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Abstract
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These notes correspond to the first lectures of the OPT module. They pro-
pose a rapid classification of optimization problems, then focus on optimization
methods in continous domains, so-called numerical optimization. The follow-
ing lectures will address combinatorial optimization (R. Andonov), and some
aspects of game theory (S. Pinchinat).

The objective of this first part is to explain the main principles of numerical
optimization methods, in order to help the student understand what type of
problem he is facing, what is its difficulty, and what method he should try.
Technical aspects related to the convergence properties of the algorithms are not
detailed. In the same way, for the sake of simplicity, we assume the functions
to optimize are regular (continuous, differentiable, etc.), and some theorem
proofs are not given. We rather insist on the geometrical interpretations. The
reference list proposed at the end should allow the reader to fill the holes that
correspond to the particular case he has to deal with. Caution : notations are
not standardized in this domain, and each book generally proposes its own
notations.

Background to understand these notes : derivation of functions of several
variables, geometry in R

d and basics of linear algebra.
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1 Classes of optimization problems: an overview

1.1 What is it all about?

Let f : D → R be a real valued function defined over some domain D. An optimiza-
tion problem consists in computing

x∗ = arg min
x∈D

f(x) (1)

so that ∀x ∈ D, f(x∗) ≤ f(x). In general one is simply interested in obtaining
one point x∗ among the possibly many points that achieve the minimum of f . The
function f is called the cost function. Optimization problems sometimes appear
with a max instead of the min, and f is then called the objective function. This
doesn’t change the formalism : maximizing f is equivalent to minimizing −f .

The parameters x to optimize may lie in a continuous domain, i.e. a subset of
R

d, or in a discrete domain. This establishes the distinction between numerical op-
timization and combinatorial optimization, that use very different techniques,
although some connections exist.

In numerical optimization, it is often convenient to further distinguish between
unconstrained problems, for which x can take any value in R

d, and constrained ones,
for which the range of x is limited by extra conditions (for example ‖x‖2 = 1).

Notations. The coordinates of an element x ∈ R
d will be denoted as x1, ..., xd.

By abuse of notations, we sometimes write f(x) = f(x1, ..., xd) to stress that f is
a function of d variables. To simplify the expression of some functions, we use the
matrix notation, where x and other vectors are represented as column vectors
(or matrices d × 1) : x = [x1, ..., xd]

t. The superscript t denotes the transposition
operation on matrices.

1.2 Numerical optimization

In continuous domains, problems can be classified as follows, by order of complexity.

1.2.1 Unconstrained problems

Here x is free to explore R
d (but the dimension d can be large). f is generally

continuous, and often Cn, i.e. n times differentiable, for some n > 0.

Quadratic problem. Here f : R
d → R is a quadratic form, i.e. can be expressed

as f(x) = xtAx+ btx where A is a symmetric matrix of R
d×d and b ∈ R

d a vector.
We study this case in detail below (section 2.1). These problems can be solved
exactly and their solutions admit a closed form expression.

We recall that btx =
∑d

i=1 bixi is the scalar product of vectors in R
d. The

product Ax of a matrix by a vector yields a vector, and so xtAx is a scalar.
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Convex problem. This situation refers to cost functions that satisfy

∀ 0 ≤ α ≤ 1, ∀x, y ∈ D, f [αx+ (1 − α)y] ≤ αf(x) + (1 − α)f(y) (2)

Let us say that x is a local minimum of f iff there exist some ε > 0 such that
‖y − x‖ < ε implies f(x) ≤ f(y). In other words, inside a small ball of radius ε
around x, there is no smaller value of f than f(x). Convex functions satisfy the
following nice property : every local minimum of f is also a global minimum. This
is very convenient in practice : this means that optimization methods based on a
descent scheme (find around the current x some y for which f is smaller) will not
converge until they reach a global minimum.

Non linear problem. This refers to all other cases. However the most regular
(=differentiable) f is, the simpler the optimization problem in general. There are
few cases for which closed form expressions of the optimum exist. In general, one
must deploy numerical search methods, that try to improve a current estimate x of
the min by making a small step around x. Such methods often get trapped in local
minima of f . Imagine for example f having the shape of a bended egg box.

1.2.2 Problems with linear constraints

Here we assume x ∈ R
d and also satisfies

∀ 1 ≤ j ≤ n, θj(x) = bj
t x+ cj ≤ 0 (3)

where bj ∈ R
d is a vector, bj

t x denotes the scalar product (of column vectors), and
cj ∈ R.

Linear program. Corresponds to the case where the objective function f is itself
a linear function f(x) = btx, b ∈ R

d. These problems are often presented as a
maximization issue, and one generally finds the constraints xi ≥ 0 among the θj .
Each constraint θj(x) defines a half-space of R

d, and the legal values of x are thus
contained in the intersection of these half-spaces, which is a convex volume. The
boundary of this volume is called a simplex (Fig. 1).

The equations f(x) = t for t ∈ R define parallel hyperplanes, that are orthogonal
to the vector b. In effect, let x1, x2 satisfy f(x1) = f(x2) = t, then bt(x1 − x2) = 0,
which means that x1 − x2 is orthogonal to b. We will see later that b is the gradient
of f , which indicates the direction in which f increases the most.

Some of the hyperplanes f(x) = t cross the simplex, others don’t, and some of
them are just “at the limit.” The problem thus consists in finding the maximal
value of t for which f(x) = t still touches the simplex, and to isolate the intersection
points x∗ of this hyperplane with the simplex. Due to the linearity of f and of the
boundaries of the simplex, the contact is either on a corner of the simplex, or on an
edge, or on a face. In any case, an optimum x∗ is found on a corner.

The simplex method thus amounts to exploring only the corners of the simplex
to find an optimum. In that sense, it is related to combinatorial methods. It is found

5



f(x)=t"
f(x)=t’

f(x)=t

x1

x2

(x)=01θ

(x)=0
2θ

3 (x)=0
θ

b

Figure 1: A simplex (border of the gray zone) in R
2 defined by 5 linear constraints,

and different level planes of the cost function, t′ < t < t′′.

in the literature under the name linear programming.1 The interior points
methods rather explore the interior of the simplex and try to get closer to the
faces, while optimizing f . They are mostly applied when f is not linear.

Example. Products A,B and C are sold at prices pA, pB and pC per unit, respec-
tively. To produce each unit of these products, one consumes quantities mA,mB,mC

of matter, and needs tA, tB, tC time. For a given amount of matter, and a limited
time, find the right quantities to produce in order to maximize the income.

Quadratic program. This corresponds to the case where f is quadratic, and
constraints are linear. Addressed by quadratic programming methods.

Non-linear program. All other functions. Again when f is convex, things are
simpler.

1.2.3 Problems with non-linear constraints

Here, the difficulty also comes from the nature of constraints. Implicitly, it is sup-
posed that constraints are not strong enough to transform domain D into a discrete
domain... The classification is essentially the same as above.

1.3 Combinatorial optimization

Here x ranges over a discrete domain D. There can exist a topology in D, for
example D = N

d, which gives sense to the notion of local minimum. Or D can be
more complex, for example the set of paths in a graph.

Again we classify them according to their difficulty.

1The term “programming” doesn’t mean programming a computer, but refers to programming
tasks or actions to achieve an objective. This term comes from the early military applications of
optimization methods, which were also at the origin of the discipline called “operational research.”
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1.3.1 Easy problems

This refers to problems for which an exact solution can be found in polynomial time.
Domains D are often defined from a graph. For example :

Dynamic program. Consider a graph G = (V,E, c) where V is the vertex set,
E ⊆ V × V represent the edges (non-oriented for simplicity), and c : E → R is a
value on each edge. One wants to determine the shortest path from s ∈ V to s′ ∈ V ,
where the length of a path is obtained by summing the lengths c(e) over all edges e
composing this path.
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Figure 2: Left : A graph with edge costs. Right : shortest paths from s to all nodes.

Observing that if the shortest path goes through s′′, then the section from s to
s′′ is also the shortest, one derives a recursion on shortest paths from s to all other
nodes (Fig. 2). Which opens the way to a recursive resolution called dynamic
programming.

Exercise 1 Write a dynamic programming algorithm, that computes the minimal
distance of s to all nodes, and prove its convergence. Hint : introduce a set of active
nodes, that have been newly reached, or for which the shortest distance from s has
just been modified. Initialize this set with the neighbours of s. Build a recursion by
exploring the neighbuors of one node in the active set (that will then becom inactive).

Optimal covering tree. Here the problem is to select edges in G that reach all
nodes and has minimal weight. A trivial greedy procedure gives the solution (Prim
or Kruskal algorithms), see Fig. 3. The idea is to sort edges by increasing weights,
and to take them in order. When an edge closes a cycle, it is rejected.
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Figure 3: Left : A graph with edge costs. Right : An optimal covering tree.

Exercise 2 Write the algorithm and prove its convergence.
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Flow problems. Now c(e) represents the capacity of an edge, seen as a pipe. The
problem is to compute the maximal flow (of “liquid,” say) from a node s to a node
s′, such that the flow on each edge remains lower than its capacity.

Again, a simple greedy procedure gives the solution (the Ford-Fulkerson algo-
rithm) : find a path from s to s′, maximize the flow on it, then reduce the capacity
of each edge on this path by the value of this maximal flow. Repeat until s and s′

are disconnected (an edge of capacity 0 is equivalent to its absence).

/11

/11

/21

/41

/22

/31 /10 /22

/21/32
/11/11

/11 /11 /11

/20

/11

s s’ s s’

Figure 4: Left : A maximal flow from s to s′. On each edge, the first value (blue)
indicates the flow, the second one (red) the capacity. Right : edges reaching their
capacity are in dashed grey, thick edges represent a minimal cut, of value 5.

Exercise 3 Write the algorithm and prove its convergence.

Recall that finding the value of the maximal flow is equivalent to finding the
value of a minimal cut in the graph, where a cut is a set of edges that separates
s from s′, and where the price of a cut is the sum of the c(e) over this set of edges
(see Fig. 4).

Multi-flow problems, where one wants to maximize several flows over the same
graph, are different in nature and more complex to solve.

1.3.2 Integer linear program

As for a linear program, the objective function f is linear. The domain D is defined
by linear inequalities θj(x) = bj

t x + cj ≤ 0 and by x ∈ N
d (see Fig. 5). By

rounding the optimal solution of a linear program, one can get an approximation
(or initial guess) of the optimum of an integer linear program. The quality of this
approximation varies with the nature of constraints : when the simplex is very flat,
the best integer solution may be far from solutions in R

d. In general, such problems
are NP hard.

Example : the knapsack problem. Consider a limited volume knapsack, and a
collection of objects Ok with volume vk and utility uk. The objective is to maximize
the global utility of your knapsack, by selecting objects, under the volume constraint.

1.3.3 Complex problems

Very rapidly, combinatorial optimization problems become NP hard or NP complete,
and the search for the optimum is hopeless. But good approximations may be
accessible. For example :
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Figure 5: Integer linear programming : only points inside the simplex and with integer
coordinates are permitted (represented as green dots).

• Traveling salesman. Consists in finding an optimal hamiltonian path in
G, i.e. a cycle that goes once and only once through each vertex. The cost
function is of course the sum of the edge costs c(e) in this path. This problem
is NP complete, but there exist efficient heuristics to build “good” paths, in
particular when the edge costs correspond to Euclidean distances.

• Maximal coupling. A coupling in a graph G is a set of edges that have no
vertex in common (we “mary” nodes). Finding the largest coupling in G is an
NP complete problem.

• Maximal clique. Similarly, a clique of G is a subset of nodes that are pairwise
connected by edges of E. Finding the largest clique is NP complete as well.

In the above cases, solutions can only be obtained by smartly exploring the domain
D of possible solutions, with a branch and bound technique. The latter consists
in exploring all possibilities by taking local decisions, arranged under the form of a
decision tree. The main idea is to quickly decide that one branch will not lead to
an optimum x∗, or at least to an acceptable solution, in order to quickly backtrack
and explore a more promising branch. The art is to design heuristics that allow us
to estimate reliably that one branch is promising or not.

In some cases, one can approximate a combinatorial problem by a continuous
domain problem, to which numerical methods can then be applied. For example the
integer linear programming above can be addressed by first dropping the constraint
of an interger solution.

There exist cases where the problem is already to find an acceptable solution
in D ! When D is defined by a huge collection of constraints, one is already happy
if the problem has a solution, i.e. if D is non empty... Finding the “best” one is a
secondary objective. These problems are addressed by constraint solving methods,
or other ad hoc techniques (temporal logics, for ex.). For example :
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• Puzzles, games. Like Eternity, sudokus, SAT problems. Or like the associa-
tion of classrooms, teachers and students in a college to cover the program of
each class over the week.

• Planning problems. One is given a set of resources, and a set of actions that
consume some resources and produce others. Resources can be understood as
binary variables (present/absent). The objective is to arrange the actions
in order to reach a given global state, i.e. the simultaneous presence of a
collection of resources. As a secondary objective, one may try to minimize the
number of actions.

