
Noname manuscript No.
(will be inserted by the editor)

Learning Context Free Grammars on Proteins by Local
Substitutability

François Coste · Gaëlle Garet · Jacques Nicolas

Received: date / Accepted: date

Abstract The grammatical inference field has long been driven by language theoretic con-
siderations and the interest of better understanding natural language learning. With its ability
to produce large sets of sequences and to check predictions on new sequence membership,
genomics has become an appealing application domain. This paper studies a task of impor-
tance in bioinformatics, the annotation of new proteins with respect to banks of already an-
notated protein sequences. Proteins present several difficulties with respect to grammatical
inference, mainly their size and the long range interactions that share its elements through
folding in space. Our contribution relates both to formal aspects (generalization criterion
and class of languages) and to practical aspects (algorithms and experiments) of the infer-
ence process. Starting from the work of Clark and Eyraud [2007] and Yoshinaka [2008]
on inference of substitutable and k, l-substitutable languages respectively, we introduce new
classes of substitutable languages based on local rather than global substitutability, a reason-
able assumption with respect to protein structures. The paper provides a practical algorithm
supporting the determination of string substitutability by fixed-size left and right contexts.
The interest of this approach is shown on the challenging sets of proteins proposed in Dyrka
and Nebel [2009] and results are compared with stochastic context free grammars and sim-
ple regular expressions learning. With a preliminary coding step of conserved substrings
in the protein learning set, it is possible to learn grammars with high specificity and good
sensitivity.

Keywords Local substitutable languages · grammatical inference · bioinformatics ·
proteins

François Coste
Inria Rennes - Bretagne Atlantique, Campus universitaire de Beaulieu, Rennes, France
E-mail: francois.coste@inria.fr
Gaëlle Garet
E-mail: gaelle.garet@inria.fr
Jacques Nicolas
E-mail: jacques.nicolas@inria.fr

2 François Coste et al.

1 Introduction

Grammatical inference aims at producing machines or rewriting systems that recognize a
language from a sample of sequences. The field has long been driven by language theoretic
considerations and the interest of better understanding natural language learning. With the
availability of large training sets of sequences and the opportunity to check predictions on
new sequence membership through new experiments, genomics has progressively become
an appealing application domain for sequence model learning. Technological improvements
now allow many biological laboratories to obtain new genomic sequences of good quality
for an affordable price and the cumulated volume of these data has greatly increased. Ge-
nomic banks are fed continuously by large sets of DNA or RNA sequences coming from
high throughput machines and to date, almost 2000 species have their genome completely
sequenced. The new generation of sequencing technologies has introduced the study of se-
quence variations within populations and it becomes even more important to be able to iden-
tify which of the variants are causal with respect to a particular disease state or phenotypic
trait (Zhang et al. [2011]).

Protein annotation is a task of first importance in this context. It involves the search of
protein coding genes within the sequences and the prediction of the function of these new
proteins in the cell by comparison of their sequences with known families. Indeed, pro-
teins are generally highly conserved through species and this allows to delineate families
and super-families of related elements and predict some functional properties with good ac-
curacy on the basis of common shared motifs. There exist several databases (Hunter et al.
[2012]) and a broad range of methods and softwares for the discovery of characteristic pro-
tein motifs from sets of sequences. As stated in Galperin and Koonin [2010], the annotation
of protein families is far more realistic than the annotation of individual proteins since it
allows to clearly focus on a particular functional aspect (individual proteins have generally
multiple functional effects leading to different phenotypic traits, a phenomenon referred as
’pleiotropy’). Many popular machine learning methods have been successful in Bioinfor-
matics, especially the discriminative ones such as the neural networks and support vector
machines which have been shown to be very efficient even for sequence classification tasks
(see for instance Baldi and Brunak [2001]).

As a matter of fact, it is not so natural to use discriminative methods on natural se-
quences. This has been quite evident in natural language studies. The notion of counter-
example is generally fuzzy and there exists a significant imbalance between the cardinality
of positive and negative classes. Moreover, predictive accuracy is not the sole objective of
machine learning. Of utter importance is the understanding of possible generative mecha-
nisms at work for the production of observed sequences. Roughly, there exists two possible
modeling approaches when considering analyzing and learning natural languages from pos-
itive examples of correct sentences. The first one looks for a hierarchy of concepts as in the
phrase structures introduced by Chomsky [1957] to study syntax acquisition by children.
The second one is word-centered and looks for dependencies between the different prop-
erties of neighbour words as in Lexicalized Tree Adjoining Grammars (Schabes [1990]) in
order to better account for local constraints and to obtain simpler grammars. Most of results
in grammatical inference are obtained in the framework of Chomsky’s hierarchy, but the
second framework has the advantage of stressing the importance of lexicalization and anal-
ysis of local dependencies. In fact, an old idea at the basis of practical inference algorithms
and recently formalized in Clark and Eyraud [2007] relies on the notion of common con-
texts: substitutability. Two sequences are substitutable if they occur in the same context in

Learning Context Free Grammars on Proteins by Local Substitutability 3

the pairs of sentences where they appear. The idea is then to generalize the observation of a
pair of sentences that only differ by two included sequences by inferring the substitutability
of these sequences. This is safe (the class of languages is learnable in the limit) if every pair
of sequences appearing in a common context is substitutable, a criterion defining the class
of substitutable languages. The k, l-substitutable languages (Yoshinaka [2008]) is a natural
extension of this concept requiring a minimal fixed length on the considered contexts for
its applicability. In this paper, we further explore the concept of substitutability for genomic
sequences.

The linguistic metaphor has been used indeed for a long time in molecular biology,
and applying computational linguistics tools to represent, understand and handle biologi-
cal sequences is a natural continuation of this metaphor. Using formal grammars has been
advocated in particular by Searls [2002] and Chiang et al. [2006] whose articles provide a
good introduction to the different levels of expressiveness required to model macromolec-
ular sequences and to related grammatical formalisms. A legitimate question is to ask to
what extend could natural language learning models contribute to learning on biological
macromolecules.

A striking characteristics of biological sequences with respect to induction relies on
the concept of conservation and it is another particularity of the sequences we consider
in this paper. In biology, genetic variation (by mutations, recombination of chromosomes,
crossing-over and other sources of sequence variation) is a fundamental source of diversity
which is opposed to natural selection. A conserved feature among a set of sequences is an
evidence of selection through evolution and is thus likely to be important for the family.
Sequence conservation can be detected by pairwise (Altschul et al. [1990]), or by multiple
sequences alignments (Thompson et al. [1994]). They can act globally on the whole length
of the sequences or look for local similarities. In this work, we use partial local multiple
alignments (PLMA, Kerbellec [2008]), that are able to find all the conservation blocks in a
learning set of proteins.

The most successful learning approach to date on protein sequence models is likely to be
the parameter estimation approach. Models can be deduced from alignments by computing
a score estimating the likelihood of the presence of some letter at a given position in the
model. Applied to grammatical models, the principle is to choose a generic simple grammar
topology, for instance profile Hidden Markov Models (pHMM) and to fit the parameter
probabilities (or weights) to maximize the likelihood of the available sample of sequences
from the family (Durbin et al. [1998]; Bailey et al. [2009]). However, since the function of
proteins have close relation with their spatial structure, it is far from optimal to analyze them
with a fixed simple left-to-right grammar structure.

Of course, learning the grammar is a more demanding task and progresses are slower in
this domain, but some steps have already been taken. A subset of regular expressions have
been used in the database Prosite (Hulo et al. [2006]), some expressions being inferred by
the Pratt motif discovery method (Jonassen et al. [1995]), and we have proposed a method
and a tool (Coste and Kerbellec [2005]) to model families of protein sequences with finite
automata. Regular grammar topologies or even less expressive formalisms can be sufficient
to characterize protein families in many cases, but they cannot model (potentially nested
or crossing) long-term dependencies such as contacts of amino-acids that are far in the se-
quence but close in the 3D folding of the protein. Bryant et al. [2006] uses Inductive Logic
Programming and is thus closely related to grammatical inference since it aims at produc-
ing Definite Clause Grammars. Authors have implemented a variety of preprocessing steps
including a Pratt motif search in order to get a rich background knowledge and have tested

4 François Coste et al.

their approach on families of G-protein coupled receptors, restricting learning to subse-
quences corresponding to known membrane spanning regions of the proteins. The focus of
the paper is more on the interest of background knowledge than on the class of languages
that are the target of learning and it is thus difficult to assess the contribution of the learned
grammar structure. Computational complexity seems also a major concern of this method.
In Dyrka and Nebel [2009], the authors propose to learn by genetic algorithms a combina-
tion of stochastic context free grammars related to different amino acid physico-chemical
properties, which are shown to produce relevant protein binding site descriptors. They have
obtained interesting results by carefully splitting sequences in separated domains, as in the
previous study. Since it is one of the most advanced application of grammatical inference on
proteins to date, we decided to start our own experiments on the same data set.

