Pose estimation for augmented reality
pose-from-homography-dlt-visp.cpp

[Include]

#include <visp/vpColVector.h>
#include <visp/vpHomogeneousMatrix.h>
#include <visp/vpMatrix.h>
vpMatrix homography_dlt(const std::vector< vpColVector > &x1, const std::vector< vpColVector > &x2)
{
int npoints = (int)x1.size();
vpMatrix A(2*npoints, 9, 0.);
// We need here to compute the SVD on a (n*2)*9 matrix (where n is
// the number of points). if n == 4, the matrix has more columns
// than rows. This kind of matrix is not supported by GSL for
// SVD. The solution is to add an extra line with zeros
if (npoints == 4)
A.resize(2*npoints+1, 9);
// Since the third line of matrix A is a linear combination of the first and second lines
// (A is rank 2) we don't need to implement this third line
for(int i = 0; i < npoints; i++) { // Update matrix A using eq. 33
A[2*i][3] = -x1[i][0]; // -xi_1
A[2*i][4] = -x1[i][1]; // -yi_1
A[2*i][5] = -x1[i][2]; // -1
A[2*i][6] = x2[i][1] * x1[i][0]; // yi_2 * xi_1
A[2*i][7] = x2[i][1] * x1[i][1]; // yi_2 * yi_1
A[2*i][8] = x2[i][1] * x1[i][2]; // yi_2
A[2*i+1][0] = x1[i][0]; // xi_1
A[2*i+1][1] = x1[i][1]; // yi_1
A[2*i+1][2] = x1[i][2]; // 1
A[2*i+1][6] = -x2[i][0] * x1[i][0]; // -xi_2 * xi_1
A[2*i+1][7] = -x2[i][0] * x1[i][1]; // -xi_2 * yi_1
A[2*i+1][8] = -x2[i][0] * x1[i][2]; // -xi_2
}
// Add an extra line with zero.
if (npoints == 4) {
for (unsigned int i=0; i < 9; i ++) {
A[2*npoints][i] = 0;
}
}
vpColVector D;
vpMatrix V;
A.svd(D, V);
double smallestSv = D[0];
unsigned int indexSmallestSv = 0 ;
for (unsigned int i = 1; i < D.size(); i++) {
if ((D[i] < smallestSv) ) {
smallestSv = D[i];
indexSmallestSv = i ;
}
}
#if VISP_VERSION_INT >= VP_VERSION_INT(2, 10, 0)
vpColVector h = V.getCol(indexSmallestSv);
#else
vpColVector h = V.column(indexSmallestSv + 1); // Deprecated since ViSP 2.10.0
#endif
if (h[8] < 0) // tz < 0
h *=-1;
vpMatrix _2H1(3, 3);
for (int i = 0 ; i < 3 ; i++)
for (int j = 0 ; j < 3 ; j++)
_2H1[i][j] = h[3*i+j] ;
return _2H1;
}
vpHomogeneousMatrix pose_from_homography_dlt(const std::vector< vpColVector > &xw, const std::vector< vpColVector > &xo)
{
vpMatrix oHw = homography_dlt(xw, xo);
// Normalization to ensure that ||c1|| = 1
double norm = sqrt(vpMath::sqr(oHw[0][0]) + vpMath::sqr(oHw[1][0]) + vpMath::sqr(oHw[2][0])) ;
oHw /= norm;
vpColVector c1 = oHw.getCol(0);
vpColVector c2 = oHw.getCol(1);
vpColVector c3 = vpColVector::crossProd(c1, c2);
vpHomogeneousMatrix oTw;
for(int i=0; i < 3; i++) {
oTw[i][0] = c1[i];
oTw[i][1] = c2[i];
oTw[i][2] = c3[i];
oTw[i][3] = oHw[i][2];
}
return oTw;
}
int main()
{
int npoints = 4;
std::vector< vpColVector > wX(npoints); // 3D points in the world plane
std::vector< vpColVector > xw(npoints); // Normalized coordinates in the object frame
std::vector< vpColVector > xo(npoints); // Normalized coordinates in the image plane
for (int i = 0; i < npoints; i++) {
xw[i].resize(3);
xo[i].resize(3);
wX[i].resize(4);
}
// Ground truth pose used to generate the data
vpHomogeneousMatrix oTw_truth(-0.1, 0.1, 1.2, vpMath::rad(5), vpMath::rad(0), vpMath::rad(45));
// Input data: 3D coordinates of at least 4 coplanar points
double L = 0.2;
wX[0][0] = -L; wX[0][1] = -L; wX[0][2] = 0; wX[0][3] = 1; // wX_0 ( -L, -L, 0, 1)^T
wX[1][0] = 2*L; wX[1][1] = -L; wX[1][2] = 0; wX[1][3] = 1; // wX_1 (-2L, -L, 0, 1)^T
wX[2][0] = L; wX[2][1] = L; wX[2][2] = 0; wX[2][3] = 1; // wX_2 ( L, L, 0, 1)^T
wX[3][0] = -L; wX[3][1] = L; wX[3][2] = 0; wX[3][3] = 1; // wX_3 ( -L, L, 0, 1)^T
// Input data: 2D coordinates of the points on the image plane
for(int i = 0; i < npoints; i++) {
vpColVector oX = oTw_truth * wX[i]; // Update oX, oY, oZ
xo[i][0] = oX[0] / oX[2]; // xo = oX/oZ
xo[i][1] = oX[1] / oX[2]; // yo = oY/oZ
xo[i][2] = 1;
xw[i][0] = wX[i][0]; // xw = wX
xw[i][1] = wX[i][1]; // xw = wY
xw[i][2] = 1;
}
vpHomogeneousMatrix oTw = pose_from_homography_dlt(xw, xo);
std::cout << "oTw (ground truth):\n" << oTw_truth << std::endl;
std::cout << "oTw (computed with homography DLT):\n" << oTw << std::endl;
return 0;
}