1.4 A few variations

Optimization multi-criterion. Some optimization problems involve several cost
functions and want to minimize at the same time f1(x) and f2(x) in the same
variable x. Imagine for example doing some shopping with several children to satisfy
and a limited budget... A straigtforward solution consists in combining all criteria
in a single one, like in f(x) = α1f1(x) + α2f2(x), but this is not always meaningful.

Game problems. Let us divide the parameter vector x ∈ R
d into sub-vectors

xt = [x1
t, ..., xK

t] with xk ∈ R
dk and

∑

k dk = d. Instead of globally optimizing
x, assume that we have K players, and that player k is in charge of tuning the
sub-vector xk of parameters.

The objective can be to jointly minimize the same cost function f(x), in which
case we have a cooperative game. This can also be considered as a distributed
optimization problem. The issue is often to understand what players should know,
what they should communicate, when, and how they should behave.

In many cases, one has an competitive game. Each player tries independently
to minimize its own cost function fk(x), that depends on the full vector of parameters
x, while player k only pilots part of it.

Functional optimization. (also called variations calculus). There exists op-
timization problems where the parameter x to optimze doesn’t lie in R

d but in an
infinite dimensional space. Consider for example the question of designing the shape
of a toboggan, with fixed height and length, in order to minimize the travel time of
a child (the brachistochrone problem). Consider also the determination of the shape
of a hanging rope, fixed at its two extremities, which minimizes its potential energy.
In both cases, the “parameter” to adjust is a function , not a vector. Such problems
are more involved mathematically, and won’t be covered in these notes.
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2 Some problems that can be solved analytically

This section examines some situations where the objective function is relatively
simple and allows us to derive an exact expression of its minimum. These cases are
frequent... because people state problems in a way they can solve them easily!

2.1 Quadratic forms and vectorial notation

Assume f : R → R is quadratic, i.e. f(x) = ax2 + bx+ c, then its minimum is easy
to obtain : Compute the derivative f ′(x) = 2ax+ b and solve f ′(x) = 0, then check
that this point x∗ = − b

2a is indeed a minimum, not a maximum, which is granted if
a > 0. Notice that this amounts to putting f under the form f(x) = a(x−x∗)2 + c′.
The general case where x ∈ R

d can be solved in the same way, up to a few extra
technicalities.

f : R
d → R is a quadratic form iff it is a polynomial in the coordinates xi

of x, and monomials have order 2 at maximum. For example, assuming d = 3,
f(x) = f(x1, x2, x3) = x1

2 +x3
2 +2x1x2 +2x2 +x3 +1. Quadratic forms can always

be expressed as

f(x) = xtAx+ btx+ c (4)

where A ∈ R
d×d is a d×d symmetrical matrix (At = A), b ∈ R

d is a vector and c ∈ R

a constant. Observe that each term in this sum is a scalar (check matrix dimensions
rules). In particular, in this notation btx is the scalar product of vector b with
vector x, since btx =

∑d
i=1 bixi. And in particular xtx =

∑

i xi
2 yields the square

norm of vector x.

If A is diagonal, which we denote by A = ∆ = diag(a1, ..., ad), f can be
minimized very easily : f(x) − c =

∑

i(ai xi
2 + bixi) =

∑

i fi(xi) so it suffices to
minimize independently the scalar functions fi . The minimum is unique iff all ai

are positive : f has a “bowl” shape (elliptic paraboloid) when d = 2 (Fig. 6, left).
The minimum is not unique when at least one of the ai is negative, since f can
go to −∞. For d = 2, when the ai have different signs, f has a saddle shape
(hyperbolic paraboloid, Fig. 6, right), or is a reversed bowl when all ai are negative.
In the particular case where one of the ai = 0 for some i, the surface defined by f is
a “gutter,” with a parabolic profile.

When A is a positive diagonal matrix, observe that one can re-express f as

f(x) = (x− x∗)tA(x− x∗) + c′ (5)

where x∗ = [x∗1, ..., x
∗
d]

t is the vector of optimal values.

In the general case where A is not diagonal, the problem is the same... up to
a change of coordinates. As a symmetric matrix, A can be diagonalized as

A = P∆P t (6)

where P is formed by juxtaposing the (column) eigenvectors pi ∈ R
d of A : Api =

λipi and ∆ = diag(λ1, ..., λd) is the diagnonal matrix containing the eigenvalues λi
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Figure 6: For d = 2, two typical shapes quadratic forms. The bowl (left) when
all eigenvalues of A are positive, and the saddle (right) when eigenvalues of A have
opposite signs.

of A (λi ∈ R). The pi form an orthonormal basis of R
d, i.e. pi

tpi = 1 and pi
tpj = 0

for i 6= j. So P is a unitary matrix : PP t = 1I and P t is the inverse of P . P t must
be read as a change of coordinates : one goes from the canonical basis of R

d to the
orthonormal basis formed by the pi.

If P is available, let us change variables by taking x = Py or y = P tx (we
express x in the new orthonormal basis of the pi, since x = Py =

∑

i yipi, a linear
combination of column vectors). One gets

f(x) = f(Py) = f̄(y) = ytP tP∆P tPy + btPy + c = yt∆y + (P tb)ty + c (7)

Since f̄(y) is diagonal, its minimum y∗ is easily computed, and yields the minimum
x∗ = Py∗ for f(x).

In practice, however, diagonalizingA is as complex as inverting it (complexity=d3).
It is much simpler to derive x∗ directly. The idea is to derive f on all its coordinates,
which yields the gradient2 of f , and to find the point where this gradient vanishes.

The gradient g(x) = ∇f(x) is a (column) vector [g1(x), ..., gd(x)]
t defined by

gi(x) =
∂f(x)

∂xi
(8)

Denoting by ai,j the entries of A, one easily checks that ∂f(x)
∂xi

= 2
∑

j ai,j xj + bi,
which yields

g(x) = 2Ax+ b (9)

So the (candidate) minimum of f is obtained for

x∗ = −1

2
A−1b (10)

when A is invertible3 (i.e. has only non-null eigenvalues). Solving a linear system is
much simpler than inverting A (complexity=d2 instead of d3). When all eigenvalues
of A are positive, x∗ is indeed the unique minimum of f . Otherwise, x∗ corresponds
to the “saddle point” of f (see Fig. 6, right).

2More details are given later on the notion of gradient.
3We’ll see below how to proceed with pseudo inverses when A is not invertible.

12



2.2 Example 1: Curve fitting

Assume we are given N points p(1), ..., p(N) in R
2, and we want to draw a line that

best describes these points. This line L is defined by a linear equation

L : x1 p1 + x2 p2 + x3 = 0 (11)

where (p1, p2) denotes the coordinates of a point in R
2 and x = [x1, x2, x3]

t defines
the desired parameters of line L. Observe that the xi are defined up to a constant,
so in reality one of the xi can be set to 1.

+

+

+
+

+
p(1)

p(2)

p(3)
p(4)

p(5)
+

+

+
+

+
p(1)

p(2)

p(3)
p(4)

p(5)

Figure 7: Two criteria to adjust a line through a cloud of points.

What criterion should we use ? A first guess would be to minimize the distance
of all points p(n) to line L (Fig. 7, left).

arg min
x
f(x) with f(x) =

N
∑

n=1

D(p(n),L) (12)

One easily shows that the distance of a point p to L is given by (exercise)

D(p,L) =
x1 p1 + x2 p2 + x3√

x1
2 + x2

2
(13)

which is highly non linear in x, and so not easy to minimize... The difficulty remains
if we consider the sum of square distances : we still have a quotient of quadratic
functions to minimize.

In practice, people prefer to use the “vertical” distance to the line (Fig. 7, right),
given by (exercise)

Dv(p,L) =

∣

∣

∣

∣

x1 p1 + x2 p2 + x3

x2

∣

∣

∣

∣

(14)

assuming that x2 6= 0, i.e. that the line L isn’t vertical. If we normalize (11) to
have x2 = 1, and choose to minimise the sum of these square distances, we get a
nice quadratic form in the remaining parameters x1, x3.

Exercise 4 Give the expression of this criterion under the form (4).

Exercise 5 How does the criterion change if we choose to set x3 = 1 instead of
x2 = 1 in (11)? Is it still quadratic form in x?
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This quadratic criterion is extremely useful in practice. It generalizes very easily :

• For example, one can try to fit a parabola

P : p2 = x1 p1 + x2 p1
2 + x3 (15)

to a cloud of points. Or any polynomial of p1 in fact. The criterion remains
quadratic in the unknown parameters x.

• In the same way, in dimension d > 2 this time, one can try to adjust a hyper-
plane

P : x1 p1 + x2 p2 + ...+ xd pd + xd+1 = 0 (16)

to a cloud of points (where again the xi are defined up to a constant).

The weakness of this criterion, however, is its high sensitivity to outliers : if all
points are aligned excepted one that is far away, the latter will deviate the line from
the orientation given by all the others, resulting in a meaningless interpolation. This
is in fact a bad feature of most curve fitting methods, which therefore must introduce
special treatments to detect outliers and correct their effects.

Exercise 6 Compute the best line that fits points p(1) = [−1, 1]t, p(2) = [0, 0]t, p(3) =
[2, 4]t in the plane.

Exercise 7 Compute the best parabola that fits the same points.

2.3 Example 2: Best point correspondence between two images

Consider two consecutive images I1, I2 in a sequence. They represent the same scene
but a camera move took place between I1 and I2, so that objects appear shifted
in I2. We want to estimate this apparent move. Assume N characteristic points
p(1), ..., p(N) have been identified in I1, that correspond to points q(1), ..., q(N) in
I2. This association is assumed to be exact (which is rarely the case in practice).

I 1 I 2

p(4)

p(2)p(1)

p(3)

q(1)

q(3)

q(2)
+

+

+

+

+
+

+ + q(4)

Figure 8: Matching points between two images.

We model the transform from I1 to I2 as a similitude, a linear transform com-
posed of a rotation, a dilation and a translation. Formally, this map writes

q = Hp+ T where H =

[

x1 x2

−x2 x1

]

and T =

[

x3

x4

]

(17)
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T is the translation vector and H combines a rotation and a dilation (by factor√
x1

2 + x2
2). So we have an optimization problem in R

4.
Once again, we can choose to minimize the square distances between the q(n)

and the images by (17) of the p(n), which yields :

arg min
x
f(x) with f(x) =

∑

n

‖Hp(n) + T − q(n)‖2 (18)

which is easily seen to be a quadratic criterion in x.

Exercise 8 Give the expression of this criterion under the form (4).

2.4 SVD and pseudo-inverse

Before extending the list of examples, let us introduce two very useful notions.

Consider a matrix M ∈ R
n×d, where possibly n 6= d. M can always be decom-

posed as

M = U∆V t with U ∈ R
n×n, ∆ ∈ R

n×d, V ∈ R
d×d (19)

where both U and V are unitary matrices (U tU = 1In and V tV = 1Id
4), and

∆ is a (non-square) diagonal matrix containing the singular values of M (see
Fig. 9). This singular value decomposition (SVD) generalizes the diagonalization
of symmetric matrices.

= UM
0

∆

V t =M U V t
0

∆

Figure 9: Illustration of matrix dimensions in the SVD of M ∈ R
n×d, for n ≥ d

(left) and n ≤ d (right).

Denoting by u(i) and v(i) the i-th column in U and V respectively, and by λi the
diagnonal elements of ∆, (19) expresses that vector v(i) is mapped by M to λi u(i) :

Mv(i) = λi u(i) (20)

There is a direct relation between SVD and diagonalization. Observe that MM t

is a (positive semi-definite) symmetric matrix, and thus admits a diagonal form.
(19) reveals that

MM t = U∆∆tU t (21)

so the u(i) are the eigenvectors ofMM t, with eigenvalues λi
2 (all non-negative). And

symmetrically the v(i) are the eigenvectors ofM tM , with the same eigenvalues. This
is in fact how (19) is derived.

41In denotes the identity matrix of dimension n. We omit the subscript n when it is obvious.
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The SVD provides the clearest way of understanding the notion of pseudo-
inverse. The pseudo-inverse of M ∈ R

n×d is a matrix M † ∈ R
d×n that satisfies

MM †M = M (22)

M †MM † = M † (23)

(MM †)t = MM † (24)

(M †M)t = M †M (25)

so M † “almost” behaves as an inverse for M , but MM † 6= 1In and M †M 6= 1Id
(in general). In the case of a diagonal matrix like ∆, the pseudo-inverse ∆† is also
diagonal, with reversed dimensions. Its diagonal terms are given by

λ†i =

{ 1
λi

when λi 6= 0

0 otherwise
(26)

For example

∆ =









2 0 0
0 1 0
0 0 0
0 0 0









=⇒ ∆† =





0.5 0 0 0
0 1 0 0
0 0 0 0



 (27)

The general case is obtained from the SVD :

M = U∆V t =⇒ M † = V∆†U t (28)

and it is easy to check that M † satisfies the four conditions above (exercise). More-
over, one has the following properties :

(M †)† = M (29)

(M †)t = (M t)† (30)

M † = M−1 for M invertible (31)

(M tM)†M t = M † (32)

M tMM † = M t (33)

Exercise 9 Prove the above relations, using the SVD of M when necessary.