We propose in this paper to investigate how inference based on substitutability can be
applied for modeling families of protein sequences by context-free grammars. In prelim-
inary experiments, we have remarked that almost no generalization was brought by these
approaches because the condition to enable one word y1 to be replaced by another word y2
was almost never satisfied. As a matter of fact y1 and y2 need to be surrounded by the same
context w in two sequences and y1 has to exist as a substring of yet another sequence to
imply the existence of a fourth sequence containing y2. If the sequences are long, observing
a double occurrence of the common context w and a double occurrence of y1, given that at
least one of these substrings has to be long, has a low likelihood in practice. Moreover, in
this reversible language type of approach, heads (and tails) have to be completely conserved
from the beginning (to the end) of the sequences, i.e. the context has to be the same around
y1 and y2 on the full length of the two sequences. In our test sets, this did not occur, except
for long y1 and y2 that were almost never repeated in other sequences. It seemed clear that
more local characterizations are needed in practice, in the spirit of locally testable languages,
and this paper introduces a variant of the substitutability criterion for this purpose.

The next section introduces the class of locally substitutable languages, relates it to
other classes of languages and give some of its basic properties. Section 3 proposes a new
algorithm that builds a grammar from a sample according to k, l-local substitutability. Some
emphasis is put on practical issues, focusing especially on a reduced grammar form that is
more easy to interpret and more efficient to build. Finally, Section 4 describes an experi-
mentation on the protein data sets issued from the Dyrka & Nebel benchmark.

2 Substitutable Languages

2.1 Definitions and Notations

Before defining the new class of local substitutable languages, we briefly recall the definition
of substitutable and k, l-substitutable properties. We use standard definitions and notations
for languages and grammars.

An alphabet Σ is a finite nonempty set of symbols called letters. A string w over Σ is
a finite sequence w = a1a2... of letters. The term |w| denotes the length of w and the empty
string of length 0 will be indicated by λ . Let Σ ∗ be the set of all strings. A grammar is a
quadruple G =< V,Σ ,P,S > where Σ is a finite alphabet of terminal symbols, V is a finite
alphabet of variables or non-terminals, P is a finite set of production rules, and S ∈ V is
the start symbol. We denote by L(G) = {w ∈ Σ ∗ : S⇒∗G w} the language defined by the
grammar.

Substitutable and k, l-substitutable languages are defined by:

Learning Context Free Grammars on Proteins by Local Substitutability 5

Definition 1 [Substitutable language (Clark and Eyraud [2007])] A language L is substi-
tutable iff for any x1,y1,z1,x2,y2,z2 ∈ Σ ∗ such that y1,y2 6= λ ,

x1y1z1 ∈ L∧ x1y2z1 ∈ L⇒ (x2y1z2 ∈ L⇔ x2y2z2 ∈ L).

Definition 2 [k, l-substitutable language (Yoshinaka [2008])] A language L is k, l-substitutable
iff for any x1,y1,z1,x2,y2,z2 ∈ Σ ∗,u ∈ Σ k,v ∈ Σ l , such that uy1v,uy2v 6= λ ,

x1uy1vz1 ∈ L∧ x1uy2vz1 ∈ L⇒ (x2uy1vz2 ∈ L⇔ x2uy2vz2 ∈ L).

The class of substitutable context free languages is the class of substitutable languages
that are context free. k, l-substitutable context free languages are defined similarly.

As pointed out by Yoshinaka [2008], the class of substitutable context-free languages in-
troduced in Clark and Eyraud [2007] are the analogue of zero-reversible regular languages.
Like zero-reversible languages have been extended to the hierarchy of k-reversible regu-
lar languages, Yoshinaka [2008] defines the hierarchy of k, l-substitutable context-free lan-
guages, where substitutable context-free languages are the 0,0-substitutable context-free
languages.

2.2 Locally Substitutable Languages

As stated in the introduction section, the substitutability property is hard to achieve on long
sequences (let us note here that this requirement also holds for k, l-substitutability), more
local characterizations are needed in practice.

We propose here to introduce new language classes by considering only local contexts
around words rather than the global ones required in substitutable languages. A consequence
of this relaxation is to introduce the need for an additional parameter, the size of the context
used. To allow an asymmetric left or right bias, we introduce two parameters k and l and
define the class of k, l-local substitutable languages by:

Definition 3 [k, l-local substitutable language] A language L is k, l-local substitutable if for
any x1,y1,z1,x2,y2,z2,x3,z3 ∈ Σ ∗,u ∈ Σ k,v ∈ Σ l , such that uy1v,uy2v 6= λ ,

x1uy1vz1 ∈ L∧ x3uy2vz3 ∈ L⇒ (x2y1z2 ∈ L⇔ x2y2z2 ∈ L).

Then in a k, l-local substitutable language, all substrings y1 can be substituted by sub-
strings y2 as soon as there exist sequences in this language in which they share a common
(local) context u,v of size |u|= k and |v|= l. If a language is k, l-local substitutable then it
is m,n-local substitutable for any m≥ k and n≥ l and the hierarchy is strict.

To simplify the proofs and the definitions, we will assume that contexts are always de-
fined: the alphabet Σ can be extended to Σ ′ = Σ ∪{$} where $ is a new symbol not in Σ

and sequences are padded at their extremities with this new symbol (each sequence is added
k symbols $ before its beginning and l symbols $ after its end). Using this convention, the
class of substitutable languages (Clark and Eyraud [2007]) can be stated as being the class
of ∞,∞ -local substitutable.

It is also possible to define the local counterpart of k, l-substitutable languages:

Definition 4 [k, l-local context substitutable language] A language L is k, l-local context
substitutable if for any x1,y1,z1,x2,y2,z2,x3,z3 ∈ Σ ∗,u ∈ Σ k,v ∈ Σ l , such that uy1v,uy2v 6=
λ ,

6 François Coste et al.

x1uy1vz1 ∈ L∧ x3uy2vz3 ∈ L⇒ (x2uy1vz2 ∈ L⇔ x2uy2vz2 ∈ L).

Again, if a language is k, l-local context substitutable then it is m,n-local context substi-
tutable for any m≥ k and n≥ l and the hierarchy is strict.

Compared to k, l-local substitutable languages, the difference is that y1 can be substi-
tuted by y2 only in the contexts they share. This raises an important distinction between the
considered contexts: the contexts used to define the equivalence classes (the set of substi-
tutable yi) and the contexts required for the application of these equivalence classes. In the
definition above, both contexts are of the same length. To mark the difference between the
two kinds of contexts and generalize the class of languages, it is possible to introduce the
class of i, j-local k, l-context substitutable language, where (i, j) constrains the context size
used in the local way to define the equivalence classes and (k, l) sets the minimal length
condition on contexts where these substitutability classes apply.

Formally, i, j-local k, l-context substitutable languages are defined with respect to the
relative lengths of the two kinds of contexts 1 by:

1. k ≤ i∧ l≤ j (brave substitutability)
2. for any x1,y1,z1,x2,y2,z2,x3,z3 ∈Σ ∗,u∈Σ k,v∈Σ l ,a∈Σ i−k,b∈Σ j−l such that uy1v,uy2v 6=

λ ,

x1auy1vbz1 ∈ L∧ x3auy2vbz3 ∈ L⇒ (x2uy1vz2 ∈ L⇔ x2uy2vz2 ∈ L)

3. k ≥ i∧ l≥ j (cautious substitutability)
4. for any x1,y1,z1,x2,y2,z2,x3,z3 ∈Σ ∗,c∈Σ k−i,d ∈Σ l−i,r∈Σ i,s∈Σ j such that ry1s,ry2s 6=

λ ,

x1cry1sdz1 ∈ L∧ x3ry2sz3 ∈ L⇒ (x2cry1sdz2 ∈ L⇔ x2cry2sdz2 ∈ L)

Let us remark that if a language is i, j-local k, l-context substitutable, then it is i, j-local
a,b-context substitutable with a≥ k and b≥ l and that this hierarchy with respect to context
size is strict. Similarly, it is m,n-local k, l-context substitutable with m≥ i and n≥ j and this
hierarchy with respect to locality size is strict. Obviously, it is also m,n-local a,b-context
substitutable for a≥ k and b≥ l and m≥ i and n≥ j.

The figure 1 shows the inclusion hierarchy of i, j-local k, l-context substitutable lan-
guages with respect to the different parameters, the upper bound being the class of context-
free languages.

The following table sums up the different classes of substitutable languages seen so far
in the general framework of the i, j-local k, l-context substitutable language:

Language local definition contextual application
substitutable (Clark and Eyraud [2007]) (∞,∞) (0,0)
k, l-substitutable2 (Yoshinaka [2008]) (∞,∞) (k, l)

k, l-local substitutable (k, l) (0,0)
k, l-local context substitutable (k, l) (k, l)

i, j-local k, l-context substitutable (i, j) (k, l)

1 Only the two main cases are detailed here, the two other cases could be defined in a similar way
2 Could also be named k, l-context substitutable

Learning Context Free Grammars on Proteins by Local Substitutability 7

(i + 1, j + 1)(k + 1, l + 1)

...

