is a minimal failure, then <s;�>

e

+

6!

for any step � and event e such that � = � + e, and the problem essp

A

(s; �)

is equivalent to the separation problem essp

Split(A)

(<s; �>; e

+

) for the event e

+

at the higher-dimensional state <s; �>. There are (at most jEj times) more in-

stances of essp to be solved in the split automaton since � can be decomposed

as � = �+ e in several ways, but the total number of instances of the problem

essp

A

(s; �) for minimal failure � in the step automaton is already exponential

in the number of events.

In order to conclude with extended regions (�; �) where � maps steps � 2

<E> to (pairs of) integral weights, let us mention that such regions have also

been used to solve di�erent synthesis problems in the setting of generalized trace

languages [26] and general event structures [27].



9 Adjunctions between Transition Systems and Nets

In section 6, a Galois connection A � N

�

, N � A

�

between automata and net

systems was established. However A

�

and N

�

are not constructed in a symmet-

rical way: A

�

has been assembled from morphisms of transition systems from A

to the type of nets � , but N

�

has not been constructed from net morphisms. We

show in this section that N

�

can equally well be assembled from net morphisms

' : N ! �

0

where the places of �

0

encode bijectively the transitions of � .

Therefore types of nets are schizophrenic objects <�; �

0

> living both in the

category of transition systems and in the category of nets. Taking advantage of

this fact, we adapt a work of Porst and Tholen [36] on concrete dualities induced

by schizophrenic objects and construct dual adjunctions between transition sys-

tems and nets for any type of nets. We show in this way that the region based

representation theorems for transition systems are a close analogue of the clas-

sical representation theorems for ordered algebras, which all arise from concrete

dualities induced by schizophrenic objects based on the two element set 2 =

f0; 1g.

For the reader unfamiliar with schizophrenic objects, we review brie
y some

of the classical representation theorems. Birkho�'s duality between �nite dis-

tributive lattices and �nite partial orders relies on the schizophrenic object 2,

viewed as a lattice and as an ordered set where 0 � 1. The dual L

�

of a dis-

tributive lattice L is the ordered set of its prime �lters x whose characteristic

functions are the lattice morphisms �

x

: L! 2. The dual X

�

of an ordered set

X is the lattice of its upwards closed subsets l whose characteristic functions

are the morphisms of ordered sets �

l

: X ! 2. Any ordered set is isomorphic to

its double dual (X

�

=

X

��

) where x 2 X is identi�ed with x

��

2 X

��

such that

�

x

��

(l) = �

l

(x) for any upwards closed subset l � X . Any distributive lattice is

isomorphic to its double dual (L

�

=

L

��

) where l 2 L is identi�ed with l

��

2 L

��

such that �

l

��

(x) = �

x

(l) for any prime �lter x � L. Thus both units of the dual

adjunction are morphisms whose underlying maps are the evaluation maps.

Stone's duality between boolean algebras and the Stone spaces relies similarly

on the schizophrenic object 2, viewed as a boolean algebra and as a discrete

topological space. More instructive in the context of this paper is the duality

between spatial frames and sober spaces (see [28, 18]). Recall that a frame is a

complete lattice with the generalized distributivity law (�nite meets distribute

over arbitrary joins: f ^

W

i

f

i

=

W

i

(f ^ f

i

)). For any frame F , let pt(F ) be the

set of points x of F de�ned as frame morphisms x : F ! 2. The dual F

�

of F

is the topological space (pt(F ); 
) whose open sets are the sets O

f

= fx : F !

2j x(f) = 1g for f ranging over F . Conversely, the dual X

�

of a topological

space (X;
) is the frame of its open sets O 2 
, whose characteristic functions

�

O

are the continuous maps from (X;
) to the Sierpinski space 2 (with open

sets f0; 1g, f1g, and ;). Frames and topological spaces are connected by a dual

adjunction Frame(F;X

�

)

�

=

Top(X;F

�

).