2.5 Example 3: Best solution to a linear system

Back to optimization problems. In many situations, one has to solve a linear system

Mx = y (34)

in the unknown vector x ∈ R
d, and with n equations : M ∈ R

n×d, y ∈ R
n. When

n < d, this system has an infinite number of solutions, and one may want to find
the one with minimal norm, which looks like an optimization problem under the
constraint (34). But when n > d, the system can be overconstrained and may not
have exact solutions.
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Both cases are captured by the following approach, called a least squares esti-
mation. Let us look for the best match of y with Mx, i.e. let us minimize the norm
of the error e = y −Mx :

arg min
x
f(x) with f(x) = ‖Mx− y‖2 = (Mx− y)t(Mx− y) (35)

This quadratic criterion can of course be put under the form of (4) : A = M tM
is a d × d positive matrix, and b = −2M ty, c = yty. The definition of A imposes
non-negative eigenvalues, so f has either a bowl shape or a gutter shape. Its minima
are characterized by a vanishing gradient g(x) = 2Ax+ b = 0, which corresponds to

M tMx = M ty (36)

If M has full rank (Rank(M) = Rank(M tM) = d), then M tM is invertible, and
there is a unique minimum to f given by

x∗ = (M tM)−1M ty = M †y (37)

In the general case, Rank(M) < d and so M tM is not invertible (gutter case), and
there exist an infinite number of minima to f . To characterize them, let us plug
in (36) the SVD M = U∆V t. One gets

(V∆tU t)(U∆V t)x = (V∆tU t)y

∆t∆(V tx) = ∆t(U ty)

∆t∆x̄ = ∆tȳ (38)

so it suffices to solve the last equation in the new variable x̄ = V tx (with ȳ = U ty).
Choosing

x̄∗ = ∆†ȳ or equivalently x∗ = M †y (39)

gives the solution to (38) with minimal norm x̄tx̄, and so the solution to (36) with
minimal norm (recall that as a unitary matrix, V t preserves the norm). Observe
that x̄∗i = 0 whenever λi = 0 in the diagonal matrix ∆. All other solutions are
obtained by setting these components x̄∗i to any value (which of course augments
the norm). This corresponds to adding to x∗ any linear combination of the column
vectors v(i) of V for which λi = 0. All these values of x∗ define the “bottom of the
gutter.”

Notice that the SVD and the pseudo-inverses give insight on this minimization
problem, but shouldn’t be used as such for large dimension problems : they have
the same complexity as matrix diagonalization or matrix inversion. In practice,
one will solve (36) by triangulation, i.e. using an LU decomposition or Choleski
decomposition of A. The latter are easy to build by successive products of A with
suitable Householder matrices (see [1]).

As we have seen, it is very convenient to minimize quadratic forms. One may
prefer other criteria, for example minimize the L1-norm of the error vector e, i.e.
∑

i |ei|, instead of the L2-norm. The L1-norm better favors sparse vectors, i.e.
minimizes the number of non-null entries, or equivalently maximizes the number of
linear equations that are satisfied. This may be a desirable feature, but it imposes
more complex optimization techniques...
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2.6 Example 4: Intersection of N lines

A typical application of the previous section. Consider N lines in R
2, given by

L(n) : an,1 x1 + an,2 x2 = an,0 1 ≤ n ≤ N (40)

We want to compute their intersection point x. There is little chance that it exists...
but we may want to find the best point that matches these relations (Fig. 10). A
standard problem in navigation, implemented in all GPS receivers.

Figure 10: Best intersection of N lines in R
2.

The problem of course generalizes directly to the intersection of N hyperplanes
in dimension d.

2.7 Example 5: Estimation in presence of random noise

We consider the case where an unknown parameter x ∈ R
d is observed through a

linear equation perturbed by a random (Gaussian) noise :

Y = Hx+ V where H ∈ R
n×d, V ∼ N (0, R) (41)

The observation noise V , a random vector in R
n, follows a centered Gaussian law

with covariance matrix R ∈ R
n×n. If we observe/measure the value y for Y , what

is the most likely value of x ?

2.7.1 Minimal background on Gaussian vectors

U ∈ R
n is a Gaussian vector of mean mu ∈ R

n and covariance matrix PU ∈ R
n×n,

denoted by U ∼ N (mU , PU ), iff its probability density is given by

p(u) =
1

(2π)n/2(detPu)1/2
exp[−1

2
(u−mU )tPU

−1(u−mU ) ] (42)

18



One has the following remarkable expected values

E(1) =

∫

Rn

p(u)du = 1 (43)

E(U) =

∫

Rn

u p(u)du = mu (44)

E[ (U −mU )(U −mU )t ] =

∫

Rn

(u−mU )(u−mU )t p(u)du = PU (45)

E(‖U −mU‖2) =

∫

Rn

(u−mU )t(u−mU ) p(u)du = Tr(PU ) (46)

where Tr(PU ) is the trace of matrix PU , i.e. the sum of its diagonal entries. Assume
we want to estimate U with a constant c ∈ R

n, with the following criterion

arg min
c

E( ‖U − c‖2 ) (47)

The best c is called the minimum mean square estimate (MMSE) of the random
vector U .

Exercise 10 Prove that c∗ = mU .
Hint : show that E[ (U − c)t(U − c) ] = Tr(PU ) − 2mU

tc+ ctc.

Exercise 11 Prove that the most likely value of U , i.e. arg maxu p(u), is also given
by u∗ = mU .

So, for a Gaussian vector U , its MMSE estimate as well are its maximum likelihood
estimate are both equal to its mean mU .

2.7.2 Maximum likelihood (ML) estimate of x

Back to (41). When Y is fixed to its observed value y, what is the most likely value of
x ? More precisely, what is the most likely value of the (non observed) measurement
noive V ? It can be determined by adjusting x in order to maximize the likelihood
p(v) for v = y −Hx. In other words,

x∗ = arg min
x

‖y −Hx‖2
R−1

= arg min
x

(y −Hx)tR−1(y −Hx) (48)

This is of course a quadratic program.

Exercise 12 Prove that

x∗ = (HtR−1H)†HtR−1y (49)

Compe this expression with (39), taking into account (32), and observe that it
assigns different weights to the components of the measured vector y, to account for
the different noise levels. Imagine for example that R is diagonal : coordinates of y
perturbed by a high level of noise are damped in proportion, so the estimate of x
relies less on them. When R is proportional to the identity, it disappears from (49).
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2.7.3 Maximum a posteriori (MAP) estimate of X

In some cases, X is itself a random vector, X ∼ N (mX , PX), and the measurement
Y = HX + V , as a linear combination of Gaussian vectors, remains a Gaussian
vector. It is generally assumed that X and V are independent, which is equivalent
to decorrelation in the Gaussian case, so E(XV t) = 0.

Exercise 13 Show the relations

mY , E(Y ) = HmX (50)

PX,Y , E[(X −mX)(Y −mY )t] = PXH
t (51)

PY , E[(Y −mY )(Y −mY )t] = HPXH
t +R (52)

Hint : use (44,45) and the independence of X and V .

The MAP estimate of X consists in computing

X̂(y) = arg max
x

p(x|Y = y)

= arg max
x

p(x|Y = y)p(Y = y)

= arg max
x

p(x, y) (53)

which is a function of the observation y. Notice that optimizing the conditional
density p(x|Y = y) or the joint density p(x, y) gives the same estimate, since y is
fixed5.

This joint density is obtained by noting the independence of X and V , so
p(x, v) = p(x)p(v), and operating the change of variables V = Y −HX, so

p(x, y) ∝ exp[ −1

2
(x−mX)tP−1

X (x−mX) − 1

2
(y −Hx)tR−1(y −Hx) ] (54)

and its maximum in x for a fixed y is again a quadratic program with

f(x) = (x−mX)tP−1
X (x−mX) + (y −Hx)tR−1(y −Hx) (55)

Exercise 14 Prove that the minimum is given by

X̂(y) −mX = (P−1
X +HtR−1H)−1HtR−1(y −mY ) (56)

Observe that this relation is very similar to (49) when mX = 0 : some extra ponder-
ation by PX has been added to account for the a priori knowledge one has on the
components of X.

X̂, as a linear function of the Gaussian variable Y , and so is a Gaussian variable
itself (when y varies). Its mean is given bymX , and its variance by the quite complex
expression PX̂ = (P−1

X +HtR−1H)−1HtR−1PYR
−1H(P−1

X +HtR−1H)−1, that we
derive from (56).

These relations can be derived in a different way, using a minimum mean square
estimation. Assume for simplicity that d = 1, so X is a scalar Gaussian random

5Recall Bayes relation, that defines the conditional density : p(x|y) = p(x, y)/p(y).
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variable, and that X and Y have zero mean. Let us build an estimate X̂ of X as a
linear combination of components of Y , X̂ = mtY , m ∈ R

n, in order to minimize
the variance of the estimation error X̃ = X − X̂ :

m∗ = arg min
m

E [ (X −mtY )2 ]

= arg min
m

E [ (X −mtY )(X − Y tm) ]

= arg min
m

mtPY m− 2PX,Y m+ PX (57)

Again this is a quadratic program in vector m, and the optimum is given by

(mt)∗ = PX,Y P
−1
Y = PXH

t(HPXH
t +R)−1 (58)

Back to the general case, where X is a non centered random vector. Doing this
estimation for each coordinate of X yields

X̂ −mX = PX,Y P
−1
Y (Y −mY ) = PXH

t(HPXH
t +R)−1(Y −mY ) (59)

The variance of X̂ is thus PX̂ = PXH
t(HPXH

t +R)−1HPX . The estimation error

X̃ = X − X̂ is thus centered with variance PX̃ = PX −PX̂ = PX −PXH
tP−1

Y HPX .
There are two expressions for PX̂ and thus for PX̃ : a complex one derived

from (56), and another derived from (59). They can be shown to be identical using
a matrix inversion lemma for A+ CBC t.
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3 Optimization in R
d

Notations. We now need to handle series of vectors x ∈ R
d. We denote them with

superscripts x0, x1, x2, ..., xn, ... in order to avoid the confusion with x1, x2, ..., xd that
represent the coordinates of x.

3.1 Taylor expansion

Consider a function f : R → R that is C2, i.e. that can be differentiated twice, with
continuous derivatives. Around any point6 x0 ∈ R, one can write the second order
Taylor expansion of f

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2 + o(x− x0)2 (60)

where the displacement x− x0 is small (|x− x0| ≤ ε), and where o(x− x0)2 denotes
an error term that is negligeable compared to (x − x0)2, when x gets closer to x0.
This expression approximates f by a second order polynomial around x0, i.e. by a
parabola (Fig. 11).

x

f(x)

x0

0f(x )

Figure 11: Second order approximation of f around x0.

For a function f : R
d → R, there exists a similar expression :

f(x) = f(x0) + ∇f(x0)t (x− x0)

+
1

2
(x− x0)t ∇2f(x0) (x− x0) + o(‖x− x0‖2) (61)

where x is the column vector [x1, ..., xd]
t (and x0 = [x0

1, ..., x
0
d]

t). This formula
deserves several comments.

• In the first order term, ∇f(x0) denotes the gradient7 of f at point x0, i.e.

6To avoid heavy formulae, we adopt notation x0 as well as (xn)n≥0 and (dn)n≥0 for series of
vectors. This superscript is not the “power” of the vector ! Also, mind the difference between the
vectors dn that we use in the sequel, and the dimension d of x ∈ R

d. In general, the context will
resolve any ambiguity.

7Some authors simply write f ′(x0) or ∂f(x0)
∂x

. We prefer to avoid these motations to stress the
vector nature of the gradient.
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the (column) vector

∇f(x0) =









...
∂f(x0)

∂xi
...









(62)

The expression ∇f(x0)t (x− x0) is thus the scalar product of the gradient by
the displacement x− x0.

• In the second order term, we denote by ∇2f(x0) the Hessian of f at point x0,
i.e. the symmetric d× d matrix which entries are the second order derivatives
of f

∇2f(x0) =









...

· · · ∂2f(x0)
∂xi∂xj

· · ·
...









(63)

The term (x− x0)t ∇2f(x0) (x− x0) thus returns a scalar.

• The last term means that the difference between f and its approximation is
negligeable (in norm) compared to ‖x− x0‖2, when x goes to x0.

(61) gives the quadratic form that best approximates f around x0. Observe that
when f(x) is simply a sum of functions fi : R → R that only depend on the coor-
dinate xi of x, then (61) is simply the sum of the Taylor expansions (60) of each fi

around x0
i .

To illustrate (61), let us assume d = 2 (Fig. 12). f can thus be represented as a
surface in 3D, or by means of level lines in 2D, like the lines of equal altitude on
a geographical map, on like the lines of equal pressure on a meteorological map.

Definition 1 The level line at point x0 is the set of points x such that f(x) =
f(x0).

