Synthesis of Robust Optimal Real-Time Systems

Julie Parreaux¹
Benjamin Monmege² Pierre-Alain Reynier²

¹University of Warsaw ²Aix–Marseille Université

MFCS 2024

Motivation: game theory for synthesis

Classical approach Check the correctness of a system

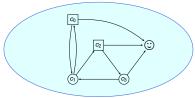
Game theory

Interaction between two antagonistic agents: environment and controller

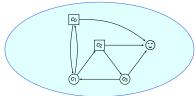
Code synthesis

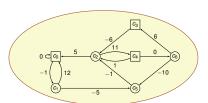
Correct by construction: synthesis of controller

Qualitative games

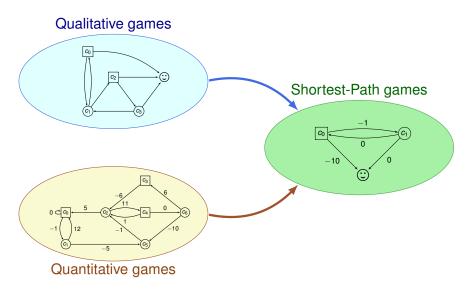


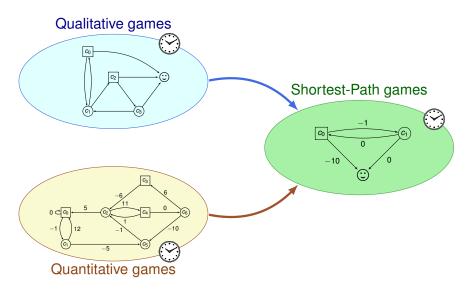
Qualitative games



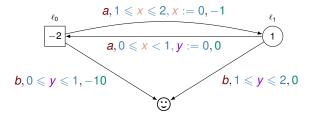


Quantitative games



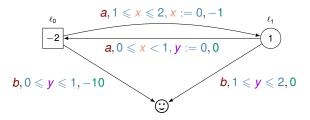


Min Max



Max

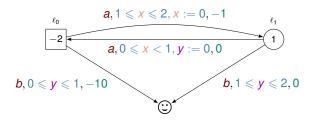
target



Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} x \mapsto 0 \\ y \mapsto 0 \end{bmatrix})$

- Min
 - contains target

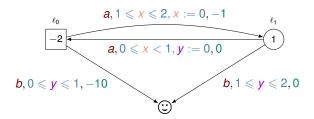
Max



Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0 \\ 0 \end{bmatrix})$

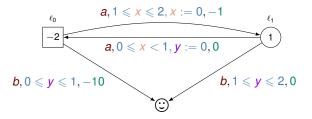
- Min
 - target

Max

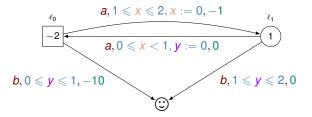


Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0 \\ 0 \end{bmatrix}) \xrightarrow{0.5, a}$

contained target

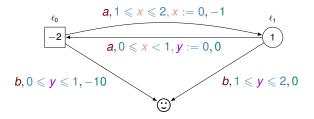


Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0 \\ 0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5 \\ 0 \end{bmatrix})$



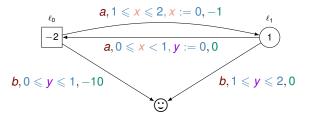
Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0 \\ 0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5 \\ 0 \end{bmatrix}) \xrightarrow{1.25, a} (\ell_1, \begin{bmatrix} 0 \\ 1.25 \end{bmatrix}) \xrightarrow{1/3, b} (\textcircled{\textcircled{2}}, \begin{bmatrix} 1/3 \\ 19/12 \end{bmatrix})$

Min Max

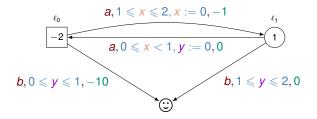


Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0 \\ 0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5 \\ 0 \end{bmatrix}) \xrightarrow{1.25, a} (\ell_1, \begin{bmatrix} 0 \\ 1.25 \end{bmatrix}) \xrightarrow{1/3, b} (\textcircled{\odot}, \begin{bmatrix} 1/3 \\ 19/12 \end{bmatrix})$