By restricting this adjunction at both sides on its kernel, one obtains a du-

ality Top

�

op

�

=

Frame

�

between the subcategory Top

�

of spatial frames and the



subcategory Frame

�

of sober spaces. So, a frame F is isomorphic to its double

dual F

��

if and only if F is a spatial frame. Now, spatial frames are character-

ized by two conditions very similar to our separation conditions for automata,

when regions are replaced by morphisms x : F ! 2. Namely, a frame F is spa-

tial if and only if the following conditions are satis�ed for all f; f

0

2 F , where

f � f

0

, f = f ^ f

0

:

(i) f 6= f

0

) 9x : F ! 2 : x(f) 6= x(f

0

)

(ii) f 6� f

0

) 9x : F ! 2 : x(f) = 1 ^ x(f

0

) = 0

Condition (i) is the analogue of our state separation condition ssp. Condition

(ii) is the counterpart of our event state separation condition essp, when the

structure of labelled transition system is replaced by the structure of partial

order.

The classical dualities recalled above are concerned with points x, properties

p, and a binary relation of evaluation ev(x)(p) = p(x) valued in the underlying set

of the schizophrenic object, i.e. f0; 1g. When this relation is given a matrix form,

duality appears as matrix transposition [37]. Now, dualities between transition

systems and nets �t exactly in the same pattern: the points are the transitions

s

e

! s

0

, the properties are the regions (�; �), and the evaluation matrix given by

ev(s

e

! s

0

; (�; �)) = �(s)

�(e)

! �(s

0

) describes the local e�ect of the transitions on

the places (�; �) of the dual net. The technical development presented in the

remaining of the section is based on the material contained in [6].

9.1 Schizophrenic Objects and Dual Adjunctions

De�nition 9.1 A Set-category (or category over Set) is a pair <C; U > where

C is a category and U : C ! Set is a functor called the underlying functor. It is

a concrete category if U is faithful.

In the sequel, the underlying functor is left implicit and we use the uniform

notation jCj and jf j for respectively the underlying set of an object C and the

underlying map of an arrow f . In a Set-category C, a structured source is an

indexed family of pairs fC

i

; f

i

: X ! jC

i

jg, where the C

i

's are objects of C and

the f

i

's are maps from a �xed set X to the underlying sets of the C

i

's. A lift of

a structured source is an indexed family

~

f

i

: C ! C

i

of arrows of C such that

j

~

f

i

j = f

i

, and hence jCj = X . An initial lift of a structured source is a lift such

that, if g

i

: C

0

! C

i

is another lift and there exists a map f : jC

0

j ! X such

that jg

i

j = f

i

� f for all indices, then there exists a unique arrow

~

f : C

0

! C

such that j

~

f j = f and g

i

= f

i

�

~

f for all indices. The following de�nition is an

adaptation from [36].

De�nition 9.2 A schizophrenic object between two Set-categories A and B is a

pair of objects <K

A

; K

B

>2 jAj � jBj with the same underlying set K = jK

A

j = jK

B

j

and such that

1. for every object A in A, the family fK

B

; ev

A

(a) : A(A;K

A

)! Kg

a2jAj

of eval-

uation maps ev

A

(a)(f) = jf j(a) has an initial lift f�

A

(a) : A

�

! K

B

g

a2jAj



2. for every object B in B, the family fK

A

; ev

B

(b) : B(B;K

B

)! Kg

b2jBj

has an

initial lift f�

B

(b) : B

�

! K

A

g

b2jBj

.

A

�

, called the dual of A, is therefore an object of the category B whose underlying

set is the set of A-morphisms from A to the classifying object K

A

. If K = f0; 1g

and A is concrete, then the elements of the underlying set of the dual of A can

be identi�ed with subsets of the underlying set of A: jA

�

j � 2

jAj

and jA

��

j � 2

2

jAj

.

In any case, A and A

��

are linked by an evaluation morphism Ev

A

: A ! A

��

according to the following statement.

Lemma 9.3 Let <K

A

; K

B

> be a schizophrenic object between two Set-categories

A and B. The initial lift f�

A

(a) : A

�

! K

B

g

a2jAj

of the evaluation maps, viewed

as a mapping �

A

: jAj ! B(A

�

; K

B

), is the underlying map of an arrow Ev

A

: A

! A

��

.