Consider the first order Taylor expansion of f at x0

f(x) = f(x0) + ∇f(x0)t (x− x0) + o(‖x− x0‖) (64)

A point x satisfies f(x) = f(x0) iff ∇f(x0)t (x − x0) = 0, i.e. iff the displacement
x−x0 is orthogonal to the gradient ∇f(x0) of f at x0. Equivalently, at each point the
level line is perpendicular to the gradient. Assume now that we want to make a small
step around x0, with ‖x−x0‖ = ε, in order to maximize f(x). What direction should
we take ? Again, since we have to maximize the scalar product ∇f(x0)t (x−x0), we
should make a step in the direction of the gradient : x− x0 = ε ∇f(x0) / ‖∇f(x0)‖.
In other words, the gradient indicates the direction of the maximal (increasing) slope
of f at x0. Recall that the closest are the level lines, the largest is the norm of the
gradient.
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x1

x2

f(x )

0x

0

∆

Figure 12: Level lines of f : R
2 → R, and position of the gradient. In red dashed

lines, level lines of the best approximation of f by a quadratic form around x0.

The second order Taylor expansion of f at x0 can also be illustrated by its level
lines. As a quadratic form, they are concentric ellipses if the Hessian of f has positive
eigenvalues (see the previous chapter). The ellipse that goes through x0 is tangent
to the level line of f .

Exercise 15 Consider the function g(x) = f(x0)+∇f(x0)t (x−x0), obtained from
first order Taylor expansion of f : R

2 → R. How do its level lines look like ?

Exercise 16 Let q be the quadratic form that best approximates f at x0. Consider
the level lines of f and q at x0. Prove that they are tangent, and that they even have
identical curvatures.

Exercise 17 Compute the 2nd order Taylor expansion of φ(t) = f(x0 + tu) where t
is a scalar and u a unit vector in R

d. What does the 3rd order expansion look like ?

Coming back to the general case where d ∈ N, f : R
d → R can be understood as

defining a hyper-surface8 in R
d+1 : the first d coordinates are given by x, the last one

by z = f(x). The first order Taylor expansion (64) allows us to define the notion of
tangent hyperplane to this hyper-surface at point (x0, z0) with z0 = f(x0). This
hyperplane is simply defined by

H : z = f(x0) + ∇f(x0)t (x− x0) (65)

This equation also writes (f(x0) − z) + ∇f(x0)t (x− x0) = 0 which reveals the the
tangent hyperplane is defined as the plane containing (x0, f(x0)) and perpendicular
to vector [−1,∇f(x0)t]t.

Exercise 18 Assume d = 1 and make a figure explaining this (f defines a curve in
R

2, and H is a tangent line). Assume d = 2 and do the same (f defines a surface
in R

3, and H is a tangent plane).

8the exact term is differentiable manifold in R
d+1.
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3.2 Optimality conditions

Here we assume f is C2.

Definition 2 x0 is stationary point of f iff ∇f(x0) = 0.

This is a necessary condition for x0 to be a minimum of f . If this is not true, a
small step around x0 in the direction opposite to the gradient allows us to decrease
the value of f , so x0 is clearly not an optimum.

Definition 3 A stationary point x0 of f is a local minimum of f iff there exists
an open neighborhood N(x0) ⊆ R

d around x0 such that ∀x ∈ N (x0), f(x0) ≤ f(x).

Lemma 1 (Necessary condition) If x0 is a local minimum of f , then ∇2f(x0) is a
semi-definite positive matrix (all eigenvalues are non-negative : λi ≥ 0).
(Sufficient condition) If ∇2f(x0) is a positive matrix (all eigenvalues positive : λi >
0) then x0 is a local minimum of f .

Proof. At a stationary point, the first order term of the Taylor expansion vanishes,
so the second order term becomes dominant. If ∇2f(x0) is a positive matrix, this
second order term is always positive, whatever the direction of the small displace-
ment around x0. If ∇2f(x0) has a negative eigenvalue, then a step in the direction of
the corresponding eigenvector decreases f (see the saddle point situation in Fig. 6).
If ∇2f(x0) has a null eigenvalue, then, in the direction of the corresponding eigenvec-
tor, the third order term of the Taylor expansion becomes dominant, which allows
us to decrease f if it is non null. But if this term vanishes, the fourth order term
becomes dominant, etc. So one need to check possibly many derivatives of f to
conclude. 2

For convex functions, these necessary and sufficient conditions simplify.

Lemma 2 f ∈ C1 is convex iff

∀x, x0, f(x) ≥ f(x0) + ∇f(x0)t(x− x0) (66)

Let f ∈ C2, if ∇2f is semi-definite positive at all point, then f is convex.

Theorem 1 For a convex function, any local minimun is a global minimum.
If f is a C1 convex function, then every stationary point is a global minimum.

Exercise 19 Prove the lemma and the theorem above.

Exercise 20 Let f be a convex function in C1. Show that its global minima form
a (closed) convex set.
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3.3 Optimization scheme

Numerical optimization methods all proceed in the same way. The idea is to start
from an initial guess x0, that forms a reasonable approximation of the minimum,
and to progressively refine it by local search around it. We therefore build a series
xn that hopefully converges to an optimum x∗. Specifically

1. Initialization : by x0, an initial guess of a minimum x∗.

2. Recursion : until a convergence criterion is satisfied at xn

• From the current value xn, determine of a search direction dn ∈ R
d.

• Linear search along the semi-line xn + t dn, t ∈ R
+, to determine xn+1.

This amounts to minimizing φ(t) = f(xn + t dn) in t > 0.

Different stop criteria can be used. First of all, we must be at (or close to) a
stationary point (in practice ‖∇f(xn)‖ ≤ 10−6‖∇f(x0)‖). Then we must check that
this stationary point is indeed a minimum, and not a saddle point. For example by
checking the Hessian. Notice that in practice iterations are also stopped when the
steps become negligeable (‖xn+1 − xn‖ ≤ 10−6‖xn‖).

The research methods differ by the information they use from f . Either only
f(x) is accessible, or the gradient ∇f(x) is also known, or the gradient and the
Hessian are known. According to what is available, it may be necessary to estimate
the missing elements. For example to estimate the gradient by taking values of f
around x.

3.4 Optimization in R : linear search

Finding a minimum of f : R → R may look simple since we are used to plot such real
functions, which gives a global view of them in one shot. The problem is different in
practice, because knowing the value of f at many points x is expensive : optimization
methods that require many values rapidly become unaffordable in complexity. The
right picture is rather that one knows values (or even derivatives) of f at a few
points, and has to decide where to look for more information on f in order to corner
the minimum.

Dichotomy. Here we assume that f is convex on some interval [a, b] where we
look for a minimum, or at least unimodular9. The idea is to divide the interval by
2 at each step, and remove the part that doesn’t contain the minimum.

Let’s take x1 = a, x2 = b and x3 = (x1 + x2)/2, and compare the values of f at
these points. Three cases can occur :

1. if f(x1) > f(x3) > f(x2), the minimum is necessarily in [x3, x2],

2. if f(x1) < f(x3) < f(x2), the minimum is necessarily in [x1, x3],

3. otherwise we can’t conclude.

9Unimodularity : let x∗ be a minimum of f on [a, b], if x1 < x2 < x∗ then f(x1) ≥ f(x2) ≥ f(x∗),
and if x∗ < x1 < x2 then f(x∗) ≤ f(x1) ≤ f(x1).
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In the first two cases, we can repeat the procedure with the selected interval, twice as
small (Fig. 13, left). In the last case(Fig. 13, right), let us introduce x4 = (x1+x3)/2
and x5 = (x3 + x2)/2. The values of f at these new points allow us to select, once
again, an interval that is twice as small and contains the minimum (exercise ; consider
the 3 possible subcases).

x x x1 3 2 x x x x x1 3 5 24

Figure 13: Dichotomic search : cases 1 (left) and 3 (right) for a unimodular function.

Newton-Raphson method. This method assumes that f is C2. Considering its
second order Taylor expansion (60) around x0, the idea is to take x1 as the minimum
of the quadratic form (i.e. the parabola) that best fits f at x0. And to repeat the
procedure from x1.

Equivalently, the method consists in progressively finding a zero of f ′. Consid-
ering the first order Taylor expansion of f ′ at x0,

f ′(x) = f ′(x0) + f ′′(x0)(x− x0) + o(x− x0) (67)

this amounts to taking as x1 the zero of this linear form, given by

x1 = x0 − f ′(x0)

f ′′(x0)
(68)

and to repeat the procedure from x1, as illustrated in Fig. 14.

f’(x)

0 1 2x x x

Figure 14: Newton search of a zero for φ′(x).

Secant method. The principle is the same as above, excepted that the second
derivatives of f are not available. So we replace f ′′ by an approximation of it.

Specifically, knowing two points x0 and x1, we replace f ′′(x1) by f ′(x1)−f ′(x0)
x1−x0 . This

allows us to compute x2 as above :

x2 = x1 − x1 − x0

f ′(x1) − f ′(x0)
f ′(x1) (69)
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and we proceed similarly to compute x3 from x2 and x1, etc.

Exercise 21 Explain this recursion on a plot of f , as in the previous figures.

Wolfe’s method. For functions defined over R
d, it may not be efficient to spend

a lot of energy to perform an exact linear search before changing search direction.
In practice, it is more efficient to stop when f has “reasonably” decreased in the
current search direction.

Wolfe proposed the following method. Let 0 < m1 < 1
2 < m2 < 1 be two

parameters, and, assuming f ′(x0) < 0, let [a = x0, b] the search interval. The point
x ∈]a, b[ is an acceptable estimate of the minimum of f if it satisfies

f(x) ≤ f(x0) +m1(x− x0)f ′(x0) (70)

f ′(x) ≥ m2f
′(x0) (71)

The second condition imposes to decrease the derivative sufficiently, and the first
one prevents from going too far (Fig. 15). When the first condition is violated (x is
too far), we simply take b = x and restart the procedure. And symmetrically when
the second is violated (x is not far enough), we do a = x and restart.

ba=x0
acceptable zone

f’(x  )

m  f’(x  )2

m  f’(x  )1

0

0

0

Figure 15: Acceptable zone for Wolfe’s linear search.

3.5 Gradient descent

Also called steepest descent. This is a first order method (f and ∇f known).
The idea is to progress in the direction of the maximum slope of f at xn :

dn = −∇f(xn) (72)

as descent direction. The optimal step10 t(n) is such that it minimizes in t ∈ R
+

the function

φ(t) = f(xn + t dn) so φ′(t) = ∇f(xn + t dn)t dn (73)

The optimal step t(n) leads to a new point xn+1 such that ∇f(xn+1)tdn = 0, so the
new search direction dn+1 will be perpendicular to the previous one (Fig. 16).

This method is simple, but very slow, even for a simple quadratic form. Is is
penalized by badly conditioned Hessians. The conditioning number r = |λ1/λd| of

10Here we write t(n) and not tn to avoid confusion with t to the power n, since t is a scalar.
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Figure 16: Gradient search, or steepest descent, with optimal steps.

a symmetric matrix is the ratio of the largest eigenvalue by the smallest. A high
value of r means very flat ellipses as level lines, and so numerous steps to reach the
minimum.

In practice, the linear search that determines t(n) doesn’t look for the optimal
step, which can be costly, but rather considers a step that “reasonably” decreases f .
A variant consists in choosing a fix step t at each iteration. In both cases, there
exist convergence result when f is strongly convex.

Figure 17: Gradient search on f(x) = 100(x2 − x2
1)

2 + (1− x1)
2, function known as

Rosenbrock’s banana. Its unique global minimum is x1 = x2 = 1.

3.6 Newton method

This is a second order method (f , ∇f and ∇2f known). The idea is to consider
the 2nd order Taylor expansion of f and to jump directly to the/a stationary point
of this quadratic form (i.e. to the bottom of the paraboloid in Fig. 12). Specifically,
from (61) one has

φ(x) = f(xn) + ∇f(xn)t (x− xn)

+
1

2
(x− xn)t ∇2f(xn) (x− xn) (74)

∇φ(x) = ∇f(xn) + ∇2f(xn) (x− xn) (75)
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so cancelling the gradient of φ suggests to take xn+1 such that

∇2f(xn) (xn+1 − xn) = −∇f(xn) (76)

Notice that we didn’t invert the Hessian. First of all, it may not be invertible. But
even if it is, we simply have a linear system to solve, which is less expensive than a
matrix inversion. The resolution is often performed via a Choleski factorization of
the Hessian.

Comments :

• In general the method is faster, since the search direction is better chosen.
Convergence in one step for a quadratic form (compared to the slow conver-
gence of the gradient descent).

• The Newton method tries to cancel the gradient of φ(x), and so looks for
a stationary point of f . The latter may very well be a saddle point, or a
maximum (!), so one still has to check that the method yields a minimum. In
particular, there is no guarantee that the Hessian of f is always a semi-definite
positive matrix.

• There is no guarantee that the new point xn+1 is better than xn, or even that
−(∇2f)−1∇f is a descent direction... Some authors suggest to take this search
direction, when it is valid, and to perform a linear search along it.

• When the Hessian of f is not positive (or ill-conditioned), the Levenberg-
Marquardt technique consists in slightly augmenting all eigenvalues of ∇2f(xn)
to get this positivity :

[∇2f(xn) + µ1I] (xn+1 − xn) = −∇f(xn) (77)

The corrective term µ1I (with µ > 0) operates as a regularisation term, just like
P−1

X in (56) or R in (58). It reduces the conditioning number of ∇2f , and thus
improves the numerical stability of the linear system resolution. Graphically,
this amounts to slightly bending up all slopes of φ(x).