Min Max



Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0 \\ 0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5 \\ 0 \end{bmatrix}) \xrightarrow{1.25, a} (\ell_1, \begin{bmatrix} 0 \\ 1.25 \end{bmatrix}) \xrightarrow{1/3, b} (\textcircled{\odot}, \begin{bmatrix} 1/3 \\ 19/12 \end{bmatrix})$

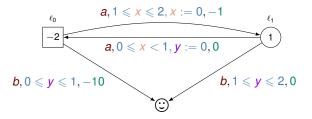


Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0 \\ 0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5 \\ 0 \end{bmatrix}) \xrightarrow{1.25, a} (\ell_1, \begin{bmatrix} 0 \\ 1.25 \end{bmatrix}) \xrightarrow{1/3, b} (\textcircled{\odot}, \begin{bmatrix} 1/3 \\ 19/12 \end{bmatrix})$

$$1 \times 0.5 + 0 + +$$

Min Max

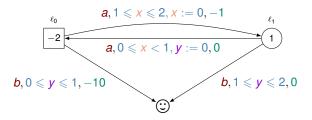
target



Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0 \\ 0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5 \\ 0 \end{bmatrix}) \xrightarrow{1.25, a} (\ell_1, \begin{bmatrix} 0 \\ 1.25 \end{bmatrix}) \xrightarrow{1/3, b} (\textcircled{\odot}, \begin{bmatrix} 1/3 \\ 19/12 \end{bmatrix}) \rightsquigarrow -\frac{8}{3}$
 $1 \times 0.5 + 0 + -2 \times 1.25 - 1 + 1 \times \frac{1}{3} + 0$

Max

target

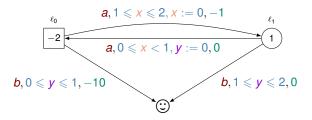


Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0 \\ 0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5 \\ 0 \end{bmatrix}) \xrightarrow{1.25, a} (\ell_1, \begin{bmatrix} 0 \\ 1.25 \end{bmatrix}) \xrightarrow{1/3, b} (\bigcirc, \begin{bmatrix} 1/3 \\ 19/12 \end{bmatrix})$

Deterministic strategy

Choose an edge and a delay

contarget target



Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0 \\ 0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5 \\ 0 \end{bmatrix}) \xrightarrow{1.25, a} (\ell_1, \begin{bmatrix} 0 \\ 1.25 \end{bmatrix}) \xrightarrow{1/3, b} (\textcircled{\odot}, \begin{bmatrix} 1/3 \\ 19/12 \end{bmatrix})$

Deterministic strategy

Choose an edge and a delay

From
$$(\ell_1, \begin{bmatrix} 0 \\ 0 \end{bmatrix})$$

Choose $\frac{a}{2}$ with $t = \frac{1}{3}$

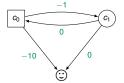
 $\widehat{\sigma}$ Min

au Max

$$\mathsf{Val}(c) = \inf_{\sigma} \sup_{\tau} \mathbf{cost}(\mathsf{Play}(c, \sigma, \tau))$$

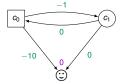
Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

$$\mathsf{Val}(c) = \inf_{\sigma} \sup_{\tau} \mathbf{cost}(\mathsf{Play}(c, \sigma, \tau))$$



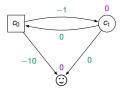
Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

$$\mathsf{Val}(c) = \inf_{\sigma} \sup_{\tau} \mathbf{cost}(\mathsf{Play}(c, \sigma, \tau))$$



Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

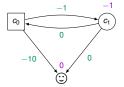
$$\mathsf{Val}(c) = \inf_{\sigma} \sup_{\tau} \mathbf{cost}(\mathsf{Play}(c, \sigma, \tau))$$



Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Min Max

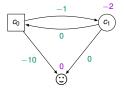
$$\mathsf{Val}(c) = \inf_{\sigma} \sup_{\tau} \mathbf{cost}(\mathsf{Play}(c, \sigma, \tau))$$



Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Min Max

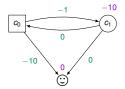
$$\mathsf{Val}(c) = \inf_{\sigma} \sup_{\tau} \mathbf{cost}(\mathsf{Play}(c, \sigma, \tau))$$



Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

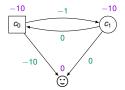
 $\frac{\smile}{\tau}$ Max

$$Val(c) = \inf_{\sigma} \sup_{\tau} \mathbf{cost}(\mathsf{Play}(c, \sigma, \tau))$$



Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege. 2016. Acta Informatica

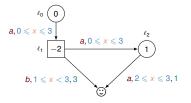
$$\mathsf{Val}(c) = \inf_{\sigma} \sup_{\tau} \mathbf{cost}(\mathsf{Play}(c, \sigma, \tau))$$



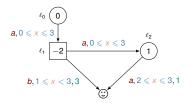
Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts. A. Haddad and B. Monmege. 2016. Acta Informatica

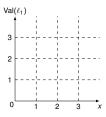
 τ Max

$$\mathsf{Val}(c) = \inf_{\sigma} \sup_{\tau} \mathbf{cost}(\mathsf{Play}(c, \sigma, \tau))$$

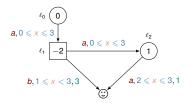


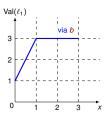
$$\mathsf{Val}(c) = \inf_{\sigma} \sup_{\tau} \mathbf{cost}(\mathsf{Play}(c, \sigma, \tau))$$



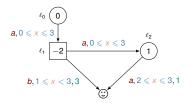


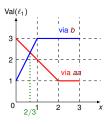
$$\mathsf{Val}(c) = \inf_{\sigma} \sup_{\tau} \mathbf{cost}(\mathsf{Play}(c, \sigma, \tau))$$



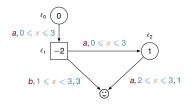


$$\mathsf{Val}(c) = \inf_{\sigma} \sup_{\tau} \mathbf{cost}(\mathsf{Play}(c, \sigma, \tau))$$





$$\mathsf{Val}(c) = \inf_{\sigma} \sup_{\tau} \mathbf{cost}(\mathsf{Play}(c, \sigma, \tau))$$



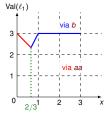
Value

$$Val(c) = \inf_{\sigma} \underbrace{\sup_{\tau} \mathbf{cost}(\mathsf{Play}(c, \sigma, \tau))}_{\mathsf{Val}^{\sigma}(c)}$$

$$e_0$$
 e_0 e_0 e_0 e_0 e_1 e_2 e_1 e_2 e_1 e_2 e_3 e_4 e_4 e_4 e_5 e_6 e_7 e_8 e_8 e_8 e_9 e_9

Optimal strategy for Min

 $\mathsf{Val}^\sigma(c) \leqslant \mathsf{Val}(c)$



 $\overline{\tau}$ Max

Value

$$Val(c) = \inf_{\sigma} \sup_{\tau} \underbrace{\operatorname{cost}(\operatorname{Play}(c, \sigma, \tau))}_{\operatorname{Val}^{\sigma}(c)}$$

$$a, 0 \leq x \leq 3$$

$$\ell_1 \qquad a, 0 \leq x \leq 3$$

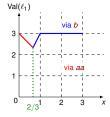
$$\ell_1 \qquad a, 0 \leq x \leq 3$$

$$b, 1 \leq x < 3, 3$$

$$a, 2 \leq x \leq 3, 1$$

Optimal strategy for Min

 $\mathsf{Val}^\sigma(c) \leqslant \mathsf{Val}(c)$



Infinite precision

From ℓ_0 , Min wants to reach the valuation 2/3

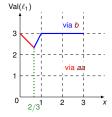
Value

$$Val(c) = \inf_{\sigma} \sup_{\tau} \underbrace{\operatorname{cost}(\operatorname{Play}(c, \sigma, \tau))}_{\operatorname{Val}^{\sigma}(c)}$$

$$e_0$$
 0 $a, 0 \le x \le 3$ e_1 e_2 $a, 0 \le x \le 3$ e_2 e_3 e_4 e_4 e_5 e_7 e_8 e_8 e_8 e_8 e_8 e_9 $e_$

Optimal strategy for Min

$$\mathsf{Val}^\sigma(c) \leqslant \mathsf{Val}(c)$$



Infinite precision

From ℓ_0 , Min wants to reach the valuation 2/3

▶ if
$$x \le 2/3$$
: Min plays $2/3 - x$

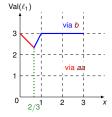
Value

$$Val(c) = \inf_{\sigma} \sup_{\tau} \underbrace{\operatorname{cost}(\operatorname{Play}(c, \sigma, \tau))}_{\operatorname{Val}^{\sigma}(c)}$$

$$\ell_0$$
 0 $a, 0 \le x \le 3$ ℓ_1 $0 \le x \le 3$ ℓ_2 $0 \le x \le 3$ ℓ_2 ℓ_3 ℓ_4 ℓ_2 ℓ_4 ℓ_5 ℓ_6 ℓ_7 ℓ_8 ℓ_8