Context-free

{Σ∗}
(0, 0)(0, 0)

(i, j)(k, l)

(i, j)(k + 1, l)

(i, j)(k, l + 1)

(i, j)(k + 1, l + 1)

(i, j + 1)(k, l)(i+ 1, j)(k, l)

(i + 1, j + 1)(k, l)

Fig. 1 Hierarchy of (i,j)-Local(k,l)-Context Substitutable Languages

Link with k-testable languages

The set of k, l-local context substitutable languages form an appealing class mixing local
and contextual substitution in a symmetrical way with few parameters. Moreover, we can
establish a link between this class of languages and the family of locally testable languages,
an interesting subclass of regular languages learnable from positive examples only, accord-
ing to theoretical and practical points of view (Garcia et al. [1990]; Garcia and Vidal [1990];
Yokomori et al. [1994]).

Definition 5 (strictly k-testable language) Let Lk(w) and Rk(w) be the prefix and the suffix
of w of length k, respectively. Further, let Ik(w) be the set of interior solid substrings of w of
length k.
A language L over S is strictly k-testable if and only if there exist finite sets A,B,C such that
A,B,C⊆ Sk, and for all w with |w| ≥ k, w∈ L if and only if Lk(w)∈ A,Rk(w)∈ B, Ik(w)⊆C.

In any k-testable language, the following property clearly holds:

∀x1,y1,x2,y2 ∈ Σ
∗,u ∈ Σ

k, x1uy1 ∈ L∧ x2uy2 ∈ L⇒ x1uy2 ∈ L∧ x2uy1 ∈ L

The same way, the following property holds:

∀x2,y1,x3,y2 ∈ Σ
∗,u ∈ Σ

k,x2uy1 ∈ L∧ x3uy2 ∈ L⇒ x2uy2 ∈ L

The combination of these two properties gives:

∀x1,y1,x2,y2,x3 ∈ Σ
∗,u ∈ Σ

k,x1uy1 ∈ L∧ x3uy2 ∈ L⇒ (x2uy1 ∈ L⇔ x2uy2 ∈ L)

8 François Coste et al.

In terms of definition 4, the latter property is exactly the definition of k,0-local context
substitutable languages. The k-testable languages are thus k,0-local context substitutable.
One can proceed symmetrically and deduce the inclusion of l-testable languages in 0, l-local
context substitutable.

The class of k, l-local context substitutable languages can thus be seen as a bidirectional
extension of k-testable languages, in the same way that k, l-substitutable languages are the
counter part of k-reversible languages. The figure 2 displays an overview of the different
classes of languages discussed so far and their inclusions.

k,l-subst.

k,l-local
context subst.

k-testable

subst.

k,l-local subst.

Fig. 2 Inclusion of the different substitutable language classes and k-testable languages

Before studying the inference of local substitutable languages, we present some of their
properties in the next section.

2.3 Closure properties

Yoshinaka [2008] has demonstrated some properties verified by k, l-substitutable languages.
We present here similar results on the locally substitutable languages. Proofs are available
in Coste et al. [2012].

Proposition 1 Locally substitutable languages are not closed under intersection with regu-
lar sets, concatenation, complement, union, Kleene closure, λ -free homomorphism, inverse
homomorphism, reversal and closed under intersection and λ -free inverse homomorphism.

While the main results are negative, except for the closure under intersection, this last
proposition suggests that, as for local languages, morphic generator grammatical inference
methodologies embedding expert knowledge in the sequences by renaming symbols (Garcia
et al. [1987]) could be developed for learning locally substitutable languages.

3 Generalization Algorithm

3.1 Generalization by Substitutability

In Coste et al. [2012], we straightforwardly adapted to locally substitutable languages the
simple learning algorithm presented in Yoshinaka [2008]. From a given sample set K and

Learning Context Free Grammars on Proteins by Local Substitutability 9

the pair of parameters k and l, a grammar is built according to k, l-local substitutability con-
straints defined in table Characterization 1 or k, l-local context substitutability constraints
defined in table Characterization 2. It can be noticed here that like in Yoshinaka [2008], the
considered grammars have at most two nonterminals in the right-hand-side and that these
algorithms do not necessarily return a grammar of the right class of languages, even if they
are expected to converge towards the target language when enough examples are available.

Characterization 1 ĜLS (k, l-local substitutability)
Data : Set of sequences K, parameters k and l
Result : Grammar Ĝ
/* Nonterminal definition */

V = {[y] | xyz ∈ K,y 6= λ}∪{S}
/* Induction of rules */

/* Initial rule */
PK = {S→ [w] | w ∈ K}

/* Terminal rules */
∪ {[a]→ a | a ∈ Σ}

/* Branching rules */
∪ {[xy]→ [x][y] | [xy], [x], [y] ∈VK}

/* Substitutability rules */
∪ {[y1]→ [y2] | x1uy1vz1 ∈ K,x2uy2vz2 ∈ K, | u |= k, | v |= l}

Characterization 2 ĜLCS (k, l-local context substitutability)
Same as Characterization 1 except for the last line:

/* Substitutability rules */
∪ {[uy1v]→ [uy2v] | x1uy1vz1 ∈ K,x2uy2vz2 ∈ K, | u |= k, | v |= l}

Given that the k, l-local substitutable languages and the k, l-local context substitutable
languages are included in the class of the k, l-substitutable languages, they are learnable with
the algorithm presented in Yoshinaka [2008]. It has still to be investigated, but the similarity
of the representations and algorithms should allow to obtain learnability results similar to
those obtained by Yoshinaka [2008] or Luque and López [2010] in our setting. We limit
ourselves here to a more pragmatic perspective and focus on the difference that these new
classes of languages introduce in learning by least generalization approaches.

First let us illustrate by some examples the different languages that can be learned by
minimal generalization from the set of positive data K = {abcde,ab f de,yzc ji,vzm jk} with
respect to the chosen class of languages for small values of k and l.

– 0,0-substitutability (Clark and Eyraud [2007])
N→ abXde|yzX ji|vzm jkX → c| f
L = {abcde,ab f de,yzc ji,vzm jk,yz f ji}

– 1,1-substitutability (Yoshinaka [2008])
N→ aXe|yzc ji|vzm jkX → bcd|b f d
L = {abcde,ab f de,yzc ji,vzm jk}

10 François Coste et al.

– 1,1-local substitutability
N→ abXde|yzX ji|vzX jkX → c| f |m
L = {abcde,ab f de,yzc ji,vzm jk,yzm ji,vzc jk,yz f ji,vz f jk,abmde}

– 1,1-local context substitutability
N→ aXe|yX2i|vX2kX → bcd|b f dX2→ zm j|zc j
L = {abcde,ab f de,yzc ji,vzm jk,yzm ji,vzc jk}

More generally, given a learning sample set K, one can establish an inclusion hierarchy
between the least general generalizations produced for the different kinds of language con-
straints. If LX (K) denotes the least general language of class X including K, the following
inclusions hold:

Proposition 2 Lk,l-substitutable(K)⊆ Lk,l-local context substitutable(K)

Proof x1uy1vz1 ∈ L∧ x3uy2vz3 ∈ L⇒ (x2uy1vz2 ∈ L⇔ x2uy2vz2 ∈ L)
If x1 = x3∧ z1 = z3 :
x1uy1vz1 ∈ L∧ x1uy2vz1 ∈ L⇒ (x2uy1vz2 ∈ L⇔ x2uy2vz2 ∈ L)
So, all the words that are added to satisfy k, l-substitutability are also added for k, l-local
context substitutability.

Proposition 3 Lsubstitutable(K)⊆ Lk,l-local substitutable(K)

Proof x1uy1vz1 ∈ L∧ x3uy2vz3 ∈ L⇒ (x2y1z2 ∈ L⇔ x2y2z2 ∈ L)
If x1u = x3u(= x4)∧ vz1 = vz3(= z4) :
x4y1z4 ∈ L∧ x4y2z4 ∈ L⇒ (x2y1z2 ∈ L⇔ x2y2z2 ∈ L)

Proposition 4 Lk,l-local context substitutable(K)⊆ Lk,l-local substitutable(K)

Proof x1uy1vz1 ∈ L∧ x3uy2vz3 ∈ L⇒ (x2y1z2 ∈ L⇔ x2y2z2 ∈ L)
If x2 = x4u∧ z2 = vz4 :
x1uy1vz1 ∈ L∧ x3uy2vz3 ∈ L⇒ (x4uy1vz4 ∈ L⇔ x4uy2vz4 ∈ L)

To sum up these propositions, we get the following inclusions between the different
substitutable language closures of a given set of sequences K:

Lk,l-local substitutable(K)

⊆ ⊆
Lk,l-local context substitutable(K) Lsubstitutable(K)

⊆ ⊆
Lk,l-substitutable(K)

The defined characterizations are useful from the theoretical point of view but have little
practical value. These grammars suffer from embedding too many ambiguities and redun-
dancies. For instance, the grammars presented in the previous examples have been obtained
through a tough selection of meaningful rules. From a parsing perspective or even with the
simple goal of manually checking and interpreting the rules, the grammars are too large and
the generation process has to be refined. The next section proposes a characterization of a
more practical reduced form, avoiding unnecessary nonterminals and production rules in the
learned grammar.