3.7 Conjugate gradient

This first order method is a slight (but smart !) variation on the gradient method.
The latter is very slow even on simple functions like quadratic forms, which are
extremely important in practice because of (61). The explanation lies in a bad choice
of the descent directions when the matrix A of the quadratic form (or the Hessian
of f) is badly conditioned (see Fig. 16). In order to better point to the direction of
the minimum, the idea is to slightly tilt the descent direction with respect to the
gradient, in order to better aim at the bottom of the paraboloid (Fig. 18).

We want to minimize

f(x) =
1

2
xtAx+ btx with ∇f(x) = Ax+ b (78)
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dn−1

gndn
xn

xn−1

Figure 18: Conjugate gradient search : deviates from the steepest slope to better aim
at the optimum of f .

where A ∈ R
d×d is a symmetric positive matrix and b ∈ R

d. This amounts to
determining x∗ such that Ax∗ + b = 0.

Assume that we are running a gradient descent algorithm, starting from x0 and
with initial search direction d0 = −g0 , −∇f(x0). At point xn, instead of looking
for the optimum xn+1 along dn = −gn , −∇f(xn), we look for the optimum in the
whole affine space

Wn+1 = x0 + sp{d0, d1, ..., dn−1, gn} (79)

defined by all previous descent directions plus the last gradient, and containing x0

(and by definition containing also x1, ..., xn).

Lemma 3 xn+1 is the minimum of f in Wn+1 implies gn+1 is orthogonal to Wn+1.

Proof. Consider function h(a) = f(xn+1+a0d
0+a1d

1+...+an−1d
n−1+ang

n), where

a = [a0, ..., an]t. One has ∂h(a)
∂ai

= ∇f(xn+1 +
∑

j ajd
j + ang

n)t di for 0 ≤ i ≤ n − 1

and similarly for i = n. So h has a stationary point at a = 0 implies ∇f(xn+1) is
orthogonal to the di and to gn.

Notice that this is true for any f (we didn’t use the assumption f quadratic). 2

As a first consequence of this lemma, if we perform an exact search of the min-
imum at each descent, the dimension of the search space Wn augments by one.
Observe also that Wn+1 = x0 + sp{g0, g1, ..., gn−1, gn}, and that the gn form an
orthogonal family.

Lemma 4 If xn is the minimum11 of f in Wn, dn is the direction of the minimum
in Wn+1 iff (dn)tAdi = 0 for 0 ≤ i ≤ n−1. The direction dn is said to be conjugate
to the other descent directions di with respect to A.

Proof. Let xn+1 = xn + tdn be the minimum of f in Wn+1, with t ≥ 0, so

gn+1 , ∇f(xn+1) = Axn+1 + b = gn + tAdn (80)

11Here we say “minimum” for clarity, assuming that A is a positive matrix. In reality, these
results only characterize stationary points of f , since they only consider vanishing points of the
gradient.
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By the previous lemma, gn+1 satisfies

(gn+1)tgn = ‖gn‖2 + t(dn)tAgn = 0 (81)

(gn+1)tdi = (gn)tdi + t(dn)tAdi = 0 for 0 ≤ i ≤ n− 1 (82)

In the second equation, (gn)tdi = 0 since xn was the optimum in Wn. The first
equation gives t > 0. Reporting this in the second allows us to conclude. 2

How can we determine this search direction dn, conjugate to all the previous
ones ? Observe that gi+1 − gi = A(xi+1 − xi) ∝ Adi, and so dn conjugate to
d0, ..., dn−1 iff (dn)tgi is a constant for 0 ≤ i ≤ n. Since the gi form an orthogonal
family, this suggests to take

dn = −gn + cnd
n−1 (83)

which corresponds to the steepest slope slightly corrected by the previous descent
direction. One easily checks that

(dn)tgi = −(gn)tgi + cn(dn−1)tgi

= cn(dn−1)tgi

= constant for 0 ≤ i ≤ n− 1 (84)

since dn−1 was already conjugate to all the previous di. So we only have to adjust
cn to extend this property to i = n. One has

(dn)tgn = −‖gn‖2 + cn(dn−1)tgn

= −‖gn‖2 (85)

(dn)tgn−1 = −(gn)tgn−1 + cn(dn−1)tgn−1

= cn(dn−1)tgn−1

= −cn‖gn−1‖2 (86)

so taking

cn =
‖gn‖2

‖gn−1‖2
(87)

ensures this property. (87) was proposed by Fletcher and Reeves in 1964. In the
literature, one may also find other expressions for cn. For example, one directly
derived from the conjugation property of dn.

(dn)tAdn−1 = −(gn)tAdn−1 + cn(dn−1)tAdn−1 = 0 (88)

(89)

which entails

cn =
(gn)tAdn−1

‖dn−1‖2
A

(90)
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Exercise 22 Take this last expression for cn, and prove directly that dn is conjugate
to all the di, not only dn−1.
Hint : compute the optimal step ti in xi+1 = xi + tid

i.

Comments :

• In the case of a quadratic form in R
d, the conjugate gradient converges in d

steps to the minimum of f . The method can be understood as a recursive way
of solving Ax+ b = 0.

• It is remarkable that this method is a very small perturbation of the gradient
search, with identical complexity, but with much better convergence properties,
in particular for quadratic forms.

• The method can of course be applied to non quadratic forms, provided the
Hessian doesn’t change much when we move from xn to xn+1. Otherwise,
it may happen that the directions dn become meaningless, or even are not
admissible descent directions! Therefore, one should test the validity of dn,
and regularly “reset” the method by taking dn = −gn.

• Polak and Ribière proposed a variant of (87) (in 1971)

cn =
(gn − gn−1)tgn

‖gn−1‖2
(91)

which seems to give better results for non quadratic forms, in particular when
gn is close to gn−1. This entails that cn is close to 0, which automatically
resets the algorithm by taking dn = −gn.

Figure 19: Conjugate gradient search on Rosenbrock’s banana.
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3.8 Quasi-Newton method

The efficiency of the Newton method is very appealing, but the price to pay may
be discouraging. Indeed, it requires to know the Hessian ∇2f and to resolve the
possibly large linear system (76). Quasi-Newton methods are first order methods
that try to mimic the behavior of a Newton method, while keeping the complexity
low.

The idea is to compute at each step an estimate Kn of the inverse Hessian
∇2f(xn)−1, and to replace the theoretical optimal step by

xn+1 = xn − t Kn ∇f(xn) (92)

where the step t is obtained by a linear search along the direction Kn∇f(xn). Con-
sidering the first order Taylor expansion of ∇f given by (75), this matrix Kn must
satisfy the quasi-Newton condition

xn+1 − xn = Kn+1 [∇f(xn+1) −∇f(xn)]

= Kn+1 (gn+1 − gn) (93)

In reality, one would like to have this relation satisfied by Kn, but Kn is used to
compute xn+1... So we will impose that the relation be satisfied at the next step.

All the subtlety of quasi-Newton methods consists in building matrices Kn in a
simple manner. They all proceed recursively by

Kn+1 = Kn + Cn (94)

where the correction Cn is chosen to satisfy (93). The objective is of course to
rapidly converge to the true inverse Hessian, in particular when f is quadratic...
The exercise below shows that this is possible.

Exercise 23 Let u1, ..., ud be a family of pairwise conjugate vectors wrt the positive
symmetric matrix A. Consider the matrices12 Kn =

∑n
i=1

1
‖ui‖2

A
ui(ui)t, n ≤ d, that

can be built recursively by a formula like (94). Check that Kd = A−1.

Corrections of rank 1. Let us adopt notations

un , xn − xn−1 (95)

vn , gn − gn−1 (96)

so that (93) becomes un = Knv
n. This method proposes to update Kn with a

correction Cn = αnw
nwnt with wn a (column) vector in R

d. Plugging this in (93)
yields

un+1 = Kn+1v
n+1 = Knv

n+1 + αnw
n[(wn)tvn+1] (97)

so one should take wn ∝ un+1 −Knv
n+1. By computing the resulting αn, this yields

Kn+1 = Kn +
wn(wn)t

(wn)t vn+1
where wn = un+1 −Knv

n+1 (98)

12Observe that each ui(ui)t is indeed a matrix, of rank one.
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The drawback of this method is that the recursion doesn’t guarantee the positivity
of Kn+1 because the coefficient αn may be negative. The denominator may also be
close to zero, which can cause instabilities.

Exercise 24 Prove that Knv
i = ui also for i < n (as it is the case for most quasi-

Newton methods). If u1, ..., ud are independent vectors, show that Kd becomes in-
vertible after these d steps. And in the case of a quadratic form, show that KdA = 1I.

DFP. This construction of Kn was proposed by Davidon, Fletcher and Powell. It
is based on a correction of rank 2 :

Kn+1 = Kn +
un+1(un+1)t

(un+1)t vn+1
− Knv

n+1(vn+1)tKn

(vn+1)tKn vn+1
(99)

The verification of (93) is left as an (easy) exercise. The interest of this method is
that the successive descent directions un are conjugate when f is quadratic. This
allows us to prove that Kn converges in d steps to A−1. However, the DFP is
sensitive to the precision of the linear search.

Exercise 25 When the matrix K0 is set to identity, show that the DFP coincides
with the conjugate gradient method.

BFGS. This construction of Kn was proposed by Broyden, Fletcher, Goldfarb and
Shanno in 1970, and is considered as the best at this time. The correction of Kn is
given by

Kn+1 = Kn − un+1(vn+1)tKn +Knv
n+1(un+1)t

(un+1)t vn+1

+

(

1 +
(vn+1)tKnv

n+1

(un+1)tvn+1

)

un+1(un+1)t

(un+1)tvn+1
(100)

We leave again the verification of (93) as an exercise.

Comments :

• The Kn computed by all the above formulae don’t always determine a descent
direction, so this should always be checked.

• For the BFGS, if the scalar product (un+1)tvn+1 is positive, thenKn+1 remains
positive. This ensures that it indicates a correct descent direction. However,
it should be checked that this product doesn’t become too small, which may
cause instabilities.

• As for the conjugate gradient, it is important in practice to regularly reinitialize
Kn to identity.

• It is also possible to mix BFGS and DFP, by taking a convex combination of
their corrective terms. This defines the Broyden family of quasi-Newton meth-
ods, which have been shown to perform well on vast families of C1 functions.
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4 Optimization in R
d with constraints

In practice, most (numerical) optimization problems limit the possible values of x
to a subset D of R

d. Here, we consider the case where this domain is bounded by C1

functions θj(x). We will have equality constraints like θj(x) = 0, that impose x to
live on a manifold, as well as inequality constaints like θj(x) ≤ 0, that represent one
“side” of the manifold θj(x) = 0. Compared to the previous chapter, the difficulty
now is that we must take into account not only the “geometry” of the cost function
f , but also the “geometry” of the boundaries defined by the θj . As before, we rather
insist on these geometrical interpretations than on detailed convergence properties
of the algorithms.

4.1 Equality constraints

The problem we consider here still consists in minimizing f(x), but subject to m
constraints θj , that limit the possible values of x :

min
x
f(x) s.t. θj(x) = 0, 1 ≤ j ≤ m (101)

where f, θj : R
d → R. We will often write constraints in vector form θ(x) = 0 ∈ R

m,
by aggregating the m functions θj in a column vector. Notice that one must take
m < d, otherwise the domain D = {x : θ(x) = 0} of admissible solutions may
reduce to a few points or be empty.

4.1.1 Introduction to the Lagrange multipliers method

To help intuition, let us start with a simple example. Assume we want to determine
the dimensions of a pan (radius r of the bottom and height h of its side) in order
to minimize its surface (i.e. the quantity of metal used to make the pan) for a fixed
volume of 1 litre. Formally

f(x) = πx1
2 + 2πx1x2 (102)

θ(x) = πx1
2x2 − 1 (103)

where x1 is the radius of the pan and x2 its height (Fig. 20).
The constraint is bothering, so let us “relax” it : we introduce it into the cost

function, with a penalty factor λ. Specifically, we condider the new cost function

L(x, λ) = f(x) + λθ(x) (104)

that is called the Lagrangian13 of the problem. Intuitively, if the constraint θ
always took positive values, this would amount to assigning a relative weight to the
constraint in the new cost function.

13Joseph Louis, count of Lagrange (in Italian Giuseppe Lodovico Lagrangia), born in Turin in
1736 and dead in Paris 1813, is an Italian mathematician and astronomer.
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Figure 20: Plots of f , surface of the pan, as a function of the diameter and of the
height. Red curves : points x satisfying the constraint θ(x) = 0 on the volume of the
pan, and their image by f .

Observe that, for any fixed λ, f and L have the same minima (and maxima) on
the domain defined by θ(x) = 0. So let us minimize this Lagrangian in x, for any
value of λ. A stationary point is obtained for ∇xL = 0, i.e.

∂L(x, λ)

∂x1
= 2πx1 + 2πx2 + λ2πx1x2 = 0 (105)

∂L(x, λ)

∂x2
= 2πx1 + λπx1

2 = 0 (106)

we obtain14 x∗1 = x∗2 = − 2
λ .