As an initial lift, the dual A

�

of A is only de�ned up to an isomorphism. However,

once an arbitrary representative A

�

is �xed for each class of isomorphic objects,

the operator (�)

�

gives rise to a functor according to the following statement.

Lemma 9.4 Let <K

A

; K

B

> be a schizophrenic object between two Set-categories

A and B. For every morphism f : A

1

! A

2

in A, the map \composing with

f" given by f

�

: A(A

2

; K

A

) ! A(A

1

; K

A

): g 7! g � f is the underlying map of

an arrow f

�

: A

�

2

! A

�

1

in B such that the functoriality laws (1

A

)

�

= 1

A

�

and

(f � g)

�

= g

�

� f

�

are satis�ed.

The following proposition tells us that the two functors (�)

�

induced from a

schizophrenic object are in fact dual adjoints.

Proposition 9.5 Let <K

A

; K

B

> be a schizophrenic object between two Set-

categories A and B. The following identities, where f : A! B

�

and g : B ! A

�

,

de�ne a bijective correspondence A(A;B

�

)

�

=

B(B;A

�

):

g = f

�

�Ev

B

and f = g

�

�Ev

A

i.e. the functors (�)

�

are adjoint to the right with the evaluations as units.

In the particular case where A and B are concrete categories, the above corre-

spondence may be presented as matrix transposition. Actually, in this special

case, A(A;B

�

)

�

=

Span

K

(A;B)

�

=

B(B;A

�

) where Span

K

(A;B) is the set of matri-

ces jAj�jBj ! K whose rows, resp. columns, are underlying maps of morphisms

'

a

: B ! K

B

(for a 2 jAj), resp. of morphisms '

b

: A ! K

A

(for b 2 jBj). In

such a matrix, the set of rows determines a unique morphism from A to B

�

, and

the set of columns '

b

determines a unique morphism from B to A

�

.

9.2 Application to Automata and Nets

Let Trans be the category of deterministic and reduced transition systems

(S;E; T ) free of isolated states (8s 2 S 9t 2 T : s = @

0

(t) _ s = @

1

(t)), where

a morphism (�; �) : (S;E; T ) ! (S

0

; E

0

; T

0

) is a pair of maps � : S ! S

0

and



� : E ! E

0

such that s

e

! s

0

(in T ) entails �(s)

�(e)

! �(s

0

) (in T

0

). Trans is a con-

crete category with forgetful functor U : Trans! Sets given by U(S;E; T ) = T

and U(�; �)(s

e

! s

0

) = (�(s)

�(e)

! �(s

0

)).

Let � = (LS;LE;LT ) be an arbitrary object of Trans, called the type of

nets. LetNets be the category of event-simple nets (P;E;W ) of type � , thusW :

P � E ! LE has all columns distinct, where a morphism (�; �) : (P;E;W ) !

(P

0

; E

0

;W

0

) is a pair of maps � : P ! P

0

and � : E

0

! E such thatW (p; �(e

0

)) =

W (�(p); e

0

). Owing to the assumption of event-simpleness, � determines � in

any morphism (�; �), and Nets is a concrete category with forgetful functor

U : Nets! Sets given by U(P;E;W ) = P and U(�; �) = �.

Let �

0

= (LT; f�g;W ) 2 Nets be the net with the unique event � such that

W (`s

`e

! `s

0

) = `e for every place `s

`e

! `s

0

2 LT . Thus U�

0

= LT = U� . Figure 20

displays the net �

0

EN

corresponding to the type �

EN

of elementary nets.

U

U

x = 1

input

! 0

y = 0

output

! 1

z = 1

nop

! 1

w = 0

nop

! 0

nopnop

0 1

output

input

�

EN

�

0

EN

w

x

z

y

Fig. 20. the schizophrenic object for elementary nets

Proposition 9.6 The pair (�; �

0

) is a schizophrenic object between the cate-

gories Trans andNets, inducing a dual adjunction Trans(A;N

�

)

�

=

Nets(N;A

�

).