Learning Context Free Grammars on Proteins by Local Substitutability 11

3.2 A Reduced Grammar

We keep on the main notations used in Yoshinaka [2012] but introduce everywhere the new
parameters k and l bounding context sizes. We recall that the alphabet Σ is assumed to be
extended by a new symbol and that the sequences are padded at their extremities with this
new symbol, so as contexts are always defined.

An element of Σ k×Σ l is called a context. The empty context is 〈λ ,λ 〉, or equivalently
〈$k,$l〉. The composition of a string y ∈ Σ ∗ and a context 〈u,v〉 ∈ Σ k×Σ l is 〈u,v〉� y =
uyv ∈ Σ ∗. This notation can be naturally extended to sets.

For a language L ⊆ Σ ∗, Sub(L) denotes the set of strings {y ∈ Σ ∗ | w� y ∈ L for some
context w}, and Conk,l(L) denotes the set of contexts {w ∈ Σ k ×Σ l | w� y ∈ Sub(L) for
some y ∈ Σ ∗},

Clark and Eyraud [2007] have introduced for two strings y1 and y2 the concepts of strong
substitutability (for every context w, w�y1 ∈ L iff w�y2 ∈ L) and weak substitutability (for
some context w, w� y1 ∈ L and w� y2 ∈ L). In these definitions, k and l are assumed to be
infinite.

The new classes of languages that we have introduced in section 2 are based on a simple
extension of these concepts:

Definition 6 [Strong (k, l)-local substitutability] For a language L, two strings y1 and y2 ∈ L
are (k, l)-local substitutable iff for any x1,x2,z1,z2 ∈ Σ ∗, u ∈ Σ k,v ∈ Σ l ,

x1uy1vz1 ∈ L⇐⇒ x2uy2vz2 ∈ L.

Definition 7 [Weak (k, l)-local substitutability] For a language L, two strings y1 and y2 ∈ L
are weakly (k, l)-local substitutable iff there exists x1,x2,z1,z2 ∈ Σ ∗, u ∈ Σ k,v ∈ Σ l ,

x1uy1vz1 ∈ L∧ x2uy2vz2 ∈ L.

Our goal is then to improve the legibility of grammars and derivation trees with respect
to substitutability. This includes the selection of meaningful nonterminals with respect to
the substitutability relation and the production of derivation trees that reflect the hierarchical
structure of substitutable elements. A direct consequence of reducing the number of nonter-
minals is to reduce grammar complexity. Overall our approach will reduce ambiguities and
redundancies in grammars and in turn it will improve the efficiency of parsing. The next
two subsections describe in detail the elaboration of a grammar from a weak substitutability
relation computed on a learning set.

3.2.1 Nonterminals and substitutability classes

The first cause of redundancy in Characterization 1 is due to the broad definition of nonter-
minals:

V = {[y] | xyz ∈ K,y 6= λ}

This definition implies that all subsequences of the learning sample K are associated
with different nonterminals. The number of elements in V is quadratic with respect to the
size of the sequences in K. Then, the number of substitutability rules, which depends on

12 François Coste et al.

the number of terminal pairs linked by substitutability, grows in O(n4) if n is the size of the
sequences. Thus, the reduction of the number of nonterminals is a genuine challenge.

A closer inspection of the way grammars are built easily shows that the important non-
terminals are those that correspond to substitutable elements. Generalization of a sample K
starts from its weakly (local) substitutable substrings and generalize K to a language that en-
sures strong (local) substitutability for all these substrings: each time a substitutable pair is
found, its effect is propagated in a transitive way by creating the corresponding substitutabil-
ity rule. A class of substitutability is a set of elements closed under the transitive closure of
the weak substitutability relation.

A simple idea is to use a unique nonterminal for each class of substitutability and we
illustrate this on a small example.

Consider the learning sample K = {bc,ac}. Words a and b are substitutable in this ex-
ample. The characterization 1 results in a grammar including the following rules:

X1→ a

X2→ b

X3→ c

X1→ X2

X2→ X1

S→ X1X3

In such a type of grammar, it is difficult to extract the information on substitutable struc-
tures that are coded through chains of substitutability rules. Directly using substitutable
classes for nonterminals leads to more compact grammars that can be easily interpreted in
terms of substitutability and improve parsing efficiency by eliminating sources of redun-
dancy. The previous set of rules will become:

X → a|b

S→ Xc

For instance the derivation of bc is S→ Xc→ bc with this grammar instead of S→
X1c→ X2c→ bc in the previous grammar.

To continue to reduce the number of nonterminals, a few notations need to be introduced.
Let S denote the set of substitutability classes on K and [x] the class of substitutability of
substring x. It is possible to apply standard concatenation on substitutability classes, i.e.
[x][y] = {uv | u ∈ [x],v ∈ [y]}. A direct consequence of the definition of a substitutability
class is that

∀x,y ∈ Σ
+, [x][y]⊆ [xy]. (1)

Reducing the number of necessary nonterminal, can be done by considering some sub-
stitutability classes (we call them composite) that can be rewritten with the help of others
and can thus be safely discarded.

Learning Context Free Grammars on Proteins by Local Substitutability 13

Composite and prime substitutability class A substitutability class [x] ∈S is composite if:

∃y1 . . .yn ∈ Σ
+, [x] = [y1] . . . [yn],n > 1. (2)

A substitutability class [x] ∈S is prime if it is not composite.
A simpler characterization of composite classes is possible, due to structuration of sub-

stitutability classes on K:
Lemma: A substitutability class [x] ∈S is composite iff

∃y,z ∈ Σ
+, [x]⊆ [y][z]

The lemma is a simple consequence of the fact that for any decomposition of a substring
x = yz in K using two substitutability classes [y] and [z], the substitutability class [yz] exists.
Thus any decomposition of a string in more than two substitutability classes may be reduced
to a decomposition in strictly two classes. Moreover, equation 1 ensures that it is sufficient
to test an inclusion for testing the equality in equation 2. The equation 1 also entails that
testing the inclusion on a decomposition into two classes is more stringent than testing the
decomposition into more than two classes (ambiguity is preserved).

Our algorithm is based on the selection of nonterminals that correspond to prime substi-
tutability classes. This is achieved in two steps for efficiency, by first working on decompo-
sition tests where one of the elements is a string and then working iteratively on the general
case where the decomposition is made of two substitutability classes.

Note that in case of local context substitutable languages the induction of substitutability
classes needs to take into account the context: starting from the contexts of substrings of K,
the classes will be based on the substrings within these contexts.

So far, we have presented how substitutability rules can be discarded and used to reduce
the set of nonterminals. We are now considering the branching rules. Using a complete set of
nonterminals in Characterization 1 had the benefit of allowing a Chomsky normal form for
these branching rules. By contrast, the choice of prime substitutable classes for nonterminals
requires a maximal decomposition of strings. The next subsection details the general form
of such decomposition rules.

3.2.2 Branching rules

The set of nonterminals being set to the set of prime substitutability classes, we focus now on
reducing the number of branching rules. Rather than having a grammar in Chomsky normal
form, that is anyway not the most a parsimonious representation, we propose to build a
grammar recognizing the same language as in Characterization 1 and 2 by searching for
all the decompositions of the sequences in constituents of prime classes and replacing each
constituents of prime substitutability class by their class (ensuring then the generalization).

The idea is to keep only all the more general rules defined on substitutability classes
and to discard the ones that are subsumed by others. From a given sample set K and the
pair of parameters k and l, we characterize the reduced form of grammars built according to
k, l-local substitutability constraints by Characterization 3. The reduced form of k, l-local
context substitutability grammar is defined likewise except that VK is the set of prime local
context induced substitutability classes.

An example of the gain obtained by this reduced form is presented in appendix A. The
next section presents an algorithm inferring directly this reduced form, trying to avoid use-
less computation for practical efficiency.

14 François Coste et al.

Characterization 3 Reduced ĜLS (k, l-local substitutability)
Data : Set of sequences K, parameters k and l
Result : Grammar Ĝk,l−LS(K) = 〈ΣK ,VK ,PK ,S〉
/* Nonterminal and substitutability rules definition */
ΣK =Set of symbols used in K
VK =Set of prime local substitutability classes of K
C = {y|[y] ∈VK}(all substrings in K generated by prime classes)
/* Induction of rules */

/* Branching rules */
PK = {[y]−→ [y1]...[yi]...[yi+s]...[yn] | y1...yi...yi+s...yn = y ∈C

yi ∈C
6 ∃z ∈VK ,yi...yi+s ∈ [z]}

∪ {[a]−→ a | a ∈ ΣK}
S = {[w] | w ∈ K}

3.3 ReGLiS : a practical algorithm for learning RGL(C)S

We present in this subsection a new algorithm (see algorithm 1) that builds efficiently the re-
duced grammar, thus providing a first practical implementation of the generalization scheme
presented in Coste et al. [2012]. It consists of four phases: detecting substitutability classes,
filtering composite classes, building a canonical grammar based on the remaining classes
and generalizing the grammar by a direct optimization of introduced branching rules.