Optimal strategy for Min

$$\mathsf{Val}^\sigma(c) \leqslant \mathsf{Val}(c)$$



Infinite precision

From ℓ_0 , Min wants to reach the valuation 2/3

- ▶ if $x \le 2/3$: Min plays 2/3 x
- otherwise, Min plays 0

How Min wins in a weighted timed game?

Min Max

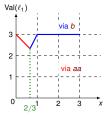
Value

$$Val(c) = \inf_{\sigma} \sup_{\tau} \underbrace{cost(Play(c, \sigma, \tau))}_{Val^{\sigma}(c)}$$

$$e_0$$
 e_0 e_1 e_2 e_3 e_4 e_2 e_4 e_4 e_5 e_4 e_5 e_6 e_7 e_8 e_8 e_8 e_9 e_9

Optimal strategy for Min

$$\mathsf{Val}^\sigma(c) \leqslant \mathsf{Val}(c)$$



Infinite precision

From ℓ_0 , Min wants to reach the valuation 2/3

- ▶ if $x \le 2/3$: Min plays 2/3 x
- otherwise, Min plays 0

Can Min play without the infinite precision on its strategies?

Give to Max the power to perturb the delay chosen by Min

Give to Max the power to perturb the delay chosen by Min

Give to Max the power to perturb the delay chosen by Min

Fixed- δ semantics

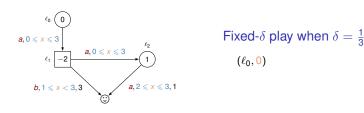
Check the guard after the perturbation:

Give to Max the power to perturb the delay chosen by Min

Fixed- δ semantics

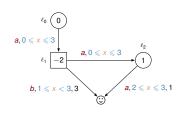
Give to Max the power to perturb the delay chosen by Min

Fixed- δ semantics



Give to Max the power to perturb the delay chosen by Min

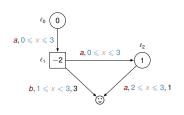
Fixed- δ semantics



Fixed-
$$\delta$$
 play when $\delta = \frac{1}{3}$ ($\ell_0, 0$) $\xrightarrow{2/3, a}$

Give to Max the power to perturb the delay chosen by Min

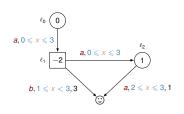
Fixed- δ semantics



Fixed-
$$\delta$$
 play when $\delta = \frac{1}{3}$
 $(\ell_0, 0) \xrightarrow{2/3, a} \stackrel{1/3}{\leadsto} (\ell_1, 1)$

Give to Max the power to perturb the delay chosen by Min

Fixed- δ semantics



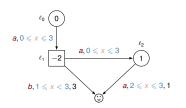
Fixed-
$$\delta$$
 play when $\delta = \frac{1}{3}$

$$(\ell_0, 0) \xrightarrow{2/3, a} \xrightarrow{1/3} (\ell_1, 1) \xrightarrow{0, b} (0, 1)$$

Give to Max the power to perturb the delay chosen by Min

Fixed- δ semantics

Check the guard after the perturbation: $\forall \varepsilon \in [0, \delta], \nu + t + \varepsilon$ satisfies the guard



Fixed-
$$\delta$$
 play when $\delta = \frac{1}{3}$

$$(\ell_0, 0) \xrightarrow{2/3, a} \xrightarrow{1/3} (\ell_1, 1) \xrightarrow{0, b} (\odot, 1)$$

for a weight of 3

Value problem: deciding if a value is at most equal to λ ?

	WTG		
Val	undecidable		

On Optimal Timed Strategies, T. Brihaye, V. Bruyère and J.-F. Raskin, 2005, FORMATS

Value problem: deciding if a value is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
Val	undecidable	EXPTIME	3-EXPTIME	2-EXPTIME

Divergence

All SCCs contain only cycles with a weight ≤ -1 or ≥ 1 .