The next step consists in adjusting λ in order to satisfy the constraint, i.e. to
ensure that the x∗(λ) that we find is in the desired domain (where f and L have

identical minima). This gives λ∗ = −π1/3

2 and so x∗1 = x∗2 = π−1/3.
We conclude by the following reasoning : for this particular value λ∗ of λ, we

have looked for stationary points of L(x, λ∗) in the whole space R
d, and the x∗(λ)

we found belongs to the domain D = {x : θ(x) = 0}. Since f and L have the same
stationary points in this domain, then x∗ is also stationary for f .

As a last step, one must of course check that the stationary point x∗ is a (local)
minimum of f , and not a (local) maximum...

This resolution method can of course be generalized to m constraints. In the
next section, we develop the theory that justifies this approach.

14In passing, notice this remarkable fact that the height of an optimal pan should be equal to its
radius. We invite the reader to check the optimality of his own pans...
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Figure 21: Level lines of f . The red curve corresponds to θ(x) = 0. The minimum
of f on the red curve is represented by its coordinates.

Exercise 26 In R
2, consider the circle defined by θ(x) = (x1−1)2+(x2−1)2−1 = 0.

Use the method of Lagrange multipliers to compute the point of this circle that is the
closest to the origin (which amounts to minimizing f(x) = x1

2 + x2
2). Observe that

the Lagrangian has two stationary points.

Exercise 27 In R
3, compute the radius of the sphere that is tangent to the plane

x1 + x2 + x3 = 1. This amounts to minimizing f(x) = ‖x‖2 s.t. btx = 1 where
bt = [1, 1, 1].

4.1.2 Lagrange optimality conditions

The constraints θj(x) = 0, with 1 ≤ j ≤ m, define a differentiable manifold D
in R

d. Consider one of these constraints θj , and its gradient ∇θj(x
0) at x0. The

tangent hyperplane to the manifold θj(x) = 0 at point x0 is defined by the (affine)
equation (recall section 3.1).

∇θj(x
0)t(x− x0) = 0 (107)

and so the tangent space to domain D at x0 is the intersection of these tangent
hyperplanes. It is common to gather the functions θj in a vector of R

m, and to
denote by ∇θ(x0) the juxtaposition of the (column) vectors ∇θj(x

0), which results
in a d×m matrix. The tangent space is then defined by

∇θ(x0)t(x− x0) = 0 (108)

Definition 4 x0 is a regular point of D if the gradients ∇θj(x
0) are linearly

independent, or equivalently if ∇θ(x0) is of rank m. The manifold D is regular iff
all its points are regular.
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Notice that this excludes situations where the gradient vanishes. In particular
θj(x) = 0 can not have double points (Fig. 22). In the sequel, we limit ourselves to
regular manifolds, or at least study them at regular points.
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Figure 22: The curve defined by x1(x
2
1 + x2

2) − 2(x2
1 − x2

2) = 0 has a multiple point
at x1 = x2 = 0, where the gradient is necessarily null. This point is not regular.

The following result gives necessary conditions on the extrema of f in D.

Theorem 2 Let x∗ be a regular point of D = {x : θ(x) = 0}. If x∗ is a local ex-
tremum of f in D, there exists a (unique) vector λ∗ ∈ R

m of Lagrange multipliers
such that

∇f(x∗) +
m
∑

j=1

λ∗j ∇θj(x
∗) = 0 (109)

Proof. (sketch of)
Consider the vector space V = sp{∇θ1(x∗), ...,∇θm(x∗)}, and let us project ∇f(x∗)
on V. In other words, ∇f(x∗) decomposes as

∇f(x∗) =
m
∑

j=1

−λ∗j ∇θj(x
∗) + u (110)

where u is orthogonal to V, i.e. to all the ∇θj(x
∗). The remainder u belongs to the

tangent space to D at x∗. If u 6= 0, then making a small step in the direction of −u
from x∗ will decrease the value of f (the first order term in the Taylor expansion
of f is negative), and leave the constraints unchanged (the first order term of the
taylor expansion of θj vanishes). In other words, a small step on the manifold D
allows us to decrease f , which contradicts the stationarity of x∗. Symmetrically, a
small step in the direction of u would increase f and leave the constraints unchanged
(Fig. 23). 2

The attentive reader will have noticed that the regularity condition of x∗ didn’t
appear in the above arguments. The true (more technical) proof actually reasons
on admissible directions u of the tangent space that would effectively leave the
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Figure 23: f represented by its level lines, and the constraint θ(x) = 0 represented
as a red curve. An extremum of f s.t. θ is necessarily obtained at a point where the
level line of f is tangent to the manifold D defined by the constraint.

constraints unchanged (and would possibly change f). They are obtained as limits
of directions xn−x∗

‖xn−x∗‖ where xn ∈ D and limn x
n = x∗. When gradients ∇θj(x

∗) are
not linearly independent, one may find directions in the tangent space that can’t
be expressed as such a limit, i.e. that are not admissible. We give an example in
appendix A. We also provide below counter-examples to (109) when the regularity15

condition is violated.

Definition 5 The Lagrangian of the non-linear program (f, {θj}1≤j≤m) is the
function L : R

d+m → R

L(x, λ) = f(x) +
m
∑

j=1

λj θj(x) (111)

Remarks

• The conditions (109) together with constraints θj(x
∗) = 0 form a set of d+m

non-linear equations that may be sufficient to determine the d+m unknowns
(x∗, λ∗). This is actually how we solved the example in 4.1.1. Of course, when
an analytic resolution is not possible, the numerical methods we describe later
will try to solve these equations.

• Observe that solving the d + m equations above exactly amounts to finding
a stationary point of the Lagrangian. (109) corresponds to ∇xL(x, λ) = 0,
and the constraints to ∇λL(x, λ) = 0, where the notation ∇y L represents the
partial gradient formed by the partial derivatives in the components of y.

• In practice, it is often simpler to determine first the λ∗, and then compute the
x∗ as a function of λ∗. See for example exercise 27. This is the principle of
the resolution by duality that we describe later.

15Instead of “regularity” of x∗, the expression “qualification of constraints” ∇θi(x
∗) is often used.

There exist weaker forms than the linear independence. See [1] for details.
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• The theorem only characterizes stationary points of f (or of the Lagrangian).
One still has to check that the points found correspond to a minimum (see
exercise 26). We give sufficient conditions in the next section.

To illustrate the importance of the regularity condition, consider f(x) = ‖x‖2

with θ(x) = x2
2 − (x1 − 1)3. One easily checks (graphically) that the minimum is

x∗1 = 1, x∗2 = 0. But the gradient of θ is null at this point, so x∗ is not regular and
theorem 2 doesn’t hold. The reader can check (exercise) that it is not possible to
find a λ∗ that satisfies (109).

Exercise 28 In R
3, compute the minimum of f(x) = x1x2x3 s.t. θ(x) = x1 + x2 +

x3 − 3 = 0, and xi ≥ 0. Check that there exist several extremal points.

An important specific case concerns quadratic forms under affine constraints.

Exercise 29 Consider min f(x) = 1
2x

tAx+ btx under the constraints θ(x) = Cx−
c = 0, with A ∈ R

m×d. If A is invertible, and C is of maximal rank (m), prove that
the unique stationary point of the Lagrangian is given by

λ∗ = −(CA−1Ct)−1[c− CA−1b] (112)

x∗ = A−1{b− Ct(CA−1Ct)−1[c− CA−1b]} (113)

Under what conditions x∗ is a minimum ?

Exercise 30 Show that the projection of x0 on the affine manifold defined by Cx =
c, C ∈ R

m×d, is given by x∗ = x0 − Ct(CCt)−1(Cx0 − c), when C has full rank.

4.1.3 Second order necessary/sufficient conditions

In the unconstrained case, the “sign” of the Hessian of f allows us to check whether
a stationary point of f is a local minimum or maximum. This extends to the
constrained case, with an important light difference however : the second derivatives
of the constraints θj must also be taken into account. (This regularity assumption
on the manifold D is rarely met in practice.)

Theorem 3 Let x∗ be a (regular) stationary point of f on D = {x : θ(x) = 0}, with
associated vector of Lagrange multipliers λ∗ ∈ R

m (see theorem 2). Consider the
Hessian in the variable x of the Lagrangian L(x, λ) at point (x∗, λ∗) :

∇2
x L(x∗, λ∗) = ∇2f(x∗) +

m
∑

j=1

λ∗j ∇2θj(x
∗) (114)

NC : If x∗ is a minimum of f on D, then ∇2
x L(x∗, λ∗) defines a positive quadratic

form on the kernel of matrix ∇θ(x∗)t.
SC : If ∇2

x L(x∗, λ∗) is strictly positive on this space, then x∗ is a local minimum of
f on D.
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The kernel of ∇θ(x∗)t simply represents the space of vectors that are orthogonal to
the gradients of all constraints, i.e. directions of the tangent space at x∗. Therefore
the condition reads

ut [∇2
x L(x∗, λ∗)]u ≥ 0 ∀u ∈ R

d : θ1(x
∗)tu = ... = θm(x∗)tu = 0 (115)

The proof of this theorem is detailed in appendix B. It is important to notice that
the Hessian of f is replaced by the Hessian of the Lagrangian in the constrained case.
The reason is that the second order Taylor expansion of f on D requires to know
the second order expansion of the constraints (the tangent space is not sufficient
anymore, one must take into account the curvature of the constraint space). The
example below illustrates this fact.

x1

x2

x*

D2

1D
−1 1

−1

1

Figure 24: Two domains, D1 and D2, and the level lines of f (in dotted lines). The
point x∗ = [1, 0]t is a min of f on D2 but a max of f on D1. This can only be seen
by checking the Hessian of the Lagrangian.

Example. Consider f : R
2 → R defined by f(x) = x1

2 + x2
2 − 1 and the domain

D1 defined as the circle θ(x) = (x1 − 1
2)2 + x2

2 − 1
4 = 0. The point x∗ = [1, 0]t is a

stationnary point of f on D1, with Lagrange multiplier λ∗ = −2. In effect, one has
∇f(x∗) = [2, 0]t and ∇θ(x∗) = [1, 0]t. Since ∇2 f(x∗) = 2 · 1I = ∇2 θ(x∗), we observe
that ∇2

x L(x∗, λ∗) = −2 · 1I is a negative symmetric matrix, and conclude that x∗ is
a maximum of f on D1 (see Fig. 24).

By constrast, consider the domain D2 defined as the circle θ(x) = (x1 + 1
2)2 +

x2
2 − 9

4 = 0. This time one has ∇θ(x∗) = [3, 0]t and so λ∗ = −2
3 . This induces that

∇2
x L(x∗, λ∗) = 2

3 · 1I is a strictly positive matrix, and so x∗ is now a minimum of f
on D2.

Exercise 31 Consider now the domain D3 defined as the circle θ(x) = x1
2 + x2

2 −
1 = 0. What can we say about x∗ ?

Exercise 32 Taking for f an hyperbolic paraboloid (i.e. a saddle) instead of a
paraboloid, build an example where the positivity criterion only holds for vectors of
the tangent space.
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4.2 Inequality constraints

We now consider the non-linear program

min
x
f(x) s.t. θj(x) ≤ 0, 1 ≤ j ≤ m (116)

where f, θj : R
d → R. Of course, it would be possible to have both equality and

inequality constraints, which we avoid here for the clarity of the presentation. The
domain of admissible solutions now writes D = {x : θ(x) ≤ 0}, using the vector
form of constraints (all coordinates must be negative).

4.2.1 Cone of admissible directions

As for equality constraints, the difficulty is to understand what directions of R
d one

could explore, from a point x0, in order to reduce f and to stay inside the domain D.
Let us first distinguish active from inactive constraints.

Definition 6 The constraint θj is active at x0 when θj(x
0) = 0, i.e. when x0 is

on the border of D defined by θj. We denote by A(x0) = {j : θj(x
0) = 0} the set of

active constrains.

Definition 7 For x0 ∈ D, the direction u is admissible iff there exists ε > 0 such
that x0 + ε u ∈ D, or more precisely iff there exists a series (xn)n>0 in D such that

limn x
n = x and limn

xn−x0

‖xn−x0‖
= u

‖u‖ . These directions form the cone of admissible

directions C(x0) at x0.

Definition 8 A cone C of R
d is a subset such that ∀u ∈ C, ∀α ≥ 0, αu ∈ C. It is

convex if ∀u, v ∈ C, ∀0 ≤ α ≤ 1, αu+ (1 − α)v ∈ C.

The cone of admissible directions C(x0) is not always convex see a counter-
example in Fig. 25, left. However, if the active constraints are regular16 at x0, one
has the following result.

Theorem 4 If the active constraints at x0 are regular, i.e. if the ∇θj(x
0), j ∈ A(x0)

are linearly independent, then the cone of admissible directions at x0 is convex and
defined by

C(x0) = {u ∈ R
d : ∇θj(x

0)t u ≤ 0, j ∈ A(x0)} (117)

This result is illustrated in Fig. 25. We admit it, although its interpretation is rather
intuitive : admissible directions must decrease the values of active constraints, to
have x = x0 + ε u in D (inactive constraints impose no restriction on the possible
displacement around x0). Augmenting active constraints necessarily leads outside
D. Using the 1st order Taylor expansion of θj around x0, this immediately translates

16The regularity of constraints can be weakened into a “qualification condition” on active con-
straints, see [1], chapter 9.2.
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Figure 25: Left : a non-convex cone of admissible directions, at a non regular
point x0. Right : (convex) cones of admissible directions, placed at regular points.

into the negative scalar products of (117). The difficult part of the theorem thus
relates to the convexity of C(x0).