We detail more the algorithm here. First, the substitutability classes are identified. This
is done classically by searching for connected components (denoted cc(SG) in algorithm)
in a substitutability graph SG (see algorithm 2). Composite classes can then be filtered out
by checking that it cannot be right or left factorized by another substitutability class in SG.
Let us note here that to reduce even more the number of nonterminals to handle in the
program, we don’t introduce a new nonterminal for substitutability classes containing only
one element since they will be useless in the following generalization step.

In second step, the canonical grammar is built. It contains one nonterminal by substi-
tutability class kept and for each element of the substitutability class (a constituent of Σ ∗) a
rule is introduced allowing to rewrite the nonterminal of the class (left hand side of the rule)
into the constituent (right-hand-side of the rule). At this step, one nonterminal can produce
only the elements of his class. The language is composed only of the sequences from the
training set.

The core of the algorithm consists in the induction of optimal branching rules. The
goal is to find all the possible non redundant decompositions of the right hand sides into
subwords to be replaced by their substitutability class nonterminal, performing hence the
generalization.

For that, a parsing graph for each right-hand-side is built (see figure 3): nodes are po-
sitions in the right-hand-side sequence, an edge exist between two nodes if it exists a non
terminal or a letter producing the substring between the two nodes, each edge is labeled
by the corresponding non terminal or letter. The problem is to find all the paths, i.e sets of
nodes, from the beginning of sequence to the end and find a minimum subset of these, a path
(set of nodes) being said minimal if it does not exist another path strictly including in it.

Intuitively, the graph represents all the possible replacement by substitutability class
nonterminals in the right-hand-side and we search for the paths of most general substi-
tutability classes (minimal number of nodes) covering the right-hand-side, discarding thus
the redundant ones that are subsumed by others, allowing to reduce the right-hand-side into
smaller, more general ones.

Learning Context Free Grammars on Proteins by Local Substitutability 15

0 1 2 3 4 5
a b c d e

N1 N2

N3 N4

Fig. 3 find all minimum decompositions of abcde : aN1e and N3N2

Since language recognized by nonterminal is increasing, it can be required to perform
again the optimization with new edges corresponding to new possible parsing of right-hand-
sides. To be sure not to miss such possible optimization, the optimization is repeated until
convergence but we expect that this could also be solved by a cautious ordering from small-
est to biggest right-hand-sides.

Building the parsing graph, finding its minimal cover are detailed respectively in algo-
rithm 3 and algorithm 4.

3.4 Grammars obtained on simple examples

The algorithm uses the evidence of substitutability in the learning sample as a useful induc-
tion criterion but it is not constrained to learn substitutable languages. This subsection aims
at illustrating on a few standard examples its behaviour.

Example 1 Let K = {a,ab,abbc}.
This example has been first introduced by [Yoshinaka, 2008]. It shows that even if a char-
acteristic sample (in Angluin’s sense) of the language including K were given, the actual
substitutable learning algorithms do not necessarily converge to this language. In the sample
K, a and ab are substitutable strings. It follows that ac and abc must be in any substitutable
language including K. Actually the least (0,0)-substitutable, or (1,1)-local substitutable lan-
guage including K is a{b,c}∗. The grammar learned using the criteria of substitutability or
(1,1)-local substitutability generalization is the following :

S→ a | S X2 | S X2 c
X2→ b | X2 X2 c

It does not accept ac and does not generate in consequence a substitutable language.
It appears that using the (1,0)-local substitutability criterion the algorithm produces the
correct language (production rules become { S→ a | S X2, X2 → b | c}), but there is no
guarantee in the general case to find parameters allowing to stay in the substitutable language
classes.

When our algorithm is applied with k and l values greater than the maximal length of
strings in K, it simulates the behavior of the algorithms relying on global contexts which find
(k, l)-substitutable and substitutable languages. We give two examples from which context
free languages may be learned.

Example 2 K = {ab,aabb,aaabbb,aaaabbbb,aaaaabbbbb}

16 François Coste et al.

Algorithm 1 Build reduced ĜLS (ReGLiS) (k, l-local substitutability)
Input Set of sequences K, Alphabet Σ , int k, int l
Output Grammar G = 〈Σ ,VK ,PK ,S〉
/* Nonterminal and substitutability rules definition */
VK ←− /0
P←− /0
SG = Build substitutability graph(K,k, l)
for Xi ∈ cc(SG) do

if Xi ∩K 6= /0 then
VK ←−VK ∪ [Xi]
S←− [Xi]
for node ∈ Xi do

P←− P∪ ([Xi]→ node)

/* Composite classes filter */
else if |Xi|> 1 and
6 ∃X ∈ cc(SG),∀u ∈ Xi,∃v,w ∈ Σ+ | u = vw,v ∈ X and
6 ∃X ∈ cc(SG),∀u ∈ Xi,∃v,w ∈ Σ+ | u = vw,w ∈ X then

VK ←−VK ∪ [Xi]
for node ∈ Xi do

P←− P∪ ([Xi]→ node)

repeat
PK ←− P
P←− /0
/* Induction of branching rules */
for ([Xi]→ u) ∈ PK do

if |u|= 1 then
P←− P∪ ([Xi]→ u)

else
PG = Build parsing graph(u,PK)
for v ∈ Min rhs covers(PG, |u|) do

P←− P∪ ([Xi]→ v)

until PK = P;
return 〈Σ ,VK ,PK ,S〉

Algorithm 2 Build substitutability graph(Set of sequences K, int k, int l)
V = {u ∈ Σ+ | u ∈ Sub(K)}
E = {(u,v) ∈V ×V | u 6= v,∃l ∈ Σ k,r ∈ Σ l , lur ∈ Sub(K), lvr ∈ Sub(K)}
return Graph 〈V,E〉

Example 3 K = {c,acb,aacbb,aaacbbb}

With k=l=100 the algorithm learn the anbn, Dyck(a,b) and ancbn languages. The corre-
sponding grammars are given in the table below. Note that these languages are context free
but not local (context) substitutable unless k and l are considered infinite.

criterion local substitutability local context substitutability
Example 2 S→ X1 X2 S→ a S b | ab

X1→ a | X1 S
X2→ b | S X2

Example 3 S→ a S b | c

Learning Context Free Grammars on Proteins by Local Substitutability 17

Algorithm 3 Build parsing graph(Sequence u, set of rules P)
V = {i ∈ [0, |u|]}
E = /0
L = /0
for i ∈V do

for j ∈V and i < j and ui j 6= u do
if ([X]→ ui j) ∈ P then

E←− E ∪ (i, j)
L←− L∪ (i, j, [X])

else if ui j ∈ Σ then
E←− E ∪ (i, j)
L←− L∪ (i, j,ui j)

return Graph〈V,E,L〉

Algorithm 4 Min rhs covers(Graph 〈V,E,L〉, int n)
Table paths[n]←− /0
R←− /0
paths[0]←− {(0)}
for i = 1→ n do

/* memorize minimal paths arriving in i wrt inclusion */
paths[i]←− subsetmin(

⋃
paths[j]∪{i} | (j, i) ∈ E)

for path ∈ paths[n] do
rhs =””
for elt = 0→ |path|−1 do

rhs = rhs.u with u : (path[elt], path[elt +1],u) ∈ L

R = R∪ rhs
return R

4 Application to Protein Families

4.1 Experimental Setting and Learning Process

When dealing with protein sequences, it is important to take into account the similarities be-
tween the 20 amino-acids (the alphabet Σa of proteins) arising from shared physico-chemical
properties: some amino-acid replacements have no impact while others have an effect on
the function or the structure of the protein. To take into account this knowledge directly in
the learning sequences, a standard approach consists in recoding the proteins on a smaller
property-based alphabet, such as the hydropathy index or the Dayhoff encoding (Yokomori
et al. [1994], Peris et al. [2006] and Peris et al. [2008]). Instead of making use of these static
coding schemes, this work has adopted a more specific data-driven approach. It relies on the
detection of local similarities in the training set by building a partial local multiple alignment
(PLMA) of the sequences. Each short strongly conserved region in the PLMA (also called
block) will form one of the characters for recoding sequences.The computation of PLMA
is also the first step performed in Protomata-Learner (Kerbellec [2008]). But whereas the
choice of the alignment parameters is important in Protomata-Learner to tune the desired
level of generalization, we as used only a basic set of parameters in this study 3.

3 in practice, we have used the same following command line for all PLMA: paloma -i foo.fasta -o
foo.plma –block-mode maxWeightFragments –transClosure -t 5 -M 7 -q 2

18 François Coste et al.

Figure 4 provides an overview of the automated pre-processing and post-processing
steps necessary to apply the main generalization algorithm ReGLiS on protein sequences.
Apart from blocks, it is necessary to take into account the existence of subsequences that
appear in no block and this explains the rather complicated procedure to get a practical
grammar directly able to parse protein sequences from the learned grammar. The reader not
interested by these practical considerations on protein sequence parsing can safely ignore
the following paragraph detailing the procedure steps.