A Theory of Timed Automata, R. Alur and D. Dill, 1994, Theoretical Computer Science

Optimal Strategies in Priced Timed Game Automata, P. Bouyer, F. Cassez, E. Fleury, and K. Larsen, 2004, TCS

Optimal Reachability in Divergent Weighted Timed Games, D. Busatto-Gaston, B. Monmege, and P.-A. Reynier, 2017, FoSSaCS

Problem 1: δ is fixed and known

Value problem: deciding if a value is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
Val	undecidable	EXPTIME	3-EXPTIME	2-EXPTIME

Divergence

All SCCs contain only cycles with a weight ≤ -1 or ≥ 1 .

 ζ Max

Problem 1: δ is fixed and known

$$\mathsf{rVal}^{\delta}(c) = \inf_{\substack{\chi \\ \delta\text{-robust}}} \sup_{\substack{\zeta \\ \delta\text{-robust}}} \mathsf{cost}(\mathsf{Play}(c,\chi,\zeta))$$

Value problem: deciding if a value is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
Val	undecidable	EXPTIME	3-EXPTIME	2-EXPTIME

Divergence

All SCCs contain only cycles with a weight ≤ -1 or ≥ 1 .

 ζ Max

Problem 1: δ is fixed and known

$$\mathsf{rVal}^{\delta}(c) = \inf_{\substack{\chi \\ \delta\text{-robust}}} \sup_{\substack{\zeta \\ \delta\text{-robust}}} \mathsf{cost}(\mathsf{Play}(c,\chi,\zeta))$$

Value problem: deciding if a value is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
Val	undecidable	EXPTIME	3-EXPTIME	2-EXPTIME
$rVal^\delta$	undecidable	121	13	decidable (in ℕ)

Divergence All SCCs contain only cycles with a weight ≤ -1 or

 ζ Max

Problem 1: δ is fixed and known

$$\mathsf{rVal}^{\delta}(c) = \inf_{\substack{\chi \\ \delta\text{-robust}}} \sup_{\substack{\zeta \\ \delta\text{-robust}}} \mathsf{cost}(\mathsf{Play}(c,\chi,\zeta))$$

Value problem: deciding if a value is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
Val	undecidable	EXPTIME	3-EXPTIME	2-EXPTIME
$rVal^\delta$	undecidable	decidable	decidable	decidable (in \mathbb{N})

Divergence
All SCCs contain
only cycles with a
weight ≤ -1 or
≥ 1.

Problem 1: δ is fixed and known

$$\mathsf{rVal}^{\delta}(c) = \inf_{\substack{\zeta \\ \delta\text{-robust}}} \sup_{\substack{\zeta \\ \delta\text{-robust}}} \mathsf{cost}(\mathsf{Play}(c,\chi,\zeta))$$

Value problem: deciding if a value is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
Val	undecidable	EXPTIME	3-EXPTIME	2-EXPTIME
$rVal^\delta$	undecidable	decidable	decidable	decidable (in \mathbb{N})

Divergence All SCCs contain only cycles with a weight ≤ −1 or

 $^{-}$ Encoding fixed- δ semantics into exact one

Problem 1: δ is fixed and known

$$\mathsf{rVal}^{\delta}(c) = \inf_{\substack{\chi \\ \delta\text{-robust}}} \sup_{\substack{\zeta \\ \delta\text{-robust}}} \mathsf{cost}(\mathsf{Play}(c,\chi,\zeta))$$

Value problem: deciding if a value is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
Val	undecidable	EXPTIME	3-EXPTIME	2-EXPTIME
$rVal^\delta$	undecidable	decidable	decidable	decidable (in \mathbb{N})

Divergence

All SCCs contain only cycles with a weight ≤ -1 or

Figure 1. Encoding fixed- δ semantics into exact one

Problem 1: δ is fixed and known

$$\mathsf{rVal}^\delta(c) = \inf_{\substack{\chi \\ \delta \text{-robust}}} \sup_{\substack{\zeta \\ \delta \text{-robust}}} \mathsf{cost}(\mathsf{Play}(c,\chi,\zeta))$$

Value problem: deciding if a value is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
Val	undecidable	EXPTIME	3-EXPTIME	2-EXPTIME
$rVal^\delta$	undecidable	decidable	decidable	decidable (in ℕ)

Divergence

All SCCs contain only cycles with a weight ≤ -1 or

Encoding fixed- δ semantics into exact one

$$\underbrace{\begin{pmatrix} w_{\ell} \end{pmatrix} \qquad g, Y \qquad }_{W}$$

Problem 1: δ is fixed and known

$$\mathsf{rVal}^{\delta}(c) = \inf_{\substack{\chi \\ \delta\text{-robust} \\ \delta\text{-robust}}} \sup_{\substack{\zeta \\ \delta\text{-robust}}} \mathsf{cost}(\mathsf{Play}(c,\chi,\zeta))$$

Problem 2: δ tends to 0

$$\mathsf{rVal}(c) = \lim_{\substack{\delta \to 0 \\ \delta > 0}} \mathsf{rVal}^{\delta}(c)$$

Value problem: deciding if a value is at most equal to λ ?