It remains to interpret A

�

and N

�

in more familiar terms. For any transition

system A = (S;E; T ), the homset Trans(A; �) is the set R

�

(A) of � -regions

of A. The evaluation ev

A

(s

e

! s

0

)(�; �) = (�(s)

�(e)

! �(s

0

)) classi�es therefore the

transitions t = (s

e

! s

0

) 2 T according to their local e�ect on each region. By

de�nition, A

�

is the net resulting from the initial lift of the family of evalua-

tion maps ev

A

(t) for t 2 T . The following proposition shows that A

�

coincides

with the net synthesized from the set of regions R

�

(A) up to the confusion of

indiscernible events.

Proposition 9.7 A

�

is isomorphic to the net (P;E

�

;W ) where P = R

�

(A) is

the set of regions of A, � is the equivalence relation on E such that e � e

0

when

�(e) = �(e

0

) for every region (�; �), and W ((�; �); [e]

�

) = �(e).

Now, for any net N = (P;E;W ), the homset Nets(N; �

0

) is in bijective corre-

spondence with the set of transitions of the marking graph of N . In the sample



case of elementary nets (see Fig. 21), each morphism (�; �) : N ! �

0

EN

induces

the transition �

�1

(fx; zg)

�(e)

�! �

�1

(fy; zg), and conversely, each �ring M [e>M

0

induces the morphism (�; �) such that �(�) = e and for every place p,

�(p) =

8

>

>

<

>

>

:

x if p 2M nM

0

y if p 2M

0

nM

z if p 2M \M

0

w if p 62M [M

0

Therefore, the evaluation ev

N

(p)(�; �) = �(p) classi�es the places of N ac-

(�; �)

w

y

a

z

x

Fig. 21. �rings as net morphisms

cording to the local transition they undergo in each global �ring of the net. By

de�nition, N

�

is the transition system resulting from the initial lift of the family

of evaluation maps ev

N

(p) for p 2 P .

Proposition 9.8 N

�

is isomorphic to the marking graph of N .

If one now speci�es initial states for transition systems, and forward closed sets

of markings for nets, the dual adjunction Trans(A;N

�

)

�

=

Nets(N;A

�

) may be

extended to a Galois connectionAut(A;N

�

)

�

=

Netsys(N ;A

�

) between automata

and net systems, i.e. to a dual adjunction such that A

�

�

=

A

���

for every automa-

ton A, and N

�

�

=

N

���

for every net system N . The details of the construction

can be found in [6]. By restricting the Galois connection at both sides on its ker-

nel, one �nally obtains a duality Netsys

�

op

�

=

Aut

�

between separated automata

and saturated net systems. As a consequence, the separated automata appear

as a co-re
ective subcategory of Netsys

op

. Similar co-re
ections between sep-

arated automata and nets have been established in the literature for various

categories of automata or concurrent automata, including elementary automata

[34], asynchronous automata [35], automata with concurrency relations [20], and

step automata [33].



10 Some Applications

Regions have come to use so far in two areas of application, asynchronous circuits

and distributed protocols. A computer assisted solution to the state encoding

problem for asynchronous circuits, based on elementary regions and supported

by the tool Petrify, is described in [15]. A computer assisted solution to the dis-

tribution of protocols, based on Petri regions and supported by the tool synet,

is described in [13]. Distributed and cooperative systems o�er a wide range of

problems to be solved prior to any successful application. The synthesis of strat-

i�ed Petri nets [8], a weaker form of Valk's self-modifying nets [43, 44], may

for instance be used for analysing cooperative systems in order to identify their

normal and exceptional modes of operation, and possibly for simplifying the

control of the transitions between these modes. Another goal of research is to

derive systems from service speci�cations while decomposing large speci�cations

into pieces. This might become feasible if one could solve the relaxed synthesis

problem as follows: given a pair of rational languages L and L

0

such that L � L

0

,

construct a (possibly not bounded) net system N such that L � L(N ) � L

0

.
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