PLMA are generated (step a) using Protomata-Learner, version 2.04, which works on
a set of protein sequences S. PLMA form a set of, non-overlapping and non-crossing 5,
alignment snippets on S named PLMA blocks. Each PLMA block is itself made up of a set
of conserved substrings of same length from a subset of the training sequences (with only
one substring per sequence involved in the block). A block implicitly aligns its substrings
by their relative position, i.e. each position in a block corresponds to aligned characters for
all its sequences.

Sequences are recoded according to the PLMA blocks that are crossed by the sequence
(step b.1) and in parallel the information of the amino-acids composition of each block in
retained in a grammar Ga (step b.2). This is achieved by adding for each block B of length
l, a rule:

B→ P1...Pl ,

and for each amino-acid A at position p in the block, a rule :

Pp→ NA.

It is in fact a little more complex since some a priori knolwledge on proteins can be intro-
duced in this grammar. Specifically, we added a simple error model on allowed sequences,
based on the standard amino acid substitution matrix Blosum62, which scores the degree to
which a given amino-acid can be substituted by another one without functional loss. Thus
for each pair of amino-acid pair (A,C) for which the score reflects a mutation that is more
frequent than just by chance, the following rule is added:

NA→C.

This is a neat way to artificially enlarge the size of the training sample that is usually too
small to provide this fine-level variation information on protein sequences

The rationale behind block recoding is that non conserved substrings are likely to be
uninteresting for the characterization of the protein family. Then, like in Kerbellec [2008],
one has to fix the treatment of substrings that belong to a sequence but not to a block. If
a substring occurs between two blocks and no block is found between these two blocks in
other sequences, it is considered as a gap and a rule is dedicated to its recognition:

Gap→ ΣaGap|λ .

Other substrings that perform a shortcut of one or several blocks are called ”exceptions”. In
order to avoid overgeneralization, we have kept each exception E0 . . .En as a new block and
added a dedicated rule in the grammar:

4 available at http://tools.genouest.org/tools/protomata/
5 i.e. consistent in the sense of Abdeddaı̈m and Morgenstern [2001]

Learning Context Free Grammars on Proteins by Local Substitutability 19

Protein sequences

...TVSLDIDLQTVLPEWVRVGFSASTGQNVERNSILAWSFSS...

...TVSYDVDLKTELPEWVRVGFSGSTGGYVHIQNHNILSWTFNS...

...HVSATVKEVEDWVSVGFSATSGSKKETTETHNVLSWSFSS...

...NVSTTVKEVYDWVSVGFSATSGLTEDTTETHDVLSWSFSS...

...SVSATVKEVDEWVSVGFSATSGAYQWSYETHDVLSWSFSS...

...

PLMA

TVSLD

TVSYD

HVSAT

NVSTT

SVSAT

IDLQTVLPEWVRVGFSASTG

VDLKTELPEWVRVGFSGSTG

VPLEKEVEDWVSVGFSATSG

VELEKEVYDWVSVGFSATSG

VHLEKEVDEWVSVGFSATSG

QNV

GYV HI

SKKETT

LTEDTT

AYQWSY

ERNSILAWSFSS

QNHNILSWTFNS

ETHNVLSWSFSS

ETHDVLSWSFSS

ETHDVLSWSFSS

Recoded sequences

...Block1 Block2 Block3 Block4...

...Block1 Block2 Block3 Gap Block4...

...Block5 Block2 Block6 Block4...

...Block5 Block2 Block6 Block4...

...Block5 Block2 Ex1 Block4...
...

Block recognition grammar (Ga)

Block1 −→ P11 P12 P13 P14 P15

P11 −→ NT

P12 −→ NV

P13 −→ NS

P14 −→ NL | NY
...

Block2 −→ P21 P22 P23 P24 P25 P26 P27...
...

Ex1 −→ NE11NE12NE13NE14NE15NE16
...

NL −→ L | I | V
...

Gap −→ ΣaGap|λBlock sequences without gaps

...Block1 Block2 Block3 Block4...

...Block1 Block2 Block3 Block4...

...Block5 Block2 Block6 Block4...

...Block5 Block2 Block6 Block4...

...Block5 Block2 Ex1 Block4...
...

Gap contexts

(Block3,Block4)
...

Block chaining recognition
grammar (Gb)

S −→ ...X1 Block2 X2 Block4...

X1 −→ Block1 | Block5

X2 −→ Block3 | Block6 | Ex1
...

Final block chaining grammar

with gaps (Ggap
b

)

S −→ ...X1 Block2 X2 Gap Block4...

X1 −→ Block1 | Block5

X2 −→ Block3 | Block6 | Ex1
...

Complete grammar

S −→ ...X1 Block2 X2 Gap Block4...

X1 −→ Block1 | Block5

X2 −→ Block3 | Block6 | Ex1
...

Gap −→ ΣaGap|λ
Block1−→ P11 P12 P13 P14 P15

P11 −→ NT

P12 −→ NV

P13 −→ NS

P14 −→ NL | NY
...

Block2 −→ P21 P22 P23 P24 P25 P26 P27...
...

Ex1 −→ PE11PE12PE13PE14PE15PE16
...

NL −→ L | I | V
...

(a) Extraction of PLMA blocks

(b.1) Recoding sequences with blocks
(b.2) Block recognition with errors

(c.1) Cleaning Gaps

(c.2) Indexing Gaps

(d) Application of ReGLiS

(e)

(e) Gap reinsertion

(f)

(f) Grammar merging

Fig. 4 Overall Diagram of CFG Learning Steps on Proteins

20 François Coste et al.

E→ NE0 ...NEn .

Before applying ReGLiS on the recoded sequences, gaps are removed (step c.1) to avoid
a meaningless generalization (a context with only gaps is not significant). The immediate
context (left and right block) of each gap is stored (step c.2) for further reinsertion.

The main step d applies the algorithm on the PLMA block sequences without gaps and
produces a core grammar Gb.

Gaps are then reinserted in the grammar during step e by replacing each rule L →
...αiαi+1... in Gb where the last character of αi and the first character of αi+1 form the
context of a gap, by the rule:

L→ ...αi Gap αi+1...

This leads to a grammar Ggap
b that is then merged to Ga by changing terminals blocks

into non terminals (step f).

4.2 Experiments

Our method has been evaluated on a set of sequences which belong to the legume lectins
protein family -Prosite entry PS003076(Hulo et al. [2006])-. This protein family is used as
a benchmark in one of the rare study in the literature applying grammar learning on protein
sequences with higher order dependencies (Dyrka and Nebel [2009]). Prosite is a database
collecting protein domains and families with an associated signature that is either a regu-
lar expression or a HMM profile matching a characteristic region of the protein sequence.
Prosite provides for each family the set of known true positive, false positive and false nega-
tive hits with respect to the proposed signature. Lectins are proteins that are generally found
in plant seeds and play a role in binding calcium and manganese ions.

This section presents the results obtained for the various generalization criteria defined
so far: substitutable, local substitutable and local context substitutable.

First tests

We started with the experimental setting presented in Coste et al. [2012]. Three sets of
sequences are built from Prosite data:

– the training set already used in Dyrka and Nebel [2009], except that the entire protein
sequences are processed rather than the subsequences of length 50 around the active site.
This makes the issue harder but is more realistic on protein families. This set contains
22 sequences.

– the negative test set, made of the ten first sequences in the list of false positive hits
provided by Prosite.

– the positive test set is also made of ten sequences from Prosite data, six in the true
positiveand four in the false negative hit list.

Once a grammar has been learned using the new algorithm ReGLiS, all sequences of the
test sets have been parsed using a tailored deductive parser starting from the work of Shieber
et al. [1995].

6 http://prosite.expasy.org/PS00307

Learning Context Free Grammars on Proteins by Local Substitutability 21

Table 1 provides a summary of results in terms of Precision, Recall and F-measure
(Precision is the ratio of true positive over all predicted positive, Recall is the ratio of true
positive over all positive in the test set and F-measure is the harmonic mean of precision
and recall). The last lines of the table give an overview of the behavior of the grammar
learned in Dyrka and Nebel [2009] on our test sets. As stated before, these results are not
fully comparable to ours since the grammar is learned on carefully chosen substrings of
the sequences. In their approach each parsed sequence obtains a score, and thus precision
and recall depend on a threshold value for this score. We have provided results for three
characteristic values of the threshold: a maximal precision, a maximal recall, and a maximal
F-measure. Of course it is hard in practice to fix the threshold and the true score-based result
would be an intermediary point somewhere on the ROC curve.

The grammars learned by substitutability have all a high specificity. However, whereas
global substitutability leads to a weak recall, locality clearly improves the applicability of
learned grammars. These first results are consistent with our previous results on this test set.

Precision Recall F-measure
Substitutable 1 0.2 0.33

Local context substitutable 1 0.6 0.75
Local substitutable 1 0.7 0.82

Stochastic CFG
Dyrka and Nebel [2009]

1 0.1 0.18
0.3 1 0.46
0.8 0.9 0.85

Table 1 Sequence annotation by grammars obtained for the PS00307 family

Extended Results

With the new version of our learning algorithm, it becomes possible to run more demanding
tests. ReGLiS took by comparison around one day for one experiment using the old version
while it takes around two minutes using the new version.