		WTG	acyclic	divergent	1-clock
	Val	undecidable	EXPTIME	3-EXPTIME	2-EXPTIME
ĺ	$rVal^\delta$	undecidable	decidable	decidable	decidable (in ℕ)

Divergence

All SCCs contain only cycles with a weight ≤ -1 or

Encoding fixed- δ semantics into exact one

$$\underbrace{w_\ell} \xrightarrow{g, Y} \bigvee$$

Problem 1: δ is fixed and known

$$\mathsf{rVal}^{\delta}(c) = \inf_{\substack{\chi \\ \delta \text{-robust}}} \sup_{\substack{\zeta \\ \delta \text{-robust}}} \mathsf{cost}(\mathsf{Play}(c,\chi,\zeta))$$

Problem 2: δ tends to 0

$$\mathsf{rVal}(c) = \lim_{\substack{\delta \to 0 \\ \delta > 0}} \mathsf{rVal}^{\delta}(c)$$

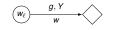
Value problem: deciding if a value is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
Val	undecidable	EXPTIME	3-EXPTIME	2-EXPTIME
$rVal^\delta$	undecidable	decidable	decidable	decidable (in ℕ)
rVal	undecidable	3	3	(3)

Divergence

All SCGs contain only cycles with a weight ≤ -1 or ≥ 1 .

Encoding fixed- δ semantics into exact one



Problem 1: δ is fixed and known

$$\mathsf{rVal}^\delta(c) = \inf_{\substack{\chi \\ \delta ext{-robust} \\ \delta ext{-robust}}} \sup_{\substack{\zeta \\ \delta ext{-robust}}} \mathsf{cost}(\mathsf{Play}(c,\chi,\zeta))$$

Problem 2: δ tends to 0

$$\mathsf{rVal}(c) = \lim_{\substack{\delta \to 0 \\ \delta > 0}} \mathsf{rVal}^{\delta}(c)$$

Value problem: deciding if a value is at most equal to λ ?

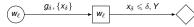
	WTG	acyclic	divergent	1-clock
Val	undecidable	EXPTIME	3-EXPTIME	2-EXPTIME
$rVal^\delta$	undecidable	decidable	decidable	decidable (in ℕ)
rVal	undecidable	decidable	3	(3)

Divergence

All SCCs contain only cycles with a weight ≤ -1 or

Encoding fixed- δ semantics into exact one





Problem 1: δ is fixed and known

$$\mathsf{rVal}^\delta(c) = \inf_{\substack{\chi \\ \delta ext{-robust} \\ \delta ext{-robust}}} \sup_{\substack{\zeta \\ \delta ext{-robust}}} \mathsf{cost}(\mathsf{Play}(c,\chi,\zeta))$$

Problem 2: δ tends to 0

$$\mathsf{rVal}(c) = \lim_{\substack{\delta \to 0 \\ \delta > 0}} \mathsf{rVal}^{\delta}(c)$$

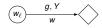
Value problem: deciding if a value is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
Val	undecidable	EXPTIME	3-EXPTIME	2-EXPTIME
$rVal^\delta$	undecidable	decidable	decidable	decidable (in ℕ)
rVal	undecidable	decidable	decidable	(3)

Divergence

All SCCs contain only cycles with a weight ≤ -1 or

Encoding fixed- δ semantics into exact one



Fixpoint symbolic computation

Fixpoint symbolic computation A combination of two existing methods

Fixpoint symbolic computation A combination of two existing methods

Optimal reachability for weighted timed games, R. Alur, M. Bernadsky and P. Madhusuda, 2004, ICALP

Fixpoint symbolic computation

A combination of two existing methods

Cells

Affine equations:

$$y = \sum_i a_i x_i + b$$

Fixpoint symbolic computation A combination of two existing methods

Cells

Affine equations:

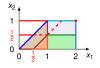
$$y = \sum_i a_i x_i + b$$

Fixpoint symbolic computation A combination of two existing methods

Cells

Affine equations:

$$y=\sum_i a_i x_i+b$$



Shrunk DBM

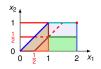
Matrix: $M - \delta P$ where $\delta \rightarrow 0$

Fixpoint symbolic computation A combination of two existing methods

Cells

Affine equations:

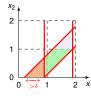
$$y = \sum_i a_i x_i + b$$



Shrunk cells

Shrunk DBM

Matrix: $M - \delta P$ where $\delta \rightarrow 0$



Fixpoint symbolic computation A combination of two existing methods

Cells

Affine equations:

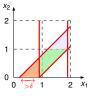
$$y=\sum_i a_i\,x_i+b$$

Shrunk cells

Affine equations:

Shrunk DBM

Matrix: $M - \delta P$ where $\delta
ightarrow 0$



Fixpoint symbolic computation

A combination of two existing methods

Cells

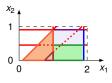
Affine equations: $y = \sum_i a_i x_i + b$



Shrunk cells

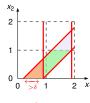
Affine equations:

$$y = \sum_i a_i x_i + b + c \delta$$



Shrunk DBM

Matrix: $M - \delta P$ where $\delta \rightarrow 0$



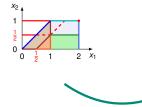
Fixpoint symbolic computation

A combination of two existing methods

Cells

Affine equations:

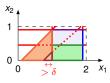
$$y=\sum_i a_i\,x_i+b$$



Shrunk cells

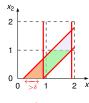
Affine equations:

 $y = \sum_{i} a_{i} x_{i} + b + c \delta$ where $\delta \to 0$



Shrunk DBM

Matrix: $M - \delta P$ where $\delta \rightarrow 0$



	WTG	acyclic	divergent
$rVal^\delta$	undecidable	decidable	decidable
rVal	undecidable	decidable	decidable

	WTG	acyclic	divergent
$rVal^\delta$	undecidable	decidable	decidable
rVal	undecidable	decidable	decidable

Decidability algorithms' principle

	WTG	acyclic	divergent
$rVal^\delta$	undecidable	decidable	decidable
rVal	undecidable	decidable	decidable

Decidability algorithms' principle

ightharpoonup Encoding fixed- δ semantics into already known semantics (like the exact one)

	WTG	acyclic	divergent
$rVal^\delta$	undecidable	decidable	decidable
rVal	undecidable	decidable	decidable

Decidability algorithms' principle

- ightharpoonup Encoding fixed- δ semantics into already known semantics (like the exact one)
- Adaptation of cells and shrunk DBM

	WTG	acyclic	divergent
$rVal^\delta$	undecidable	decidable	decidable
rVal	undecidable	decidable	decidable

Decidability algorithms' principle

- \blacktriangleright Encoding fixed- δ semantics into already known semantics (like the exact one)
- Adaptation of cells and shrunk DBM

Perspectives

	WTG	acyclic	divergent
$rVal^\delta$	undecidable	decidable	decidable
rVal	undecidable	decidable	decidable

Decidability algorithms' principle

- ightharpoonup Encoding fixed- δ semantics into already known semantics (like the exact one)
- Adaptation of cells and shrunk DBM

Perspectives

Others classes of weighted timed games like the 1-clock games

	WTG	acyclic	divergent
$rVal^\delta$	undecidable	decidable	decidable
rVal	undecidable	decidable	decidable

Decidability algorithms' principle

- **Encoding fixed-** δ semantics into already known semantics (like the exact one)
- Adaptation of cells and shrunk DBM

Perspectives

- Others classes of weighted timed games like the 1-clock games
- Robustness with probabilistic strategies

	WTG	acyclic	divergent
$rVal^\delta$	undecidable	decidable	decidable
rVal	undecidable	decidable	decidable

Decidability algorithms' principle

- \blacktriangleright Encoding fixed- δ semantics into already known semantics (like the exact one)
- Adaptation of cells and shrunk DBM

Perspectives

- Others classes of weighted timed games like the 1-clock games
- ► Robustness with probabilistic strategies

Thank you! Questions?