We now state a famous and useful result is associated to cones as defined in (117).

Lemma 5 (Farkas-Minkowski) Let the uj be vectors in R
d, and consider the

convex cone C = {x ∈ R
d : ut

j x ≥ 0, 1 ≤ j ≤ m}. Given a vector v ∈ R
d, consider

the half-space {x : vt x ≥ 0} that it defines. One has

C ⊆ {x : vt x ≥ 0} iff v =
∑

j

αj uj , αj ≥ 0 (118)

The proof, not difficult, can be found in [1] (or may be done as an exercise). We prefer
to insist here on the geometrical interpretation of the lemma, which is convincing
enough to replace a detailed proof. C is the intersection of m half-spaces (see
Fig. 26). This domain is contained in the half-space pointed by v iff v is inside the
convex cone generated by the vectors uj . Fig. 26 gives an example and a counter-
example of this situation.

This result is sometimes expressed under a different form [3]. Given a cone C, the
dual cone C ′ of C is defined by C ′ = {y : ∀x ∈ C, xty ≤ 0}. The Farkas lemma thus
states an NSC17 for −v to belong to the dual of C = {x ∈ R

d : ut
j x ≥ 0, 1 ≤ j ≤ m}.

Or equivalently states that C ′ = {−∑j αj uj , αj ≥ 0}.

Exercise 33 Verify that these two expressions of the Farkas lemma are equivalent.

Exercise 34 Prove that the dual of a cone C is a convex cone (even if C is not
convex). Make a drawing showing the dual of the convex cone generated by vectors
u1, ..., um.

17NSC = necessary and sufficient condition
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Figure 26: As v rotates around the origin, the half-space it points to may capture or
not the cone C (in gray). It captures it if and only if v stays within the convex cone
bounded by the uj.

Exercise 35 Prove that if C is a convex cone, then (C ′)′ = C, i.e. the dual of the
dual, is the cone itself.

Exercise 36 Let C be a convex cone, prove that any element x ∈ R
d decomposes

uniquely as x = u+ v where u ∈ C and v ∈ C ′.

4.2.2 Karush-Kuhn-Tucker optimality conditions

We now have enough material to establish the main theorem

Theorem 5 (Karush-Kuhn-Tucker conditions) Let x∗ be a regular point of do-
main D = {x : θj(x) ≤ 0, 1 ≤ j ≤ m}. If x∗ is a local minimum of f on D, there
exists a unique set of generalized Lagrange multipliers λ∗j for j ∈ A(x∗) (the
set of active constraints at x∗) such that

∇f(x∗) +
∑

j∈A(x∗)

λ∗j ∇θj(x
∗) = 0 and λ∗j ≥ 0, j ∈ A(x∗) (119)

Proof. Since x∗ is regular, the cone of admissible directions is convex and given by
C(x∗) = {u ∈ R

d : ∇θj(x
∗)t u ≤ 0, j ∈ A(x∗)} (theorem 4). Since x∗ is a local

minimum, one has ∇f(x∗)t u ≤ 0 for every u in C(x∗), otherwise a small step in
direction u from x∗ would allow us to decrease f while staying in D. We conclude
by Farkas’ lemma, with the −∇θj(x

∗) as the uj . 2

Corollary 1 The Karush-Kuhn-Tucker conditions are sometimes expressed differ-
ently, in a form that resembles more theorem 2 :

∇f(x∗) +
m
∑

j=1

λ∗j ∇θj(x
∗) = 0 and λ∗j ≥ 0, 1 ≤ j ≤ m (120)

with the extra complementarity condition

m
∑

j=1

λ∗j θj(x
∗) = 0 (121)

45



Proof. The difference is that all constraints appear in (120). Considering the
positivity of the λ∗j and the negativity of the θj(x

∗), the complementarity condition
automatically imposes λ∗j = 0 for non active constraints. 2

Remarks.

• An alternate “proof” of theorem 5 would be to apply theorem 2 to the active
constraints, and then prove that the λ∗j must be positive.

• When there is no active constraint, i.e. A(x∗) = ∅, (119) reduces to ∇f(x∗) =
0, which is obvious since x∗ is strictly inside D (all directions are admissible).

• (120) and (121) are hard to use in practice because they define a set of (non-
linear) inequations, by contrast with the set of equations in the case of equality
constraints.

• It is possible to mix equality and inequality constraints in the definition of D.
Equality constraints thus automatically go into the set of active constraints.
It is not wise to replace θ(x) = 0 by the pair θ(x) ≥ 0, θ(x) ≤ 0 since this kills
the regularity assumption.

• Assuming the set of active constraints at the optimum is known, (119) amounts
to finding a stationary point of the Lagrangian under the constraints λj ≥ 0,
as in the case of equality constraints.

4.2.3 A resolution example

The nice closed-form of the Kuhn-Tucker conditions hides a practical difficulty : to
be able to use them, one must guess what are the active constraints at the optimum.

x1

x2

θ (  )=01 x

θ (  )=0x2

p

1

2

1 20

Figure 27: Minimize the distance to point p in the domain define by the red segment.

Consider minx f(x) = (x1 − 1)2 + (x2 − 2)2 s.t. θ1(x) = x1 − x2 − 1 = 0,
θ2(x) = x1 + x2 − 2 ≤ 0, θ3(x) = −x1 ≤ 0, θ4(x) = −x2 ≤ 0 (see Fig. 27). The
Lagrangian is

L(x, λ) = (x1 − 1)2 + (x2 − 2)2 + λ1(x1 − x2 − 1)

+λ2(x1 + x2 − 2) + λ3(−x1) + λ4(−x2) (122)
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so the Kuhn-Tucker conditions on the gradient of the Lagrangian yield

∂L(x, λ)

∂x1
= x1 − 1 + λ1 + λ2 − λ3 = 0 (123)

∂L(x, λ)

∂x2
= x2 − 2 − λ1 + λ2 − λ4 = 0 (124)

equality constraint
∂L(x, λ)

∂λ1
= x1 − x2 − 1 = 0 (125)

inequality constraints λ2(x1 + x2 − 2) = 0, λ2 ≥ 0 (126)

−λ3x1 = 0, λ3 ≥ 0 (127)

−λ4x2 = 0, λ4 ≥ 0 (128)

We assume first that no inequality constraint is active, which yields λ∗2 = λ∗3 =
λ∗4 = 0. Solving the rest of the system yields x∗1 = 2 and x∗2 = 1 which violates
θ2(x) ≤ 0...

So we have to change our assumptions and introduce θ2 in the list of saturated
constraints. This yields λ∗3 = λ∗4 = 0. The other equations yield x∗1 = 3/2 and
x∗2 = 1/2 which now is in the desired domain.

This example suggests how complex the resolution can be when there are many
inequality constraints...

4.2.4 Convex case

In the unconstrained case, when f is convex, local and global minima coincide. This
results extends to the constrained case

Theorem 6 Let f and the constraints θj be convex functions, which defines a convex
domain D. Let x∗ be a local minimum of f , i.e. a point satisfying the Karun-Kuhn-
Tucker conditions. Then x∗ is also a global minimum of f on D.

See thm 9.2-4 in [1] for a proof.

4.2.5 Second order necessary/sufficient conditions

This result extends theorem 3 to the case of inequality constraints.

Theorem 7 Let x∗ be a (regular) stationary point of f on D = {x : θ(x) ≤ 0}, with
associated vector of generalized Lagrange multipliers λ∗ ∈ R

m : (x∗, λ∗) satisfy the
Kuhn-Tucher conditions (see theorem 5). Consider ∇2

x L(x∗, λ∗), the Hessian in the
variable x of the Lagrangian L(x, λ) at point (x∗, λ∗).

NC : if x∗ is a minimum of f in D, then ut [∇2
x L(x∗, λ∗)]u ≥ 0 for every u ∈ R

d

such that ∇θj(x
∗)tu = 0, j ∈ A(x∗) (the set of active constraints).

SC : if ut [∇2
x L(x∗, λ∗)]u > 0 for every u ∈ R

d, u 6= 0 such that ∇θj(x
∗)tu = 0

when λ∗j > 0, then x∗ is a local minimun of f on D.
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Proof. (sketch of) The necessary condition is actually the same as in theorem 3,
where only active constraints are selected. Although the criterion is obviously nec-
essary on the manifold that limits D at x∗, it is strange that nothing is said for the
other admissible directions, that point toward the interior of D.

The idea is that if u is an admissible direction such that ∇θj(x)
t u ≤ 0 for j ∈

A(x∗), then ∇f(x∗)tu = −∑j λ
∗
j∇θj(x)

t u ≥ 0. So the first order term dominates
in the Taylor expansion of f and imposes the positivity. So there is no necessary
condition imposed to the second order term by this direction u.

In the sufficient condition, observe that λ∗j > 0 selects a subset of the active
constraints, and so the space of admissible directions u that is tested is larger that
in the necessary condition. 2

4.3 Numerical methods

There exists an extremely vast family of numerical methods that address constrained
optimization problems when their analytical resolution is too complex. This vari-
ety comes from the different situations that arise : linear (or affine) or non-linear
constraints, equality or inequality constraints, etc. We briefly sketch some of them
below, essentially to illustrate the geometrical intuition that motivates them. Their
principle is similar to the unconstrained case : find a descent direction, and progress
along this line. There are two essential difficulties to deal with :

• constraints limit the choice of admissible descent directions, and

• the progression along an admissible direction may meet the boundary of D.

4.3.1 Penalty functions

This is the simplest and most natural idea to get rid of constraints. It corresponds
to the intuition used in the introduction 4.1.1.

Exterior points. Let us consider equality constraints θ(x) = 0 for example, so
the domain of admissible points D is a manifold. Assume there exists a function ψ :
R

d → R
+, always positive and vanishing exactly on D, for example ψ(x) = ‖θ(x)‖2,

or ψ(x) =
∑

j |θj(x)|. We replace the constrained problem

min
x
f(x) s.t. θj(x) = 0, 1 ≤ j ≤ m (129)

by the unconstrained one

min
x
Fk(x), Fk(x) = f(x) + ck ψ(x), ck > 0 (130)

Obviously, f and Fk have the same minima. This unconstrained problem can be
addressed by standard numerical methods. If it admits a minimum in D, then this
is obviously a minimum of f in D. Otherwise, at convergence, one progressively
reinforces the penalty term by taking ck+1 > ck, which makes the constraint more
attractive, on so on with limk ck = ∞.

This method is sometimes called Lagrangian relaxation, because of the simi-
larity of the new cost function (130) with the Lagrangian.
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Interior points. Better suited to inequality constraints θ(x) ≤ 0. Instead of
penalizing non-admissible solutions, the principle is to forbid them completely, and
to penalize elements of the domain D that are close to the boundaries, in order to
force a numerical method to stay “inside” D.

Formally, let ψ(x) : R
d → R

+ be such that ψ(x) → +∞ when θj(x) → 0− for
some j. For example ψ(x) = −∑j

1
θj(x) . We replace the constrained problem

min
x
f(x) s.t. θj(x) ≤ 0, 1 ≤ j ≤ m (131)

by the unconstrained one

min
x
Fk(x), Fk(x) = f(x) + ck ψ(x), ck > 0 (132)

and minimize the successive Fk, letting ck go to 0.

4.3.2 Projected gradient

This family of methods consist in exploring only admissible points, i.e. points in
the domain D defined by constraints. They vary according to the nature of D. We
start with an instrumental result.

Lemma 6 Let C1, ..., Cm ∈ R
d be linearly independent (column) vectors, and let

C = [C1, ..., Cm] be the d × m matrix obtained by juxtaposing these vectors. The
projection πC(x) of x ∈ R

d on sp{C1, ..., Cm}, the vector space generated by the Cj,
is given by

πC(x) = Px with P = C(CtC)−1Ct (133)

Proof. Elements in sp{C1, ..., Cm} can be expressed as Cα where α ∈ R
m, so

the problem amounts to finding the optimal coefficients α∗ = arg minα ‖x − Cα‖2.
The minimum of this quadratic form is given by α∗ = (CtC)−1Ctx (see chapter 2),
whence the result. Notice that C tC is invertible iff C is of rank m, which we
assumed18. 2

Observe that π⊥C (x) = (I − P )x is the projection on the orthogonal space of
sp{C1, ..., Cm}, i.e. the space defined by Ctx = 0. Observe also that P = P t.

Affine equality constraints. Consider the problem minx f(x) s.t. θ(x) = Ctx−
c = 0. Since we are only interested in the value of f on the affine space D, let
us replace the problem by minx f(πD(x)) where πD is the orthogonal projection
on D. These two functions coincide on D, and so have the same minimum. Observe
however that F (x) = f(πD(x)) is now constant on the directions perpendicular to D.