We thus decided to consider the whole family PS00307 (75 sequences) and used a 10-
fold cross-validation for parameter tuning. Table 2 provides a summary of results in terms
of Precision, Recall and F-measure that shows the previous level of performance can be
achieved when using the whole family.

We also compare our results with Prosite regular expressions built on the basis of expert-
provided multiple alignments of subsequences of these families. The PS00307 family is de-
scribed by the following pattern, where brackets indicate alternative letters at some positions
and positions are separated by dashes:

[LIV]− [STAG]−V − [DEQV]− [FLI]−D− [ST].

The pattern spans 7 positions whereas the whole protein is about 300 letters long. In conse-
quence, such a pattern has a good recall but weak precision (0.4) due to its generality.

In contrast, our method takes into account whole sequences. The corresponding gram-
mar has thus a high specificity, something we expected in order to get safe predictions on
new sequences. The interesting point is that the level of recall remains relatively high with
respect to such a specific grammar.

22 François Coste et al.

For illustration purpose the grammar produced by our algorithms for 5,5-local substi-
tutability has 161 nonterminals and 749 production rules. Obviously, there remains some
range of improvement to further reduce such a grammar and generalize its rules. With re-
spect to the original work of Yoshinaka on substitutable languages or our own work on local
substitutable languages, it is however already a great improvement with respect to the size
of the grammar and the efficiency of the associated parsing.

Precision Recall F-measure
Substitutable 1 0.2 0.33

Local context substitutable(4,4) 1 0.6 0.75
Local substitutable(5,5) 1 0.7 0.82

Prosite 0.4 0.7 0.5

Table 2 Sequence annotation by grammars obtained for the PS00307 family with 10-fold cross-validation

Figure 5 presents the variation of recall with respect to the size of parameters k and
l. It clearly shows the importance of tuning k and l values. Note that these parameters are
expressed in terms of number of blocks since each learning sequence is coded at the level of
blocks.

In all experiments, parameters k and l have be tuned by cross validation on the training
set and part of the testing set. A careful experimentation on a larger set of sequences should
consider only the training set for this purpose. Another reasonable assumption is that some a
priori knowledge may exist on the length of relevant contexts in the target application. In the
case of proteins, small contexts are expected since interactions concerns few amino-acids.
Practical values range from 3 to 7. In all cases, one should avoid higher values since it comes
down to using (global) substitutability. We have not made extensive tests on this issue and it
is certainly a valuable research track.

It can be noticed that LCS produces less general grammars than LS. This is essentially
due to more or less restrictive applicability of substitutability: it occurs only within a given
context for LCS whereas no context is required for LS. It is thus a general behaviour that
leads to a better recall for LS.

Results on the complete Dirka& Nebel’s benchmark

Comparative results for the others studied families in Dyrka and Nebel [2009] are presented
in table 3. The training sets for the four families are those defined and used in Dyrka and
Nebel [2009]. For the substitutable and local substitutable results, we use entire sequences to
learn. As in the previous experiment, k and l like have been tuned using 10-cross validation
and retaining the bests values We remind that stochastic CFG in Dyrka and Nebel [2009]
are learned only on part of the sequences and precision and recall depends on the chosen
threshold. Again, we indicate the results for a maximum precision, a maximum threshold
and a maximum F-measure. For families PS00219 and PS00063, a Prosite motif is available
and we added the comparison with the Prosite scores.

Overall, it can be observed that local substitutability, using well chosen k and l, signifi-
cantly improves the recall without losing accuracy unlike global substitutability. Stochastic
grammars are better in terms of F-measure, but if precision is fixed to a high level, the recall

Learning Context Free Grammars on Proteins by Local Substitutability 23

(1,1) (2,2) (3,3) (4,4) (5,5) (7,7) (10,10) (15,15) (20,20) (25,25) (30,30)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

LS
LCS

(k, l)

R
ec

al
l

Fig. 5 Recall with respect to different values of (k, l)

obtain by ReGLiS is usually better. Moreover, our best results are comparable to Prosite,
which is considered as an expert predictor.

Hence, although the method has still to be refined in order to get slightly more general
grammars, local substitutability may already considered as a new promising and effective
criterion for sequence generalization in all cases where an excellent precision is mandatory.

Zinc finger MPI phos.
Precision Recall F-measure Precision Recall F-measure

Substitutable 1 0.1 0.36 1 0.15 0.26
(3,3)-Local substitutable 1 0.2 0.33 1 0.5 0.67
(4,4)-Local substitutable 1 0.25 0.4 1 0.6 0.75
(5,5)-Local substitutable 1 0.33 0.5 1 0.67 0.8
(6,6)-Local substitutable 1 0.5 0.67 1 0.62 0.77
(7,7)-Local substitutable 1 0.55 0.7 1 0.53 0.69

Stochastic CFG
Dyrka and Nebel [2009]

1 0.1 0.18 1 0.3 0.46
0.15 1 0.26 0.5 1 0.67
0.75 0.87 0.85 0.98 0.89 0.93

PS00219 PS00063
Precision Recall F-measure Precision Recall F-measure

Substitutable 1 0.2 0.33 1 0.23 0.37
(3,3)-Local substitutable 1 0.72 0.84 1 0.58 0.73
(4,4)-Local substitutable 1 0.7 0.82 1 0.6 0.75
(5,5)-Local substitutable 1 0.68 0.8 1 0.66 0.8
(6,6)-Local substitutable 1 0.6 0.75 1 0.7 0.82
(7,7)-Local substitutable 1 0.5 0.67 1 0.65 0.79

Prosite 1 0.6 0.75 1 0.8 0.89

Stochastic CFG
Dyrka and Nebel [2009]

- - - 1 0.05 0.1
- - - 0.1 1 0.18
1 1 1 0.79 0.65 0.71

Table 3 Sequence annotation by grammars obtained for the PS00307 family with 10-fold cross-validation

24 François Coste et al.

Full details of experiments and results are available at the url http://www.irisa.fr/
dyliss/reglis.

5 Conclusion

This paper has been motivated by turning into practice a general and powerful concept in
grammatical inference, substitutability. We have introduced for this purpose new refinements
taking into account the presence of fixed size repeated contexts either during the matching
phase (selecting the repeated patterns in the instances) or during the generalization phase of
learning. This has led to the introduction of the new classes of locally substitutable languages
extending the notion of k-testability beyond regular languages like substitutable and (k, l)-
substitutable languages extends k-reversibility.

We have proposed a generic practical algorithm, ReGLiS, that is based on a simplifica-
tion of the generalization scheme proposed in Coste et al. [2012] and leads for the first time
to a program that can be applied in bioinformatics for the characterization of a whole protein
family (e.g. more than a hundred sequences of size 1000). Although it remains necessary to
test more sequences to study the robustness of our method, our results already show that it is
possible to achieve a sensitivity comparable to the best methods in this domain while keep-
ing a very high level of specificity, a major concern with respect to the costly experimental
validation of predictions. Another important aspect is that we have used limited knowledge
specific of the domain during learning: contrary to the work described in Dyrka and Nebel
[2009], we started from the whole sequences and do not make use of any knowledge on long
range dependencies. The substitutability criterion is at the core of the observed performances
and appears thus to have a general interest for other application domains.

In order to gain confidence in the results, it is necessary to address traditional issues on
the support of each induction step. The evidence for the chosen substitution classes should
be asserted by carefully designed statistics. Our intent is to study in depth some enzyme
families and to try to capture enzyme substrate specificity within the learned models. This
will probably require the introduction of other types of data such as partial spatial struc-
tures. On the theoretical side, learnability of k, l-local substitutable languages or k, l-local
context substitutable languages results from the polynomial identification in the limit result
of Yoshinaka [2008] since the class of the k, l-substitutable languages includes the two oth-
ers. However, we would like to investigate if the restriction of the class of languages and the
weaker substitutability operator combined with the reduced form of the grammar proposed
here would not allow us get rid of the thickness of the language parameter in the polynomial.
This would led to a stronger learnability result and will contribute to establish this class as a
fruitful candidate for grammatical inference from positive examples.

Acknowledgements The authors wish to acknowledge the reviewers for their insightful comments to the
manuscript. This work has been partially funded by French ANR under project Idealg.

