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Motivation: game theory for synthesis

Game theory

Interaction between two antagonistic
agents: environment and controller

Code synthesis

Correct by construction:
synthesis of controller

Classical approach

Check the correctness
of a system
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How Min wins in a weighted timed game? (@) Min

Max

Value Optimal strategy for Min
Val(c) = igf sup cost(Play(c, o, 7)) Val?(c) < Val(c)

val© (c)

Val(ty)

Infinite precision

From ¢y, Min wants to reach the valuation 2/3 ' Can Min play without the infinite
> if x < 2/3: Min plays 2/3— \ I precision on its strategies?
» otherwise, Min plays 0
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WTG

Val | undecidable

On Optimal Timed Strategies, T. Brihaye, V. Bruyere and J.-F. Raskin, 2005, FORMATS
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WTG acyclic divergent 1-clock All SCCs contain
Val | undecidable | EXPTIME | 3-EXPTIME | 2-EXPTIME only cycles with a
weight < —1 or
> 1.

A Theory of Timed Automata, R. Alur and D. Dill, 1994, Theoretical Computer Science
Optimal Strategies in Priced Timed Game Automata, P. Bouyer, F. Cassez, E. Fleury, and K. Larsen, 2004, TCS

Optimal Reachability in Divergent Weighted Timed Games, D. Busatto-Gaston, B. Monmege, and P.-A. Reynier,
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