18When the m columns are not linearly independent, it suffices to replace the inversion by a
pseudo-inverse to get the expression of the projector P . This can be check with the SVD of C for
example.
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Figure 28: Level lines of f and an affine domain D of R
2 (in red). Dashed lines

represent the corresponding level lines of F .

The orthogonal projection on the vector space defined by C tx = 0 is given
by the projection matrix Q = I − P (lemma 6). Let x0 ∈ D, then x ∈ D iff
Ct(x − x0) = 0, from which we deduce that the projection of x on D is given by
πD(x) = x0 + π⊥C (x− x0) = x0 +Q(x− x0). The problem becomes

min
x
F (x) = f [x0 +Q(x− x0)] s.t. Ct(x− x0) = 0 (134)

The constraint is now almost superfluous : given a local minimum x in R
d, its

projection on D will be a solution to our problem. So we can ignore the constraint.
One has

∇F (x) = Q∇f [x0 +Q(x− x0)] (135)

∇2F (x) = Q∇f [x0 +Q(x− x0)]Q (136)

which allows us to implement first order and second order methods. Observe that
∇F is obtained by projecting the gradient of f on the vector space C tx = 0, whence
the name of the method. As a consequence, a search method that starts at x0 ∈ D
will always stay in D. This is why we can ignore the constraint. In the same way, the
hessian is restricted to its projection on C tx = 0, which makes it a singular matrix.
But we can ignore this singularity in the formulae of the second order methods and
replace inverses by pseudo-inverses.

Exercise 37 Prove relations (135) and (136).

Affine inequality constraints. Consider the problem minx f(x) s.t. θ(x) =
Ctx − c ≤ 0. Here the difficulty is the management of active constraints. This is
best explained on an example.

Assume we are at point x (Fig. 29), where A(x) = {1}, i.e. only θ1 is active,
and let us project the gradient ∇f(x) on the space defined by the gradients of
active constraints, i.e. ∇θ1(x). To do so, we build matrix C = [∇θ1(x)] and by
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Figure 29: Level lines of f and a domain D of R
2 limited by affine lines (in red and

purple). The gray sectors represent admissible directions.

lemma 6 one gets πA(x)[∇f(x)] = Cα where the vector of coefficients α is given
by α = (CtC)−1Ct ∇f(x). Here α is a negative scalar, which means that −∇f(x)
doesn’t belong to the cone of admissible directions, therefore we have to project
it on this cone, which means to project it on the manifold of active constraints.
This projection is given by π⊥A(x)[∇f(x)] = ∇f(x) − πA(x)[∇f(x)] = Q∇f(x) with

Q = I − C(CtC)−1Ct. This gives a descent direction.
By constrast, consider point x′′ where A(x′′) = {2}. At this point the coefficient

α would be positive, which means that −∇f(x′′) points to a direction that also
decreases θ2(x). Therefore one can keep −∇f(x′′) as a descent direction and θ2
must be removed from the set of active constraints.

Let us come back to point x. The linear search in the direction of the opposite
to the projected gradient may stop in two cases.

1. either we have found a local minimum in this direction, and we have to select
another descent direction (same as for unconstrained optimization),

2. or in our descent we are blocked by another constraint that becomes active.

This second case happens in the figure : the descent from x stops at point x′ where
θ2 becomes active. We now have A(x′) = {1, 2}, and another direction must be
selected. Let us again project ∇f(x′) on the space defined by the gradients of
active constraints, so here C = [∇θ1(x′),∇θ2(x′)]. If the vector of coefficients α
has only negative coordinates, then the Kuhn-Tucker conditions are met and we
have a stationary point of f in D (this corresponds to ∇f(x′) belonging to the dual
cone in gray in the figure). Otherwise, some coordinates in α are positive, which
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corresponds to constraints that can be relaxed. Here θ1 can be relaxed. We therefore
take A(x′) = {2} and reiterate the process of projecting the gradient, etc.

Non-linear constraints. The method of projected gradients can be extended to
the case of non-linear constraints, where the projections are done on the tangent
plane to the active constraints. However, one has to deal with the extra difficulty
that following this tangent plane may lead outside D. Therefore these methods must
be coupled with a projection of the current point on D.

4.3.3 Reduced gradient

In the simplex algorithm (linear programming), the optimization is performed by
adjusting a subset of the coordinates of x, the base variables, the remaining ones
being related to the former by the (affine) constraints of the problem. The reduced
gradient method generalizes this idea to the non-linear case. We first examine con-
ditions that allow to express some of the coordinates of x as functions of the others.

Implicit functions theorem. Assume domain D is a manifold defined by m
equality constraints gathered in θ(x) = 0 where θ : R

n → R
m, m < n. Without loss

of generality, let us split x into x = (u, v) where u ∈ R
n−m and v ∈ R

m, and assume
x0 = (u0, v0) ∈ D. We examine conditions that allow to express v as a function of u
in D.

Consider the m×m Jacobian matrix

∇v θ(x
0) = [∇v θ1(x

0), ...,∇v θm(x0)] (137)

obtained by juxtaposing the partial gradients in v of the m constraint functions θj .
If this matrix is invertible (i.e. if the partial gradients are linearly independent),
there exists a small ball B(u0, ε) = {u ∈ R

n−m : ‖u − u0‖ < ε} around u0 and a
function φ : B(u0, ε) → R

m such that

x = (u, v) ∈ D and u ∈ B(u0, ε) ⇔ v = φ(u) (138)

In other words, domain D if defined by points (u, φ(u)) around x0.

Example : consider a single constraint θ(x) = x1 −x2
2 = 0, and take u = x1, v =

x2. One has ∇θ(x) = [1,−2x2]
t, so ∇vθ(x) = −2x2. At x0 = (0, 0), this elementary

Jacobian vanishes, so one can not express x2 as a function of x1 (given x1, there
is a positive and a negative x2 that satisfies θ(x) = 0). However, a plot of θ will
convince the reader that one can locally express x2 as a function of x1 everywhere
else on the curve.

Equality constraints. Given the m constraints, one can consider that in reality
the optimization problem only has n − m degrees of freedom. Using the implicit
functions theorem, and by analogy with the simplex method, u will thus play the
part of the base variables.
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Let us define the reduced (unconstrained) problem minu F (u) where F (u) =
f(u, φ(u)). Denoting x0 = (u0, v0) with v0 = φ(u0), the gradient of F at u0 is given
by19

∇F (u0) = ∇uf(u0, v0) + ∇φ(u0)∇vf(u0, v0) (139)

where ∇φ(u0) ∈ R
m×m is the Jacobian of φ, obtained by juxtaposing the gradients

of the m scalar functions φj that compose φ : ∇φ(u0) = [∇φi(u
0), ...,∇φm(u0)], and

where ∇uf and ∇vf are partial gradients of f .

To be able to use this gradient in a descent scheme, one must determine the
Jacobian of φ. This is simple in the case of linear constraints θ(x) = Cx+ c = 0,
C ∈ R

m×n. Consider the partition C = [B,A] where B ∈ R
m×(n−m), A ∈ R

m×m.
Without loss of generality, one can assume that A is invertible20, which corresponds
to the necessary condition in the implicit functions theorem. The constraints now
write Bu+Av + c = 0, whence v = −A−1(Bu+ c), and ∇φ(u) = −Bt(A−1)t.

u

v

(u,v)=0θ

0F(u  )

∆

−

0f(x  )−

∆

u0

v0
x0

D:

Figure 30: Expressing v as a function of u in the neighborhood of u0 allows to replace
f(u, v) by F (u) = f(u, φ(u)).

For non-linear constraints, the situation is slightly more complex. Assume
∇v θ(u

0, v0) is invertible (up to a reordering of coordinates in x), which characterizes
a non degenerate point x0. The implicit functions theorem guarantees the existence
of φ in a neighborhood of u0. To determine ∇φ, we use the following trick : Let us
consider the function Θ(u) = θ(u, φ(u)) = 0, that implicitly defines φ. Its gradient
is given as in (139) by

∇Θ(u) = ∇u θ[u, φ(u)] + ∇φ(u)∇v θ[u, φ(u)] = 0 (140)

19To prove this relation, consider each ∂F (u)
∂ui

and use the formula for the derivative of composed
functions.

20Otherwise, the invertibility of A is obtained after a reordering of the coordinates in x. If this
is true for no reordering, this simply means that one of the affine constraints is redundant, or that
the domain is empty (the verification of this statement is left as an exerise).
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and vanishes for any value of u (in the neighborhood of u0 where φ exists). This
yields

∇φ(u0) = −∇uθ(u
0, v0)[∇vθ(u

0, v0)]−1 (141)

which generalizes the expression ∇φ(u0) = −Bt(A−1)t found in the linear case. This
relation can now be injected in (139) to determine a descent direction.

This is not sufficient however since we also need to determine the values of F
at a successive point u = u0 − t∇F (u0), after a step in direction −∇F (u0), and
therefore we need to compute φ(u). This amounts to adjusting the value of v0 in
x = (u, v0) in order to satisfy θ(x) = 0. This operation, called the projection of x on
the manifold, depends on the nature of constraints. It may also require a numerical
resolution.

Inequality constraints. The method is similar to the approach by projected
gradients. One considers active and inactive constraints. The reduction of the
gradient is performed with respect to the active constraints. And the progression in
one direction must also check that some constraints do not come active or inactive.
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A On the regularity assumption

What if constraint gradients are not linearly independent ? Here is one example that
illustrates this importance of the regularity assumption for the Lagrange conditions
to be valid.

x3

2x

1x

Figure 31: All points of the domain defined by the intersection of these two cylinders
are irregular.

Consider constraints θ1(x) = x2
1+(x2−1)2−1 = 0 and θ2(x) = x2

1+(x2+1)2−1 =
0, that define two cylinders of radius 1, with the x3 axis as intersection. At any point
x ∈ D of the contact line, the gradient of θi is along the x2 axis, so its tangent plane
is defined by x2 = 0. Since gradients are colinear (actually opposite one of another),
x is not regular. And in effect there are directions of the tangent space that can not
lead to a point in D, i.e. that are not admissible. Consider for example moving in
the direction of x1 from the origin. This degenerate case happens when constraints
θj(x) = 0 are “tangent” at some point, and don’t intersect sharply.

B Proof of theorem 3 on second order conditions

Proof. As for the unconstrained case, the main idea is to consider the second
order Taylor expansion of f around a stationary point. But since now x varies in
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a limited domain, this requires a second order characterization of the boundaries of
the domain. The tangent space (first oder approximation) is not sufficient anymore.

Assume x varies along a curve in domain D, which we express by a C2 parametric
curve x : ] − T, T [→ D ⊆ R

d where x(0) = x∗.
Let us first consider constraint θj , and define Θj(τ) = θj [x(τ)] ≡ 0 on ] − T, T [.

One has

Θ′
j(τ) = ∇θj [x(τ)]

t x′(τ) ≡ 0 (142)

Θ′′
j (τ) = x′(τ)t ∇2 θj [x(τ)]

t x′(τ) + ∇θj [x(τ)]
t x′′(τ) ≡ 0 (143)

The first equation taken at τ = 0 expresses that the “speed” x′(0) of x is in the
tangent space of the constraint θj at x∗. And the second one relates the speed of
x to its acceleration x′′. In the same manner, let us define F : ] − T, T [→ R by
F (τ) = f [x(τ)]. One has

F ′(τ) = ∇f [x(τ)]t x′(τ) (144)

F ′′(τ) = x′(τ)t ∇2f [x(τ)]t x′(τ) + ∇f [x(τ)]t x′′(τ) (145)

Since the first equation vanishes at τ = 0, we recover that ∇f(x∗) is orthogonal to
the speed x′(0), whatever the value it takes in the tangent space to the constraints
at x∗. So we recover ∇f(x∗) +

∑

j λ
∗
j ∇θj(x

∗) = 0 for some λ∗j . Let us inject this
expression in (145) taken at τ = 0 :

F ′′(0) = x′(0)t ∇2f(x∗)t x′(0) −
∑

j

λ∗j ∇θj(x
∗)t x′′(0) (146)

where the acceleration x′′(0) can be removed using (143) taken at τ = 0. This yields

F ′′(0) = x′(0)t [∇2f(x∗)t x′(0) +
∑

j

λ∗j ∇2 θj(x
∗) ]x′(0) (147)

To conclude, consider the second order Taylor expansion of F at τ = 0 :

F (τ) = F (0) + τF ′(0) +
1

2
τ2F ′′(0) + o(τ 2)

f [x(τ)] = f(x∗) +
1

2
τ2F ′′(0) + o(τ 2) (148)

If x∗ is a local minimum of f on D, then necessarily 0 is a local minimum of F ,i.e.
F ′′(0) ≥ 0. This in turn implies that (147) must be non-negative, i.e. that the
quadratic form defined by the symmetric matrix ∇2f(x∗)t x′(0) +

∑

j λ
∗
j ∇2 θj(x

∗)
is positive for all possible values of the speed x′(0), i.e. on the tangent space to
the constraints at x∗. In the same way, the strict positivity of this expression is
sufficient to state that x∗ is a local minimum. 2

Exercise 38 Express in what space all the functions appearing above live, and check
that matrix dimensions agree in all equations. Prove all the formula above for the
expressions of derivatives.
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