References

Abdeddaı̈m S, Morgenstern B (2001) Speeding up the dialign multiple alignment program
by using the ‘greedy alignment of biological sequences library’ (gabios-lib). In: Gascuel
O, Sagot MF (eds) Computational Biology, Lecture Notes in Computer Science, vol 2066,

Learning Context Free Grammars on Proteins by Local Substitutability 25

Springer Berlin Heidelberg, pp 1–11, DOI 10.1007/3-540-45727-5 1, URL http://dx.

doi.org/10.1007/3-540-45727-5_1

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search
tool. Journal of molecular biology pp 403–410

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble
WS (2009) Meme suite: tools for motif discovery and searching. Nucleic Acids Research
37(suppl 2):W202–W208

Baldi P, Brunak S (2001) Bioinformatics: The Machine Learning Approach, 2nd edn. Cam-
bridge: MIT Press

Bryant C, Fredouille D, Wilson A, Jayawickreme C, Jupe S, Topp S (2006) Perti-
nent background knowledge for learning protein grammars. In: Furnkranz J, Schef-
fer T, Spiliopoulou M (eds) Proceedings of the 17th European Conference on Ma-
chine Learning, Springer-Verlag, Berlin, no. 4212 in Lecture Notes in Artificial Intelli-
gence, pp 54–65, URL http://www.comp.rgu.ac.uk/staff/chb/research/papers/

bryant_ecml06.pdf

Chiang D, Joshi AK, Searls DB (2006) Grammatical representations of macromolecular
structure. Journal of Computational Biology 13(5):1077–1100

Chomsky N (1957) Syntactic Structures. Mouton & Co.
Clark A, Eyraud R (2007) Polynomial identification in the limit of substitutable context-free

languages. Journal of Machine Learning Research 8:1725–1745
Coste F, Kerbellec G (2005) A similar fragments merging approach to learn automata on

proteins. In: Gama J, Camacho R, Brazdil P, Jorge A, Torgo L (eds) ECML, Springer,
Lecture Notes in Computer Science, vol 3720, pp 522–529

Coste F, Garet G, Nicolas J (2012) Local Substitutability for Sequence Generalization. In:
Heinz J, de la Higuera C, Oates T (eds) ICGI 2012, MIT Press, Washington, États-Unis,
JMLR Workshop and Conference Proceedings, vol 21, pp 97–111

Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological Sequence Analysis : Proba-
bilistic Models of Proteins and Nucleic Acids. Cambridge University Press

Dyrka W, Nebel JC (2009) A stochastic context free grammar based framework for analysis
of protein sequences. BMC Bioinformatics 10(1):323+

Galperin MY, Koonin EV (2010) From complete genome sequence to ‘complete’ under-
standing? Trends in Biotechnology 28(8):398 – 406, DOI 10.1016/j.tibtech.2010.05.006

Garcia P, Vidal E (1990) Inference of k-testable languages in the strict sense and application
to syntactic pattern recognition. IEEE Trans Pattern Anal Mach Intell 12(9):920–925

Garcia P, Vidal E, Casacuberta F (1987) Local languages, the successor method, and a step
towards a general methodology for the inference of regular grammars. Pattern Analysis
and Machine Intelligence, IEEE Transactions on PAMI-9(6):841 –845, DOI 10.1109/
TPAMI.1987.4767991

Garcia P, Vidal E, Oncina J (1990) Learning locally testable languages in the strict sense.
In: First int. workshop on Algorithmic Learning theory, ALT’90, pp 325–338

Hulo N, Bairoch A, Bulliard V, Cerutti L, Castro ED, Langendijk-genevaux PS, Pagni M,
Sigrist CJA (2006) The prosite database. Nucleic Acids Res 34:227–230

Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns
D, Bork P, Burge S, de Castro E, Coggill P, Corbett M, Das U, Daugherty L, Duquenne
L, Finn RD, Fraser M, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Letunic I, Lons-
dale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, McMenamin C, Mi
H, Mutowo-Muellenet P, Mulder N, Natale D, Orengo C, Pesseat S, Punta M, Quinn
AF, Rivoire C, Sangrador-Vegas A, Selengut JD, Sigrist CJA, Scheremetjew M, Tate J,
Thimmajanarthanan M, Thomas PD, Wu CH, Yeats C, Yong S (2012) Interpro in 2011:

26 François Coste et al.

new developments in the family and domain prediction database. Nucleic Acids Research
40(D1):D306–D312

Jonassen I, Collins J, Higgins D (1995) Finding flexible patterns in unaligned protein se-
quences. Protein Science 4(8):1587–1595

Kerbellec G (2008) Apprentissage d’automates modélisant des familles de séquences
protéiques. PhD thesis, Université Rennes 1

Luque FM, López GGI (2010) Pac-learning unambiguous k, l-nts <= languages. In: Sem-
pere JM, Garcı́a P (eds) ICGI, Springer, Lecture Notes in Computer Science, vol 6339,
pp 122–134

Peris P, López D, Campos M, Sempere JM (2006) Protein motif prediction by grammati-
cal inference. In: Sakakibara Y, Kobayashi S, Sato K, Nishino T, Tomita E (eds) ICGI,
Springer, Lecture Notes in Computer Science, vol 4201, pp 175–187

Peris P, López D, Campos M (2008) Igtm: An algorithm to predict transmembrane domains
and topology in proteins. BMC Bioinformatics 9

Schabes Y (1990) Mathematical and computational aspects of lexicalized grammars. PhD
thesis, Philadelphia, PA, USA, aAI9101213

Searls DB (2002) The language of genes. Nature 420(6912):211–217, DOI 10.1038/
nature01255, URL http://dx.doi.org/10.1038/nature01255

Shieber SM, Schabes Y, Pereira FCN (1995) Principles and implementation of deductive
parsing. Journal of Logic Programming 24(1–2):3–36

Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of
progressive multiple sequence alignment through sequence weighting, position-specific
gap penalties and weight matrix choice. Nucleic Acids Research 22:4673–4680

Yokomori T, Ishida N, Kobayashi S (1994) Learning local languages and its application to
protein α-chain identification. In: HICSS (5), pp 113–122

Yoshinaka R (2008) Identification in the limit of (k,l)-substitutable context-free languages.
In: Proceedings of the 9th international colloquium conference on Grammatical inference:
theoretical results and applications, ICGI’09, pp 266–279

Yoshinaka R (2012) Integration of the dual approaches in the distributional learning of
context-free grammars. In: Proceedings of the 6th international conference on Language
and Automata Theory and Applications, Springer-Verlag, LATA’12, pp 538–550

Zhang J, Chiodini R, Badr A, Zhang G (2011) The impact of next-generation sequencing on
genomics. Journal of Genetics and Genomics 38(3):95 – 109, DOI 10.1016/j.jgg.2011.
02.003

A Example of reduction of grammar on natural language

In this appendix, we show the interest of prime classes and reduce grammar form. Let a training set K as
following :

K ={”Major General was here yesterday morning.”,

”Major General went here yesterday morning.”,

”Major General will be there tomorrow morning.”,

”He will be gone tomorrow evening.”}

Learning Context Free Grammars on Proteins by Local Substitutability 27

The following grammar show the grammar obtain without chosen prime classes as non terminals and
keeping the Chomsky normal form to decompose rules :

X47→′ yesterday′

X46→ X3X43|X11X19|X23X13

X45→ X20X2

X44→ X20X1|X45X29|X34X16|X9X15

X43→ X20X19|X45X13

X42→′ tomorrow′

X41→ X42X15

X40→ X30X46|X21X43|X39X19|X25X13|X21X34|X8X13

N0→ X30X24|X21X31|X10X32|X36X17|X26X15|X39X1

|X25X29|X40X41|X21X44|X8X29|X40X16|X33X15

X29→ X13X16|X4X15|X13X41|X38X15

X28→ X27X47

X25→ X30X23|X21X45|X39X2

X24→ X3X31|X18X32|X37X17|X14X15|X11X1|X23X29|X46X41

X27→′ here′

X26→ X30X14|X21X12|X10X28|X36X47|X39X35|X25X38|X40X42

X21→′ He′|X30X3

X20→′ will′

X23→ X3X45|X11X2

X22→ X6X27

X8→ X21X45|X39X2

X9→ X20X5|X45X4|X34X42

X2→′ be′

X3→′ Ma jor′

X1→ X2X29|X19X16|X5X15|X19X41|X35X15

X6→′ was′|′went ′

X4→ X13X42

X5→ X2X4|X19X42

X32→ X27X17|X28X15

X33→ X21X9|X39X5|X8X4|X40X42

X30→ General

X31→ X6X32|X22X17|X12X15|X20X1|X45X29|X43X41

X36→ X30X37|X21X22|X10X27

X37→ X3X22|X18X27

X34→ X20X19|X45X13

X35→ X2X38|X19X42

X38→ X13X42

X39→ X30X11|X21X20

X18→ X3X6

X19→ X2X13

X10→ X30X18|X21X6

X11→ X3X20

X12→ X6X28|X22X47|X20X35|X45X38|X43X42

X13→′ there′|′gone′

X14→ X3X12|X18X28|X37X47|X11X35|X23X38|X46X42

X15→′ morning′|′evening′

X16→ X42X15

X17→ X47X15

It is easy to see there is a more simple way to write the grammar, exhibiting substitutable classes and
keep the same language. With our algorithm (extraction of prime classes and construction of reduced gram-
mar) we obtain the following grammar :

Reduced grammar :

S→ X3X4X2

X1→ was | went

X2→ morning | evening

X3→ He |Ma jor General

X4→ will be X5 tomorrow | X1 here yesterday

X5→ there | gone

