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PSPACE lower bound
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PSPACE-hard for 1-clock WTG

Theorem (CONCUR’22): the problem is decidable for 1-clock WTG
c 7→ Val(c) is computable in exponential time

▶ Back-time algorithm: compute c 7→ Val(c) from x = 1 to 0
▶ Value iteration algorithm: deterministic value is a fixed point of a given operator
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A combination of two existing methods
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Appendix

Value Iteration does not converge in finite time in 1-clock WTG

Computation of deterministic value for 1-clock WTG

Existence of the expectation

Partition to compute stochastic values

Robust reachability
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Value Iteration for 1-clock WTG

2/6

Min Max

F(X)(ℓ, ν) =


0 if ℓ = ,;

inf
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Min;

sup
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Max.
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